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On algebraic equations concerning semi-tangential
polygons

MIRKO RADIC*

Abstract.  Some properties of equations (5) and (6) are proved
(Theorem 1-2) and it was established that the positive roots of these
equations are radii of a sequence of tangential semi-polygons which have
the same lengths of tangents.
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1. Preliminaries

First, on notations which will be used.
Symbol S;(z1,...,z,). Let z1,..., 2, be real numbers, and let j be an integer

such that 1 < j < n. Then S;(z1,...,%,) is the sum of all 7; ) products of the

form x;, - - - - x;;, where iy,...,i; are different elements of the set {1,...,n}, that
is
SJ‘(.’E17...,.’L'n) = Z Ligy v 0 {L‘ij. (1)

1<ip < <ij<n

Of course, S1(z1,...,&n) =21+ + Tp.
Semi-polygon. Let A;,..., A, be any given different points in a plane. Then
the union
A1 Ay U AyAsU---UA,_14,US (2)

of line segments A; A, ..., A,_1A, and the set S which is either ab empty set or
a segment A, A1, will be called a semi-polygon and denoted by A; --- A, or briefly
by A.

So, each polygon may be termed a semi-polygon, but not conversely, if S is an
empty set.

If A;--- A, is a semi-polygon which is not a polygon, then its vertices A; and
A,, will be called end-vertices.
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Tangential semi-polygon. A semi-polygon A; --- A,, will be called a tangen-
tial semi-polygon if there is a circle C such that each side of A lies on a tangent line
of C and, in case A; --- A, is not a polygon, the end-vertices A; and A, lie on C.

Now something about the angles which play an important role in the following.

Let A; - - - A, be a tangential semi-polygon and let C be the centre of its inscribed
circle. In case A is a polygon, then

Bi = £LCOAjAiyr, i=1,...,n (3)
and in case A is not a polygon, then

Bi = LCAip1Aige, i=1,...,n—2. (4)

s

Of course, in any case, for each §; there holds 8; < 7, since no two of the

consecutive vertices are the same.

2. On some algebraic equations

In what follows, for brevity, S} will be written instead of Si(t1,...,tn), where
t1,...,t, are real numbers different from zero, and 7}' will be written nstead of

S;(tg B, ..., tgBn). So,
S;L:Sj(tl,...,tn), Tjn:Sj(tgﬂl,...,tgﬂn), j:L...,’rL.

Also, the symbol 7 will be used which is defined as follows: If n is a natural
number, then

. n if n is odd
= e
n — 1 if n is even.
The number s in the expression (—1)® will always be given by
s=1+3+5+---4+n)+1.

Theorem 1. Let the following two equations be given

o — SpanT? 4 SpatTt — o 4 (=1)°ST_w ‘
Y dd 5
Span=t — S5an=3 + S5an=? — .-+ (=1)*5} nee ®)
Sngn—1 _ gnan=3 4 gn,n=5__ ... 4 (_1)sg9"
1 30 5% (Z1)°Sh 2 =)\, n is even, (6)

—" + Sg$n72 _ Silxnfék 4+ (_1)55}:

where A is any given positive number. Then the number of positive roots of the first
equation is "TH, and of the second 5. For each positive root xz; of those equations

there holds
-1
min{th...,tn}tgf §xi§max{t17...,tn}tgw, (7)
n n

where p = arctg A.
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Proof. We shall use the following two trigonometric equalities

TP — TP+ T8 — 4 (1T
¢ ) = n dd,
g(ﬂl"" +ﬂ ) 1—T5L+T£—+(—1)STZLL_1 nis o (8)

TP —T3+ T8 — -+ (—1)°T"
1-TP+Tp — -4+ (=1)sTr
which can be easily proved by induction on n.
First we prove the following lemma.

Lemma 1. For each integer k € {O, 1,..., an} there are angles ﬁik), . ,ﬂ,(Lk)
such that

L nis even, 9)

tg(B+ -+ 0n) =

BE 4k P =tk (10)
titg B = = totg B, (11)
Proof. We need to prove that there are angles ﬂ£k), ey L’“) satisfying (10) and

they have the property that there exists a positive number xj such that

ttg B = =1, tg 8% = 2, (12)

or .
tgﬂgk) = —k7 i=1,...,n.
t;

Thus we have the condition

Zawctga;—{C =p+knr

i=1

which obviously can be fulfiled since the function arctgx is continuous for every
real number z. So, our lemma is proved. O
Now, if in (8) and (9) we replace 81 + - + B, by ¢ + kr and tg3; by z,
i =1,...,n, we shall get the equations which can be written as (5) and (6). Each
xy, given by (12) is a positive root of the corresponding equation.
In proving that inequalities (7) hold well, we shall use the following obvious fact:

If uq,...,u, are positive numbers, then
min{uy, ..., U} < w < max{ug,...,Un}.
So from (10) it follows that
min{g", ..., g®1 < %kw <max{g" ... gk} (13)

and from (11) we see that ¢; < ¢; implies @Uf) > ﬂ;k). Thus the following holds:
if ¢; = min{¢y,...,t,}, then @Ug) = max{ﬂyc)7 ., B

if t; = max{ty,...,t,}, then @(-k) = min{ﬂ£k), .. .,ﬂ,(f)},
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and in this case
k k
titg B = t;tg 8.

Now, using (12) and (13), it is obvious that

k k
min{tr, ... 60} tg 2T < oy < max{t, ...t} tg LT
n
Since ¢ < ¢ + kr < %w for each £k = 0,1,. ..,%, the proof of Theorem 1 is
complete. O

The following corollaries may also be interesting.
Corollary 1. Equations (5) and (6) have all real roots. For each negative root
xy, there holds

n—1)mw . n+1)mw
max{ty, ..., tn} tg <%+%) <z <min{ty, ...t} tg <%+7( 2n) )

Proof. In the same way as in Lemma ! it can be shown that for each k €

otl . .,n— 1} there are angles ﬂ;k), .., % such that

B+ 4+ B = otk

k
titg B = =t tg B =y,
but now zy is negative since ¢ + km > n3.
So, we have the following situation: if £k =0,1,..., %7 we get positive roots,
if k= %, ...,n— 1, we get negative roots, if k =n,...,n+ %7 we again get all

positive roots, and so on.

For example, if n = 5, then for £ = 0,1,2 we get positive roots, for k& = 3,4
negative, and so on. O

Corollary 2. Let A in equations (5) and (6) be negative and let ¢ be the least
positive angle such that ¢ = arctg A. Then we have angles ¢ +km for k=0,1,2,...
and the situation is like when A > 0.

For example, if A = —3, n = 5, then for £ = 0,1 we get positive roots, and for
k = 2,3, 4 negative.

Corollary 3. Let A in equations (5) and (6) be zero. Then we have the following
two equations

" — SPanT? 4 S t — o (—1)*SP_x =0, n is odd (14)

Syt - SR £ SPa"E — o (=1)°S"_x =0, n is even, (15)

and the angles are kw, k =0,1,... For k=20 we get the root equal to zero. For
k=1,..., "T_l we get positive roots, and for k = "TH7 ..., —1 negative. For each

positive root there holds

n—1
min{tl,...,tn}tg% < ap <max{ty,...,tn}tg W’
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and for each negative root

max{t1,...,tn}tg < xp <min{ty, ..., tn}tg

(A4 1)m (h— D)
2n n

Corollary 4. Let A in equations (5) and (6) be co. Then we have the following
two equations

S’{’x’“1 — SPa" T3 8PP — o (=1)°S" =0, n is odd, (16)

— S5 2 4 St — 4 (=1)¥TEST =0, n s even, (17)

and the angles are (2k — 1)%, k=1,2,... The situation is similar to the one in
Corollary 3.

Before stating with the following theorem let us remark that the angle ¢ will be
as in Theorem1, ¢ = arctg A, and the expressions

U (), Vi (), U (), V3™ (@)

will be as follows

Uln) (z) = 2™ — Sya" 2 4 SPa" ™t — ... 4 (=1)°S"_,x, n is odd
‘/1(71)(1,):5? n—1 Sn n— 3_|_Sn n—>5 '.'+(_1)SS7’!1/L, n is odd
Uzn)(l‘) = St - SR 4 S — o (—1)°S™_,, nis even
V" (@) = —a" 4 s3a" 7 = Sja" Tt 4 (< 1))
Thus equations (5) and (6) can be written as
U () = A" () =0, (18)
U3 (@) — AV (z) = 0. (19)
Theorem 2. Let m,n,q be positive integers such that mq =n and let t1,...,t,
be positive numbers such that
ti+jm:tia izl,...,m, jzl,...,q—l. (20)

Then depending on which of the following three possibilities occurs

m is odd, n is odd, m|n
m is odd, n is even, m|n

m is even, n is even, m|n

one of the following three assertions holds
(U@ =i @) | (00w - @) e
(U@ =) | (08w - ) -
(U@ =) | (U@ - @) =
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where T = tg %, and | is a symbol for divides.

Of course, in the expressions Ul(m) (x), Vl(m) (x), Uz(m) (x), VQ(m) (x) stand m instead
of n. So, for example

U™ (@) = 2™ = S3'a™ 2 4 S = (Z1)'S e,

where ST* = Sj(t1,...,tm), j=2,4,...,m — L.
Proof. From

ﬂ%k)+...+ﬂ7§k>:(p—|—kﬂ', k=0,1,...,n—1

titg B = =t tg B
k k
= titg By = -+ = tm te B
k
= ttg By 1), =0 = b tg B = a

it follows that . .
5%)+...+67(lk):q(5£)+...+67(7/:)>'

Accordingly

k
@+kﬂ:q<§+57r>, k=0,q,2q,...,(m—1)q

that is &
ﬂ£k)+~~-+ﬂ,(f):§—|—57r, k=0,q,2q,...,(m—1)q.
Thus Theorem 2 is proved. O

Before stating with some corollaries from it, here is an example.
Letn:G?tl:t4:17t2:t5:27t3:t6:37¢:%' Thus m =3, ¢ = 2,
)\:\/g,T:tg%:‘/Tg,and

U (x) — ?Vfg)(x) = 2% — 2v/32% — 11z + 23,

U (@) — VBV O (2) = VBaS + 122° — 58v/3a* — 1442% + 193322 + 1322 — 36V/3,
3
<U2(6) (x) — \/§V2(6) (x)) : (Ul(g) (x) — %Vl(g) (x)) = V323 4+ 182% — 113z — 18.
Corollary 5. Let A =0. If (20) is fulfiled, then

Ufm) (x) | Ul(n) (2), when m is odd, n is odd
Ufm) (x) | Uz(n) (2), when m is odd, n is even

Uz(m) (x) | Uz(n) (x), when m is even, n is even.
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Corollary 6. Let A = co. If (20) is fulfiled, then

Vl(m)(l") | Vl(n) (z), when m is odd, n is odd
Vl(m)(x) | Vgn) (z), when m is odd, n is even

Vz(m)(x) | VQn) (z), when m is even, n is even.

Corollary 7. Let condition (20) in Theorem 2 be replaced by

S](thatm) - Sj(tm+17"'at2m) = ...

ZSj(t(q,l)m,...,tqm), j=1...,m. (24)
Then (21), (22) and (23) hold, too. Also Corollary 5 and Corollary 6 hold, too.
Proof. It is easy to see that each S;(t1,...,t,), j = 1,...,n can be expressed

as a sum of the products such that each factor is of the form

S’i(tl+k7 ceey tm+k¢)7

where i € {1,...,m}, k € {0,1,...,(¢ — 1)m — 1}. So, for example, if n = 12,
m =2, j =3, then

S3(t17"'7t12) = S3(t17"'7t6) +S3(t77"‘7t12)
+ Si(t1, ... t6)Sa2(tr, ..., t12)
=+ Sl(t7, ... ,tlg)Sg(tl,. . .,tg).

Thus the essentiall in the expressions Ul(m)(x), cey VQ(n) () remains unchanged.
O

Example. Let n=6,t; = 1,13 =3, t3 = 15—67 ty =2,1t5 =06, 1l = g. Then
t1+1to+1t3 =14 +1t5 +tg, T1tats = tatsts.
If ¢ = 7, then A =0, 7 = tg 5 = oo, and we have
U (z) = 14.42* — 242.42° + 297.6,
V3 () = 7242 - 9.6

Ul () : VI (2) = 222 — 31.

3. Some properties of tangential semi-polygons

An essential characteristic of a tangential semi-polygon expresses the following the-
orem.
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Theorem 3. Let ty,...,t, be any given lengths (in fact positive numbers) and
let X be any given real number or either oo or —oo. Further, let (1, ..., 0, be angles
such that

0<6i<g, i=1,....n

tg(B1+ -+ Bn) = A (25)
If v denotes the number of all tangential semi-polygons whose tangents have the
lengths t1, ..., t, and the angles b1, . .., By satisfy (25), then the following assertions
hold:

1) If A >0 or A = o, thenv:"TJrl if nis odd, and v = 5 if n is even.

2) If A\=0, then v = 251,

Analogously in the case when A <0 or A = —oo.
Proof. Follows from Theorem 1 and Theorem 2 and theirs corollaries. O
Example. Let n =6, ¢t =--- =t = 1, A = co. Then we have the equation

2% —152* + 1522 —1=0
whose positive roots are

= 0,267949192

8

1 = tg

=1

To = tg

SN RN

x5 = tg 1_72T = 3.732050808

and these are the radii of the corresponding tangential semi-polygons. The first
polygon “lie” on five semicircles, the second one on three, and the third one on one.
(The first is showen in figure below. Its end-vertices are denoted by 1 and 8.)

5

Figurel.
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