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Least squares estimation of regression coefficients
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Abstract. We present some results on the rate of convergence to
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1. Introduction

This paper investigates regression models for homogeneous and isotropic random
fields observed on a sphere of an increasing radius. This problem was considered
by Yadrenko (1983), Ivanov and Leonenko (1989), and others. We consider regres-
sion models with singular random noise (or noise field with long-range dependence
(LRD)).

A continuous-parameter homogeneous isotropic random field is said to be sin-
gular or with LRD if its covariances decrease to zero at infinity but their integral
diverges. An alternative definition is available via Tauberian-Abelian theorems,
which requires the spectral density to be unbounded at the origin (see Leonenko
(1999)). Such processes and fields arise in hydrology, meteorology, turbulence the-
ory, etc. See, e.g., Beran (1994) and the references therein.

Statistical problems for discrete-parameter singular random fields were studied
by many authors. Beran (1994) and Leonenko(1999) contain an extensive bibliogra-
phy of the subject. In particular, Samarov and Taqqu (1988), Yajima (1988, 1991),
Künsch, Beran and Hampel (1993), Dahlhaus (1995), Robinson and Hidalgo (1997)
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considered regression models with LRD errors in discrete time. These results indi-
cate that the efficiency of least squares estimates (LSE) for the coefficients of linear
regression with long memory errors may still be very good in comparison with the
efficiency of LSE for coefficients of linear regression with random noise which has
zeroes in the spectrum (see Adenstedt (1974), Holevo (1976), Rasulov (1976)). The
works of Yajima (1988, 1991) contain some central limit theorems (under conditions
on cumulants of all orders) for LSE of regression coefficients of long-memory time
series. Yajima (1988, 1991) also obtained a formula for the asymptotic covariance
matrix of LSE and generalized LSE, and conditions under which they have equal
asymptotic efficiency. Dahlhaus (1995) proved the asymptotic normality of gener-
alized LSE. Künsch, Beran and Hampel (1993) discussed the effect of long-memory
errors on standard independence-based inference rules in the context of certain
experimental designs. Robinson and Hidalgo (1997) proved the central limit theo-
rem for the time series regression estimates which include generalized LSE, in the
presence of long-memory processes in both errors and stochastic regressors. Koul
(1992), Koul and Mukherjee (1993, 1994) considered the asymptotic properties of
various robust estimates of regression coefficients. A theory of semiparametric /
nonparametric regression with discontinuities (eg. change points) and LRD errors
was developed in Anh et al. (1999) and Gao and Anh (1999). Leonenko and Shara-
pov (1999) presented Gaussian and non-Gaussian limit distributions of the LSE of
regression coefficients of long-memory time series.

Statistical problems for continuous-parameter random processes and fields with
LRD were studied by Ivanov and Leonenko (1989), Chambers (1996), Comte (1996),
Leonenko and Šilac-Benšić (1996), Leonenko and Benšić (1998), among others. In
particular, Leonenko and Šilac-Benšić (1996) and Leonenko and Benšić (1998) pre-
sented the Gaussian and non-Gaussian limit distributions of LSE of regression coef-
ficients of long memory random fields with the continuous parameter. These results
were obtained using the methods of Dobrushin and Major (1979) and Taqqu (1979).

Statistical problems for singular random fields observed on a sphere are also of
interest. In this paper we present some results on the rate of convergence to the
normal law of the LSE of regression coefficients of random fields with LRD observed
on a sphere. We use the method proposed by Leonenko (1988) (see also Ivanov and
Leonenko (1989), p.64-70).

The problem of estimatiing the LRD exponent (or Hurst’s parameter) will be
considered elsewhere. Some simple cases have been considered in Beran (1994),
Robinson (1995), Comte (1996), Hall, Koul and Turlach (1997), among others.

2. On the efficiency of LSE

Let R
n, n ≥ 2, be an n-dimensional Euclidean space, s(r) = {x ∈ R : |x| = r} an

a sphere of radius r > 0, (ρ, u), ρ ≥ 0, u ∈ s(1), the spherical coordinates of point
x ∈ R

n, σ(x) the Lebesgue measure on sphere (see, Yadrenko (1983), Leonenko
(1999)).

Let (Ω, F, P ) be a complete probability space and

η(ω, x) = η(x) : Ω× R
n → R
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a measurable mean-square continuous random field.
A. Suppose the random field

ξ(x) = ag(x) + η(x),

or in spherical coordinates

ξ̃(ρ, u) = ag̃(ρ, u) + η̃(ρ, u),

is observed on a sphere s(r) ⊂ R
n, where g(x) = g̃(ρ, u) is a known function, a is

an unknown parameter and η(x) = η̃(ρ, u) is a homogeneous isotropic mean-square
continuous random field with Eη̃(ρ, u) = 0 and covariance function

B(|x − y|) = Eη(x)η(y)
or in spherical coordinates

B̃(ρ) = Eη̃(ρ1, u1)η̃(ρ2, u2),

where
ρ = |x− y| =

√
ρ21 + ρ

2
2 − 2ρ1ρ2 cos γ, cos γ =

< x, y >

|x| · |y| ,

x = (ρ1, u1), ρ ≥ 0, u1 ∈ s(1), y = (ρ2, u2) , ρ2 > 0, u2 ∈ s(1).
It is known (see Yadrenko (1983)) that the covariance function B̃(ρ) has the

spectral representation

B(|x|) =
∫

Rn

ei<λ,x>F (dλ)

or in spherical coordinates

B̃(ρ) = 2(n−2)/2Γ
(n
2

) ∞∫
0

J(n−2)/2 (λρ)
(λρ)(n−2)/2

dG(λ), (2.1)

where Jv(z) is the Bessel function of the first kind of order v > −1/2 and F (·) is
a spectral measure of the field η(x), or G(λ) is a bounded nondecreasing function
(the spectral function) such that G(λ) =

∫
|u|<λ

F (du).

Later the folloving function will be important:

bm(r) = 2n−1Γ
(n
2

)
πn/2

∞∫
0

J2
m+ n−2

2
(λr)(λr)2−ndG(λ), m = 0, 1, 2, ...

For example, if for some γ ∈ (−1, n− 2)

dG(λ) = |s(1)|λγh(λ)dλ,

where h(λ) is continuous in a neighborhood of zero, h(0) �= 0, h(λ) is bounded on
[0,∞), then (see Ivanov and Leonenko (1989), p.136)

bm(r) = (2π)nh(0)c1(n,m, γ)|s(1)|r−1−γ(1 + o(1))
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as r → ∞, where |s(1)| is the area of surface of the unit sphere s(1), and

c1(n,m, γ) =
Γ (n− 2− γ) Γ (2m+γ+1

2

)
2n−2−γΓ2

(
n−1−γ

2

)
Γ
(

2m+2n−γ−3
2

) .
Let Sl

m(u), u ∈ s(1) be a real orthogonal spherical harmonics of degree m ∈
{0, 1, 2, ...}, l = 1, 2, ..., h(n,m) (see for example Müller (1966), Leonenko (1999)),
where

h(n,m) = (2m+ n− 2)
(m+ n− 3)!
(n− 2)!m!

is a number of such harmonics.
B. Suppose g(x) ∈ L2(s(r), σ(dx)), and∫

s(r)

g2(x)σ(dx) <∞

for every fixed r > 0.
We introduce Fourier coefficients

gl
m(r) =

∫
s(1)

g̃(r, u)Sl
m(u)σ(du).

We consider the LSE for the unknown parameter a, i.e., the value of a which
minimizes the functional

Q(a) =
∫

s(r)

[ξ(x)− ag(x)]2σ(dx).

The LSE has the following simple form

âr =
∫

s(r)

ξ(x)g(x)σ(dx)/
∫

s(r)

g2(x)σ(dx). (2.2)

In view of the spectral decomposition of the covariance function (2.1) and the
additional theorem for the Bessel function (see, for example, Yadrenko (1983)):

2(n−2)/2Γ
(n
2

)
J(n−2)/2

(√
r21 + r22 − 2r1r2 cos γ

)(
r21 + r22 − 2r1r2 cos γ

)(2−n)/n

= c21(n)
∞∑

m=0

h(n,m)∑
l=1

Sl
m(u1)Sl

m(u2)Jm+ n−2
2
(r1)Jm+ n−2

2
(r2)(r1r2)(2−n)/2,

where
c21(n) = 2n−1Γ

(n
2

)
πn/2,
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we obtain (see Ivanov and Leonenko (1989), p.135-136)

var âr =

∫
s(r)

∫
s(r)

g(x)g(y)B(|x − y|)σ(dx)σ(dy)
( ∫

s(r)

g2(x)σ(dx)

)2

= c21(n)
∞∑

m=0

h(n,m)∑
l=1

Am,l(r)bm(r)/
∞∑

m=0

h(n,m)∑
l=1

[
gl

m(r)
]2
,

where

Am,l(r) =

[
gl

m(r)
]2

∞∑
m=0

h(n,m)∑
l=1

[gl
m(r)]2

.

Clearly,

Am,l(r) ≥ 0,
∞∑

m=0

h(n,m)∑
l=1

Am,l(r) = 1

for every r > 0. Thus for every r a discrete probability distribution {Am,l(r)},
(m, l) ∈ T = {0, 1, ...} × {1, 2, ..., h(n,m)}, is defined.

A theorem of Yadrenko (1983), p. 171, shows that the best linear unbiased
estimate (BLUE) a∗r of parameter a based on the observation ξ̃(ρ, u) is of the form

a∗r =
∫

s(1)

l(r, u)ξ̃(r, u)σ(du)/
∞∑

m=0

h(n,m)∑
l=1

[
gl

m(r)
]2

bm(r)
,

where the optimal weight function

l(r, u) =
∞∑

m=0

h(n,m)∑
l=1

gl
m(u)Sl

m(u)/bm(r).

Under assumptions A, B and if

∞∑
m=0

h(n,m)∑
l=1

[
gl

m(r)
]2
/bm(r) <∞,

the variance of the estimate a∗r has the form

var a∗r = c21(n)/


 ∞∑

m=0

h(n,m)∑
l=1

[
gl

m(r)
]2

bm(r)


 .

For every r a discrete probability distribution {Am,l(r)}, (m, l) ∈ T = {0, 1, ...}×
{1, 2, ..., h(n,m)} is defined.
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Then the efficiency of LSE

eff(âr, a
∗
r) = var a

∗
r/var âr

=




 ∞∑

m=0

h(n,m)∑
l=1

Am,l(r)bm(r)




 ∞∑

m=0

h(n,m)∑
l=1

Am,l(r)
bm(r)





−1

.

Suppose that the discrete probability distribution {Am,l(r)}, (m, l) ∈ T , is con-
centrated only at point (m0, l0) ∈ T for all r > 0 (that is, Am0,l0 = 1 and the rest
Am,l(r) = 0). Then eff(âr, a

∗
r) = 1 for every covariance function B(·) and every

r > 0.
In particular, if g̃(ρ, u) = p̃(ρ) is a radial function, then gl

0(r) = p̃(r)/
√|s(1)| and

the remainder gl
m(r) vanishes. Hence A0,1(r) = 1, then the remainder Am,l(r) = 0

and the discrete probability distribution is concentrated on one point (m0, l0) =
(0, 1).

Or if g̃(r, u) = Sl0
m0

(u), u ∈ s(1), then by the orthogonal property of special
harmonics Al0

m0
= 1, the remainder Al

m(r) = 0. Then the discrete probability
distribution is concentrated on one point (m0, l0) ∈ T . These results (see also
Leonenko (1999), pp. 335-340) are in contrast with the corresponding results for
random processes observed on sets like [−r, r] or [0, r] (see Grenander and Rosen-
blatt (1984), Ibragimov and Rozanov (1978), among others).

3. Main results

In what follows we need some extra assumptions.
C. Let η(x) = G(ε(x)), where ε(x), x ∈ R

n, n ≥ 2, is a homogeneous isotropic
Gaussian mean square continuous random field with Eε(x) = 0 and covariance
function

R (|x|) = (1 + |x|2)−α/2, 0 < α < n,

where G(u) is a non-random function such that EG(ε(0)) = 0, EG2(ε(0)) <∞.
Note that under assumption C∫

Rn

R(x)dx = ∞

and there exists a spectral density fα(|u|), u ∈ R
n of the form (see Leonenko (1999),

p.67)

fα(|u|) =
[
πn/22(α−n)/2Γ

(α
2

)]−1

K(n−α)/2(|u|)|u|(α−n)/2

=
[
Γ
(
n− α
2

)
/2απn/2Γ

(α
2

)]
|u|α−n (1− θ(|u|)) , 0 < α < n,

where θ(|u|) → 0 as |u| → 0, and

Kν(z) =
1
2

∞∫
0

sν−1e−
1
2 z(s+ 1

s )ds
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is the Bessel function of the third kind of order ν (or McDonald’s function). Note
that Kν(z) ∼ Γ(ν)2ν−1z−ν, z → 0, ν > 0 and for large values of z we have

Kν(z) =
(π
2

)1/2

z−1/2e−z

(
1 +

4ν2 − 1
8z

+ . . .
)
.

Let Hm(u) = (−1)m exp{u2/2}dm/dum exp{−u2/2}, u ∈ R, m = 0, 1, 2, . . . ,
be the Chebyshev-Hermite polynomials with the leading coefficient equal to 1.
As is well known, they form a complete orthogonal system in the Hilbert space
L2(R, φ(u)du), where

φ(u) = exp{−u2}/
√
2π, u ∈ R

and
EHm(ξ1)Hq(ξ2) = δqmρ

mm!, m ≥ 0, q ≥ 0, (3.1)

where (ξ1, ξ2) is a Gaussian vector with Eξ1 = Eξ2 = 0, Eξ21 = Eξ22 = 1, Eξ1ξ2 = ρ,
δqm is the usual Kronecker symbol.

Under assumption C the function G(u), u ∈ R, has the following representation
in the Hilbert space L2(R, φ(u)du):

G(u) =
∞∑

k=0

Ck

k!
Hk(u), Ck =

∞∫
−∞

G(u)Hk(u)φ(u)du. (3.2)

Note that
C0 = EG(ε(0)) = 0.

Under assumption C the LSE has the form

âr = a+
∫

s(r)

g(x)G(ε(x))σ(dx) /
∫

s(r)

g2(x)σ(dx). (3.3)

It is obvious that Eâr = a. From (3.1) and (3.3) we obtain the following expression
for the variance of the LSE âr:

var âr =


 ∫
s(r)

g2(x)σ(x)



−2 ∫

s(r)

∫
s(r)

EG(ε(x))G(ε(y))×

×g(x)g(y)σ(dx)σ(dy) =

=
∞∑

k=1

(
C2

k

k!

)
ψ2

k(r) /W
4(r), (3.4)

where Ck are defined in (3.2) and

ψ2
k(r) =

C2
k

k!

∫
s(r)

∫
s(r)

g(x)g(y)Rk(|x− y|)σ(dx)σ(dy),
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W 2(r) =
∫

s(r)

g2(x)σ(dx) =
∞∑

m=0

h(n,m)∑
l=1

[
gl

m(r)
]2
.

D. Consider the non-negative regression function

g(x) = grad(|x|)ψ
(
x

|x|
)
,

where ψ(u), u ∈ s(1), is a continuous function defined on the unit sphere s(1) and
grad(|x|) = g̃rad(ρ), ρ = |x|, is a radial function such that g̃rad(|x|) �= 0 for |x| �= 0.

Under assumptions C, D

W 2(r) = g̃2rad(r)r
n−1

∫
s(1)

ψ2(u)σ(du)

and

ψ2
k(r) =

(
C2

k

k!

)
g̃2rad(r)r

2(n−1)

∫
s(1)

∫
s(1)

ψ(u)ψ(v)Rk(r|u − v|)σ(du)σ(dv)

=
(
C2

k

k!

)
g̃2rad(r)r

2(n−1)

∫
s(1)

∫
s(1)

ψ(u)ψ(v)

× σ(du)σ(dv)

(1 + r2|u− v|2)kα/2
, 0 < α <

n− 1
k
. (3.5)

Let k = 1 or k = 2 and Ck �= 0. Then under assumptions C and D, using (3.5)
and Lebesgue’s dominated convergence theorem we obtain

ψ2
k(r) =

(
C2

k

k!

)
g̃2rad(r)r

−kαr2(n−1)lk(α, n)(1 + o(1)) as r → ∞,

where

lk(α, n) =
∫

s(1)

∫
s(1)

ψ(u)ψ(v)
σ(du)σ(dv)
|u− v|kα

, 0 < α <
n− 1
k
. (3.6)

The exact form of constants lk(α, n) can be found in Ivanov and Leonenko (1989,
p.60-61) for the case ψ(u) ≡ 1 by using a geometrical probability method.

Thus under conditions C and D with C1 �= 0, 0 < α < n− 1,

var âr =


C2

1 l1(α) /


∫

s(1)

ψ2(u)σ(du)




2
 r−α(1 + o(1)) as r → ∞.

Let us now consider the random variable

Ξr = (âr − a) /


sgn{C1}r−α

∫
s(1)

∫
s(1)

ψ(u)ψ(v)

(r−2 + |u− v|2)α/2
σ(du)σ(dv)


 .
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Let X and Y be arbitrary random variables, and consider the uniform (or Kol-
mogorov’s) distance between distributions of random variables X and Y via the
formula

K(X,Y ) = sup
u∈R

|P (X ≤ u)− P (Y ≤ u)| .

Let N be the standard normal random variable with density function φ(u).
The main result of this paper describes the rate of convergence to the normal

law of the random variables Ξr as r→ ∞. This result is presented in the following
theorem.

Theorem 1. Suppose that assumptions A, B, C, D hold for 0 < α < (n− 1)/2,
and

C1 =

∞∫
−∞

uG(u)φ(u)du �= 0.

Then the following quantity exists:

lim
r→∞ sup rα/3K(Ξr ,N )

and is bounded by
3
2

[
l2(α, n)
πl1(α, n)

]1/3

[c(G)]1/3,

where the constants li(α, n), i = 1, 2 are defined by (3.6) and

c(G) = C−2
1


 ∞∫
−∞

G2(u)φ(u)du − C2
1


 .

4. Proof of the main result

Before proving Theorem 1, we mention a result of Petrov (1971).
Lemma 1. Let X and Y be two arbitrary random variables and K(X,N ) ≤ K.

Then for every ε > 0

K(X + Y,N ) ≤ K + P{|Y | > ε}+ ε√
2π
.

Proof. See Petrov (1971), p.28. ✷

Proof of Theorem 1. Expansion (3.2) implies the following expansion in the
Hilbert space L2(Ω):

G(ε(x)) =
∞∑

k=1

Ck

k!
Hk(ε(x)),

where Ck’s are defined by (3.2).
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We now consider random variables

ηk(r) =
∫

s(r)

g(x)Hk(ε(x))σ(dx), k = 1, 2, . . .

In order to apply Lemma 1, we represent Ξr as

Ξr = (Xr + Yr)/ψ1(r), (4.1)

where
Xr = C1

∫
s(r)

g(x)ε(x)σ(dx), Yr =
∑
k≥2

Ck

k!
ηk(r).

Note that Xr is a Gaussian random variable with EXr = 0 and varXr = ψ2
1(r).

So we have
K(Xr/ψ1(r),N ) = 0. (4.2)

From assumption C we obtain that

k!
C2

k

ψ2
k(r) ≤

m!
C2

m

ψ2
m(r), 1 ≤ m ≤ k,

and thus, for 0 < α < (n− 1)/2,

varYr =
∑
k≥2

ψ2
k(r) ≤

∫
s(r)

∫
s(r)

g(x)g(y)B2(x − y)σ(dx)σ(dy)

∑

k≥2

C2
k

k!




= r2(n−α−1)L̃2(r)g̃2rad(r)l2,r(α, n)
∑
k≥2

C2
k

k!
, (4.3)

where by assumption E and Lebesgue’s dominated convergence theorem

l2,r(α, n) =
∫

s(1)

∫
s(1)

ψ(u)ψ(v)
(
r−2 + |u− v|2

)−α

σ(du)σ(dv) → l2(α, n) (4.4)

as r → ∞ for 0 < α < (n− 1)/2, where l2(α, n) is defined by (3.6).
Similarly, for 0 < α < n− 1,

l1,r(α, n) =
∫

s(1)

∫
s(1)

ψ(u)ψ(v)
(
r−2 + |u− v|2

)−α/2

σ(du)σ(dv) → l1(α, n) (4.5)

as r → ∞, where l1(α, n) is defined by (3.6).
From (4.3) and Chebyshev’s inequality we obtain that for every ε > 0

P (Yr/ψ1(r) > ε) ≤ ε−2var (Yr/ψ1(r))
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≤ ε−2ψ−2
1 (r)l2,r(α, n)r2(n−α−1)L̃2(r)g̃2rad(r)

∑
k≥2

C2
k/k!

= ε−2 1
rα
l2,r(α, n)
l1,r(α, n)


C−2

1

∑
k≥2

C2
k/k!


 , 0 < α < (n− 1)/2. (4.6)

Using Lemma1 with X = Xr/ψ1(r) and Y = Yr/ψ1(r) we obtain from (4.2)
and (4.6) that for any ε > 0

K(Ξr,N ) ≤ ε√
2π

+
1
ε2

1
rα
c(G)

l2,r(α, n)
l1,r(α, n)

, (4.7)

where

c(G) = C−2
1

∑
k≥2

C2
k

k!
= C−2

1


 ∞∫
−∞

G2(u)φ(u)du − C2
1


 <∞,

because by Parseval’s equality

EG2(ε(0)) =
∑
k≥0

C2
k

k!
=

∞∫
−∞

G2(u)φ(u)du <∞.

In order to minimize the right-hand side of inequality (4.7), set

ε = (1/rα)1/3 (8π)1/6 [c(G)l2,r(α, n)/l1,r(α, n)]
1/3
.

Thus we derive the following inequality:

K(Ξr,N ) ≤ (1/rα)1/3 3
2

(
c(G)l2,r(α, n)
πl1,r(α, n)

)1/3

. (4.8)

From (4.8), (4.4) and (4.5) we obtain the statement of the theorem. ✷

5. Extensions and generalizations

In view of the results of Illicheva and Leonenko (1995) the asymptotic normality of
the normalized LSE takes place for all α ∈ (0, n− 1) (see assumption C and (3.5))
if C1 �= 0, whereas Theorem 1 gives the convergence rate to zero of the Kolmogorov
distance between the normalized LSE and the normal law only for α ∈ (0, (n−1)/2).
Nevertheless, our method is applicable also to the larger interval α ∈ (0, n− 1) but
at the price of a slower convergence rate. For simplicity, we consider the case of
radial regression function g(x) = g̃rad(|x|), x ∈ R

n.

E. Let ε(x), x ∈ R
n, be a real-valued mean-square continuous isotropic Gaussian

field with Eε(x) = 0, Eε2(x) = 1 and covariance function B(x) = B̃(|x|) =
cov(ε(0), ε(x)) ↓ 0 as |x| → ∞, and η(x) = G(ε(x)), where EG(ε(x)) = 0,
EG2(ε(x)) <∞, x ∈ R

n.
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F. Suppose that the regression function g(x) = g̃rad(|x|), x ∈ R
n, is such that

g̃(|x|) > 0 if |x| �= 0, and g̃rad(|x|) ≤ g̃rad(|y|) for |x| ≤ |y|.
In contrast to condition C we assume the following condition.

G. There exists δ ∈ (0, 1) such that

γ(r, n) = (n− 1)r(1−n)(1+δ)

∫
s(r)

∫
s(r)

B̃(|x − y|)σ(dx)σ(dy)

= (n− 1)r(n−1)(1−δ)B̃(r)
∫

s(1)

∫
s(1)

B̃(r|u − v|)
B̃(r)

σ(du)σ(dv) → ∞

as r → ∞.
Note that if assumption C holds, then γ(r, n) → ∞ as r → ∞. Thus, the

random field ε(x), x ∈ R
n, satisfying assumption G is a random field with LRD.

Let U1 and U2 be two independent random vectors selected in accordance with
the uniform law of the sphere s(r) ⊂ R

n. Then (see, for example, Ivanov and
Leonenko (1989), p.29) the density function fr(u) of the Euclidean distance |U1−U2|
between U1 and U2 is

fr(u) = π−1/2 Γ
(

n
2

)
Γ
(

n−1
2

)r1−nun−2

[
1−
( u
2r

)2
]n−3

2

, 0 < u < 2r

where Γ(·) is the gamma function.
Using randomization we obtain for every function f(|x− y|), x, y ∈ R

n:∫
s(r)

∫
s(r)

f(|x− y|)σ(dx)σ(dy) = |s(r)|2Ef(|U1 − U2|)

= r2(n−1)|s(1)|2
2r∫
0

f(u)fr(u)du

= q1(n)rn−1

2r∫
0

zn−2f(z)
[
1−
( z
2r

)2
]n−3

2

dz, (5.1)

where q1(n) = 4πn−1/2Γ−1
(

n
2

)
Γ−1

(
n−1

2

)
= 2nπn−1/(n − 2)! and |s(r)| =

2πn/2Γ−1
(

n
2

)
is the area of the unit sphere s(1).

Under assumptions E, F and G as in the proof of Theorem 1 we represent

Ξr = (Xr + Yr)/ψ1(r),

where
K(Xr/ψ1(r),N ) = 0, Yr =

∑
k≥2

Ck

k!
ηk(r),
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ηk(r) = g̃rad(r)
∫

s(r)

Hk(ε(x))σ(dx), k = 1, 2, ...

ψ2
1(r) = C

2
1 g̃

2
rad (r)

∫
s(r)

∫
s(r)

B̃(|x− y|)σ(dx)σ(dy).

Let χ(A) be the indicator function. From (5.1) with f(|x − y|) = χ(|x − y| < rδ)
we obtain

var

(
Yr

ψ1(r)

)
≤ ψ−2

1 (r)


∑

k≥2

C2
k

k!


 g̃2rad(r)

∫
s(r)

∫
s(r)

B̃2(|x− y|)σ(dx)σ(dy)

=
1

ψ2
1(r)


∑

k≥2

C2
k

k!


 g̃2rad(r)


 ∫
s(r)

∫
s(r)

B̃2(|x − y|)χ(|x− y| < rδ)σ(dx)σ(dy)

+
∫

s(r)

∫
s(r)

B̃2(|x− y|)χ(|x − y| ≥ rδ)σ(dx)σ(dy)




≤

C−2

1

∑
k≥2

C2
k

k!





∫

s(r)

∫
s(r)

χ(|x− y| < rδ)σ(dx)σ(dy)
∫

s(r)

∫
s(r)

B̃(|x− y|)σ(dx)σ(dy)

+sup{B̃(z), z ≥ rδ}

∫
s(r)

∫
s(r)

B̃(|x − y|)χ(|x− y| ≥ rδ)σ(dx)σ(dy)
∫

s(r)

∫
s(r)

B̃(|x − y|)σ(dx)σ(dy)




≤ c(G)



∫

s(r)

∫
s(r)

χ(|x− y| < rδ)σ(dx)σ(dy)
∫

s(r)

∫
s(r)

B̃(|x− y|)σ(dx)σ(dy) + B̃(rδ)




≤ c(G)


 q1(n)(1 + o(1))
(n− 1)r(1−n)(δ+1)

∫
s(r)

∫
s(r)

B̃(|x− y|)σ(dx)σ(dy) + B̃(rδ)




= c(G)
[
q1(n)(1 + o(1))

γ(r, n)
+ B̃(rδ)

]
(5.2)

as r → ∞.
Using Lemma1 with X = Xr/ψ1(r) and Y = Yr/ψ1(r) we obtain from (5.2)

that for any ε > 0

K(Ξr,N ) ≤ ε√
2π

+
1
ε2
c(G)

[
q1(n)(1 + o(1))

γ(r, n)
+ B̃(rδ)

]
. (5.3)
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In order to minimize the right-hand side of (5.3), set

ε =
[
2
√
2πc(G)

]1/3
[
q1(n)(1 + o(1))

γ(r, n)
+ B̃(rδ)

]1/3

.

Thus, from (5.3) we obtain
Theorem 2. Under assumptions F, G, J with C1 �= 0 there exists

lim
r→∞ sup

[
q1(n)
γ(r, n)

+ B̃(rδ)
]−1/3

K(Ξr,N ) ≤ 3
2

(
c(G)
π

)1/3

,

where q1(n) is defined as in (5.1).

6. Conclusion remarks

Suppose we observe ξ(x), x ∈ s(r)χ(x ∈ A), A ∈ s(r). Then a regression model
based on ξ(x) can be reduced to a regression model on spheres by choosing g(x) =
g(x)χ(x ∈ A), η(x) = G(ε(x)), where G(u) = χ(u ∈ A). Thus, a regression model
on spheres is suitable to investigate the statistical inference in signal plus noise
problems involving observations on a sphere such as the earth, which is a natural
example of a sphere with a large radius (r → ∞).

The assumption C1 �= 0 is satisfied for a large class of sets A ∈ s(r) with some
symmetry properties. If C1 = ... = Cm−1 = 0, but Cm �= 0 for some integer
m ≥ 1, then limiting distributions of LSE of regression coefficients of the random
field observed on a sphere can be found in Ill’icheva and Leonenko (1995). They
have a non-Gaussian structure for m ≥ 2. An extension of Theorems 1 and 2 of this
paper to the case m ≥ 2 is in progress. Some simple aspects of this case have been
dealt with in Leonenko and Anh (2001).
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[17] H.R.Künsch, J. Beran, F.Hampel, Contrasts under long-range correla-
tions, Ann. Stat. 21(1993), 943-964.

[18] N.N.Leonenko On the exactness of normal approximation for functionals of
Gaussian random fields, Math. Notes 43(1988), 283-299 (in Russian).

[19] N.N.Leonenko, Limit Theorems for Random Fields with Singular Spectrum,
Kluwer Academ. Publishers, Dordrecht, 1999.

[20] N.N.Leonenko, V.V.Anh, Rate of convergence to Rosenblatt distribution
for additive functionals of stochastic processes with long-range dependence, J.
Appl. Math. Stoch. Anal. (in press).
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