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On algebraic equations concerning semi-tangential

polygons

Mirko Radić∗

Abstract. Some properties of equations (5) and (6) are proved
(Theorem 1–2) and it was established that the positive roots of these
equations are radii of a sequence of tangential semi-polygons which have
the same lengths of tangents.
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1. Preliminaries

First, on notations which will be used.
Symbol Sj(x1, . . . , xn). Let x1, . . . , xn be real numbers, and let j be an integer

such that 1 ≤ j ≤ n. Then Sj(x1, . . . , xn) is the sum of all
(

n
j

)
products of the

form xi1 · · · · · xij , where i1, . . . , ij are different elements of the set {1, . . . , n}, that
is

Sj(x1, . . . , xn) =
∑

1≤i1<···<ij≤n

xi1 · · · · · xij . (1)

Of course, S1(x1, . . . , xn) = x1 + · · ·+ xn.
Semi-polygon. Let A1, . . . , An be any given different points in a plane. Then

the union
A1A2 ∪ A2A3 ∪ · · · ∪ An−1An ∪ S (2)

of line segments A1A2, . . . , An−1An and the set S which is either ab empty set or
a segment AnA1, will be called a semi-polygon and denoted by A1 · · ·An or briefly
by A.

So, each polygon may be termed a semi-polygon, but not conversely, if S is an
empty set.

If A1 · · ·An is a semi-polygon which is not a polygon, then its vertices A1 and
An will be called end-vertices.
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Tangential semi-polygon. A semi-polygon A1 · · ·An will be called a tangen-
tial semi-polygon if there is a circle C such that each side of A lies on a tangent line
of C and, in case A1 · · ·An is not a polygon, the end-vertices A1 and An lie on C.

Now something about the angles which play an important role in the following.
Let A1 · · ·An be a tangential semi-polygon and let C be the centre of its inscribed

circle. In case A is a polygon, then

βi = ∠CAiAi+1, i = 1, . . . , n (3)

and in case A is not a polygon, then

βi = ∠CAi+1Ai+2, i = 1, . . . , n − 2. (4)

Of course, in any case, for each βi there holds βi < π
2 , since no two of the

consecutive vertices are the same.

2. On some algebraic equations

In what follows, for brevity, Sn
j will be written instead of Sj(t1, . . . , tn), where

t1, . . . , tn are real numbers different from zero, and T n
j will be written nstead of

Sj(tg β1, . . . , tg βn). So,

Sn
j = Sj(t1, . . . , tn), T n

j = Sj(tg β1, . . . , tg βn), j = 1, . . . , n.

Also, the symbol n̂ will be used which is defined as follows: If n is a natural
number, then

n̂ =
{

n if n is odd
n − 1 if n is even.

The number s in the expression (−1)s will always be given by

s = (1 + 3 + 5 + · · ·+ n̂) + 1.

Theorem 1. Let the following two equations be given

xn − Sn
2 xn−2 + Sn

4 xn−4 − · · ·+ (−1)sSn
n−1x

Sn
1 xn−1 − Sn

3 xn−3 + Sn
5 xn−5 − · · ·+ (−1)sSn

n

= λ, n is odd (5)

Sn
1 xn−1 − Sn

3 xn−3 + Sn
5 xn−5 − · · ·+ (−1)sSn

n−1x

−xn + Sn
2 xn−2 − Sn

4 xn−4 + · · ·+ (−1)sSn
n

= λ, n is even, (6)

where λ is any given positive number. Then the number of positive roots of the first
equation is n+1

2 , and of the second n
2 . For each positive root xi of those equations

there holds

min{t1, . . . , tn} tg ϕ

n
≤ xi ≤ max{t1, . . . , tn} tg ϕ+ (n − 1)π

n
, (7)

where ϕ = arctgλ.
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Proof. We shall use the following two trigonometric equalities

tg(β1 + · · ·+ βn) =
T n

1 − T n
3 + T n

5 − · · ·+ (−1)sT n
n

1− T n
2 + T n

4 − · · ·+ (−1)sT n
n−1

, n is odd, (8)

tg(β1 + · · ·+ βn) =
T n

1 − T n
3 + T n

5 − · · ·+ (−1)sT n
n−1

1− T n
2 + T n

4 − · · ·+ (−1)sT n
n

, n is even, (9)

which can be easily proved by induction on n.
First we prove the following lemma.
Lemma 1. For each integer k ∈ {0, 1, . . . , n̂−1

2

}
there are angles β

(k)
1 , . . . , β

(k)
n

such that
β

(k)
1 + · · ·+ β(k)

n = ϕ+ kπ, (10)

t1 tg β
(k)
1 = · · · = tn tg β(k)

n . (11)

Proof. We need to prove that there are angles β
(k)
1 , . . . , β

(k)
n satisfying (10) and

they have the property that there exists a positive number xk such that

t1 tg β
(k)
1 = · · · = tn tg β(k)

n = xk (12)

or
tg β

(k)
i =

xk

ti
, i = 1, . . . , n.

Thus we have the condition
n∑

i=1

arctg
xk

ti
= ϕ+ kπ

which obviously can be fulfiled since the function arctgx is continuous for every
real number x. So, our lemma is proved. ✷

Now, if in (8) and (9) we replace β1 + · · · + βn by ϕ + kπ and tg βi by x
ti
,

i = 1, . . . , n, we shall get the equations which can be written as (5) and (6). Each
xk given by (12) is a positive root of the corresponding equation.

In proving that inequalities (7) hold well, we shall use the following obvious fact:
If u1, . . . , un are positive numbers, then

min{u1, . . . , un} ≤ u1 + · · ·+ un

n
≤ max{u1, . . . , un}.

So from (10) it follows that

min{β(k)
1 , . . . , β(k)

n } ≤ ϕ+ kπ

n
≤ max{β(k)

1 , . . . , β(k)
n } (13)

and from (11) we see that ti < tj implies β
(k)
i > β

(k)
j . Thus the following holds:

if ti = min{t1, . . . , tn}, then β
(k)
i = max{β(k)

1 , . . . , β(k)
n }

if tj = max{t1, . . . , tn}, then β
(k)
j = min{β(k)

1 , . . . , β(k)
n },
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and in this case
ti tg β

(k)
i = tj tg β

(k)
j .

Now, using (12) and (13), it is obvious that

min{t1, . . . , tn} tg ϕ+ kπ

n
≤ xk ≤ max{t1, . . . , tn} tg ϕ+ kπ

n
.

Since ϕ ≤ ϕ + kπ ≤ n̂−1
2 π for each k = 0, 1, . . . , n̂−1

2 , the proof of Theorem 1 is
complete. ✷

The following corollaries may also be interesting.
Corollary 1. Equations (5) and (6) have all real roots. For each negative root

xk there holds

max{t1, . . . , tn} tg
(

ϕ

n
+
(n − 1)π

n

)
≤ xk ≤ min{t1, . . . , tn} tg

(
ϕ

n
+
(n+ 1)π
2n

)
.

Proof. In the same way as in Lemma1 it can be shown that for each k ∈{
n̂+1

2 , . . . , n − 1} there are angles β
(k)
1 , . . . , β

(k)
n such that

β
(k)
1 + · · ·+ β(k)

n = ϕ+ kπ

t1 tg β
(k)
1 = · · · = tn tg β(k)

n = xk,

but now xk is negative since ϕ+ kπ > nπ
2 .

So, we have the following situation: if k = 0, 1, . . . , n̂−1
2 , we get positive roots,

if k = n̂+1
2 , . . . , n− 1, we get negative roots, if k = n, . . . , n+ n̂−1

2 , we again get all
positive roots, and so on.

For example, if n = 5, then for k = 0, 1, 2 we get positive roots, for k = 3, 4
negative, and so on. ✷

Corollary 2. Let λ in equations (5) and (6) be negative and let ϕ be the least
positive angle such that ϕ = arctgλ. Then we have angles ϕ+kπ for k = 0, 1, 2, . . .
and the situation is like when λ > 0.

For example, if λ = −3, n = 5, then for k = 0, 1 we get positive roots, and for
k = 2, 3, 4 negative.

Corollary 3. Let λ in equations (5) and (6) be zero. Then we have the following
two equations

xn − Sn
2 xn−2 + Sn

4 xn−4 − · · ·+ (−1)sSn
n−1x = 0, n is odd (14)

Sn
1 xn−1 − Sn

3 xn−3 + Sn
5 xn−5 − · · ·+ (−1)sSn

n−1x = 0, n is even, (15)

and the angles are kπ, k = 0, 1, . . . For k = 0 we get the root equal to zero. For
k = 1, . . . , n̂−1

2 we get positive roots, and for k = n̂+1
2 , . . . , n̂− 1 negative. For each

positive root there holds

min{t1, . . . , tn} tg π

n
≤ xk ≤ max{t1, . . . , tn} tg (n̂ − 1)π

n
,
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and for each negative root

max{t1, . . . , tn} tg (n̂+ 1)π2n
≤ xk ≤ min{t1, . . . , tn} tg (n̂ − 1)π

n
.

Corollary 4. Let λ in equations (5) and (6) be ∞. Then we have the following
two equations

Sn
1 xn−1 − Sn

3 xn−3 + Sn
5 xn−5 − · · ·+ (−1)sSn

n = 0, n is odd, (16)

xn − Sn
2 xn−2 + Sn

4 xn−4 − · · ·+ (−1)s+1Sn
n = 0, n is even, (17)

and the angles are (2k − 1)π
2 , k = 1, 2, . . . The situation is similar to the one in

Corollary3.
Before stating with the following theorem let us remark that the angle ϕ will be

as in Theorem 1, ϕ = arctgλ, and the expressions

U
(n)
1 (x), V

(n)
1 (x), U

(n)
2 (x), V

(n)
2 (x)

will be as follows

U
(n)
1 (x) = xn − Sn

2 xn−2 + Sn
4 xn−4 − · · ·+ (−1)sSn

n−1x, n is odd

V
(n)
1 (x) = Sn

1 xn−1 − Sn
3 xn−3 + Sn

5 xn−5 − · · ·+ (−1)sSn
n , n is odd

U
(n)
2 (x) = Sn

1 xn−1 − Sn
3 xn−3 + Sn

5 xn−5 − · · ·+ (−1)sSn
n−1, n is even

V
(n)
2 (x) = −xn + sn

2xn−2 − Sn
4 xn−4 + · · ·+ (−1)sSn

n

Thus equations (5) and (6) can be written as

U
(n)
1 (x) − λV

(n)
1 (x) = 0, (18)

U
(n)
2 (x) − λV

(n)
2 (x) = 0. (19)

Theorem 2. Let m, n, q be positive integers such that mq = n and let t1, . . . , tn
be positive numbers such that

ti+jm = ti, i = 1, . . . , m, j = 1, . . . , q − 1. (20)

Then depending on which of the following three possibilities occurs

m is odd, n is odd, m|n
m is odd, n is even, m|n
m is even, n is even, m|n

one of the following three assertions holds(
U

(m)
1 (x)− τV

(m)
1 (x)

)
|
(
U

(n)
1 (x)− λV

(n)
1 (x)

)
(21)(

U
(m)
1 (x)− τV

(m)
1 (x)

)
|
(
U

(n)
2 (x)− λV

(n)
2 (x)

)
(22)(

U
(m)
2 (x)− τV

(m)
2 (x)

)
|
(
U

(n)
2 (x)− λV

(n)
2 (x)

)
(23)
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where τ = tg ϕ
q , and | is a symbol for divides.

Of course, in the expressions U
(m)
1 (x), V

(m)
1 (x), U

(m)
2 (x), V

(m)
2 (x) stand m instead

of n. So, for example

U
(m)
1 (x) = xm − Sm

2 xm−2 + Sm
4 xm−4 − · · ·+ (−1)sSm

m−1x,

where Sm
j = Sj(t1, . . . , tm), j = 2, 4, . . . , m − 1.

Proof. From

β
(k)
1 + · · ·+ β(k)

n = ϕ+ kπ, k = 0, 1, . . . , n − 1

t1 tg β
(k)
1 = · · · = tm tg β(k)

m

= t1 tg β
(k)
m+1 = · · · = tm tg β

(k)
2m

...
. . .

...
= t1 tg β

(k)
(q−1)m = · · · = tm tg β(k)

qm = xk

it follows that
β

(k)
1 + · · ·+ β(k)

n = q
(
β

(k)
1 + · · ·+ β(k)

m

)
.

Accordingly

ϕ+ kπ = q

(
ϕ

q
+

k

q
π

)
, k = 0, q, 2q, . . . , (m − 1)q

that is
β

(k)
1 + · · ·+ β(k)

n =
ϕ

q
+

k

q
π, k = 0, q, 2q, . . . , (m − 1)q.

Thus Theorem 2 is proved. ✷

Before stating with some corollaries from it, here is an example.
Let n = 6, t1 = t4 = 1, t2 = t5 = 2, t3 = t6 = 3, ϕ = π

3 . Thus m = 3, q = 2,
λ =

√
3, τ = tg π

6 =
√

3
3 , and

U
(3)
1 (x)−

√
3
3

V
(3)
1 (x) = x3 − 2

√
3x2 − 11x+ 2

√
3,

U
(6)
2 (x)−

√
3V (6)

2 (x) =
√
3x6 + 12x5 − 58

√
3x4 − 144x3 + 193

√
3x2 + 132x− 36

√
3,

(
U

(6)
2 (x) −

√
3V (6)

2 (x)
)
:

(
U

(3)
1 (x)−

√
3
3

V
(3)
1 (x)

)
=

√
3x3 + 18x2 − 11

√
3x − 18.

Corollary 5. Let λ = 0. If (20) is fulfiled, then

U
(m)
1 (x) |U (n)

1 (x), when m is odd, n is odd

U
(m)
1 (x) |U (n)

2 (x), when m is odd, n is even

U
(m)
2 (x) |U (n)

2 (x), when m is even, n is even.
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Corollary 6. Let λ =∞. If (20) is fulfiled, then

V
(m)
1 (x) |V (n)

1 (x), when m is odd, n is odd

V
(m)
1 (x) |V (n)

2 (x), when m is odd, n is even

V
(m)
2 (x) |V (n)

2 (x), when m is even, n is even.

Corollary 7. Let condition (20) in Theorem2 be replaced by

Sj(t1, . . . , tm) = Sj(tm+1, . . . , t2m) = . . .

= Sj(t(q−1)m, . . . , tqm), j = 1, . . . , m. (24)

Then (21), (22) and (23) hold, too. Also Corollary 5 and Corollary6 hold, too.
Proof. It is easy to see that each Sj(t1, . . . , tn), j = 1, . . . , n can be expressed

as a sum of the products such that each factor is of the form

Si(t1+k, . . . , tm+k),

where i ∈ {1, . . . , m}, k ∈ {0, 1, . . . , (q − 1)m − 1}. So, for example, if n = 12,
m = 2, j = 3, then

S3(t1, . . . , t12) = S3(t1, . . . , t6) + S3(t7, . . . , t12)
+ S1(t1, . . . , t6)S2(t7, . . . , t12)
+ S1(t7, . . . , t12)S2(t1, . . . , t6).

Thus the essentiall in the expressions U
(m)
1 (x), . . . , V (n)

2 (x) remains unchanged.
✷

Example. Let n = 6, t1 = 1, t2 = 3, t3 = 16
5 , t4 = 2, t5 = 6, t6 = 6

5 . Then

t1 + t2 + t3 = t4 + t5 + t6, t1t2t3 = t4t5t6.

If ϕ = π, then λ = 0, τ = tg π
2 =∞, and we have

U
(6)
2 (x) = 14.4x4 − 242.4x2 + 297.6,

V
(3)
1 (x) = 7.2x2 − 9.6

U
(6)
2 (x) : V (3)

1 (x) = 2x2 − 31.

3. Some properties of tangential semi-polygons

An essential characteristic of a tangential semi-polygon expresses the following the-
orem.
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Theorem 3. Let t1, . . . , tn be any given lengths (in fact positive numbers) and
let λ be any given real number or either ∞ or −∞. Further, let β1, . . . , βn be angles
such that

0 < βi <
π

2
, i = 1, . . . , n

tg(β1 + · · ·+ βn) = λ. (25)

If v denotes the number of all tangential semi-polygons whose tangents have the
lengths t1, . . . , tn and the angles β1, . . . , βn satisfy (25), then the following assertions
hold:

1) If λ > 0 or λ =∞, then v = n+1
2 if n is odd, and v = n

2 if n is even.

2) If λ = 0, then v = n̂−1
2 .

Analogously in the case when λ < 0 or λ = −∞.
Proof. Follows from Theorem 1 and Theorem 2 and theirs corollaries. ✷

Example. Let n = 6, t1 = · · · = t6 = 1, λ =∞. Then we have the equation
x6 − 15x4 + 15x2 − 1 = 0

whose positive roots are

x1 = tg
π

6
= 0, 267949192

x2 = tg
π

4
= 1

x3 = tg
5π
12

= 3.732050808

and these are the radii of the corresponding tangential semi-polygons. The first
polygon “lie” on five semicircles, the second one on three, and the third one on one.
(The first is showen in figure below. Its end-vertices are denoted by 1 and 8.)

Figure 1.
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