On algebraic equations concerning semi-tangential polygons

Mirko Radić*

Abstract

Some properties of equations (5) and (6) are proved (Theorem 1-2) and it was established that the positive roots of these equations are radii of a sequence of tangential semi-polygons which have the same lengths of tangents.

Key words: algebraic equation, semi-tangential polygon
AMS subject classifications: 51E12
Received March 3, $2000 \quad$ Accepted April 25, 2001

1. Preliminaries

First, on notations which will be used.
Symbol $S_{j}\left(x_{1}, \ldots, x_{n}\right)$. Let x_{1}, \ldots, x_{n} be real numbers, and let j be an integer such that $1 \leq j \leq n$. Then $S_{j}\left(x_{1}, \ldots, x_{n}\right)$ is the sum of all $\binom{n}{j}$ products of the form $x_{i_{1}} \cdots x_{i_{j}}$, where i_{1}, \ldots, i_{j} are different elements of the set $\{1, \ldots, n\}$, that is

$$
\begin{equation*}
S_{j}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq i_{1}<\cdots<i_{j} \leq n} x_{i_{1}} \cdots \cdots x_{i_{j}} \tag{1}
\end{equation*}
$$

Of course, $S_{1}\left(x_{1}, \ldots, x_{n}\right)=x_{1}+\cdots+x_{n}$.
Semi-polygon. Let A_{1}, \ldots, A_{n} be any given different points in a plane. Then the union

$$
\begin{equation*}
A_{1} A_{2} \cup A_{2} A_{3} \cup \cdots \cup A_{n-1} A_{n} \cup S \tag{2}
\end{equation*}
$$

of line segments $A_{1} A_{2}, \ldots, A_{n-1} A_{n}$ and the set S which is either ab empty set or a segment $A_{n} A_{1}$, will be called a semi-polygon and denoted by $A_{1} \cdots A_{n}$ or briefly by \underline{A}.

So, each polygon may be termed a semi-polygon, but not conversely, if S is an empty set.

If $A_{1} \cdots A_{n}$ is a semi-polygon which is not a polygon, then its vertices A_{1} and A_{n} will be called end-vertices.

[^0]Tangential semi-polygon. A semi-polygon $A_{1} \cdots A_{n}$ will be called a tangential semi-polygon if there is a circle \mathcal{C} such that each side of \underline{A} lies on a tangent line of \mathcal{C} and, in case $A_{1} \cdots A_{n}$ is not a polygon, the end-vertices A_{1} and A_{n} lie on \mathcal{C}.

Now something about the angles which play an important role in the following.
Let $A_{1} \cdots A_{n}$ be a tangential semi-polygon and let C be the centre of its inscribed circle. In case \underline{A} is a polygon, then

$$
\begin{equation*}
\beta_{i}=\angle C A_{i} A_{i+1}, \quad i=1, \ldots, n \tag{3}
\end{equation*}
$$

and in case \underline{A} is not a polygon, then

$$
\begin{equation*}
\beta_{i}=\angle C A_{i+1} A_{i+2}, \quad i=1, \ldots, n-2 . \tag{4}
\end{equation*}
$$

Of course, in any case, for each β_{i} there holds $\beta_{i}<\frac{\pi}{2}$, since no two of the consecutive vertices are the same.

2. On some algebraic equations

In what follows, for brevity, S_{j}^{n} will be written instead of $S_{j}\left(t_{1}, \ldots, t_{n}\right)$, where t_{1}, \ldots, t_{n} are real numbers different from zero, and T_{j}^{n} will be written nstead of $S_{j}\left(\operatorname{tg} \beta_{1}, \ldots, \operatorname{tg} \beta_{n}\right)$. So,

$$
S_{j}^{n}=S_{j}\left(t_{1}, \ldots, t_{n}\right), \quad T_{j}^{n}=S_{j}\left(\operatorname{tg} \beta_{1}, \ldots, \operatorname{tg} \beta_{n}\right), \quad j=1, \ldots, n
$$

Also, the symbol \hat{n} will be used which is defined as follows: If n is a natural number, then

$$
\hat{n}=\left\{\begin{array}{l}
n \text { if } n \text { is odd } \\
n-1 \text { if } n \text { is even. }
\end{array}\right.
$$

The number s in the expression $(-1)^{s}$ will always be given by

$$
s=(1+3+5+\cdots+\hat{n})+1
$$

Theorem 1. Let the following two equations be given

$$
\begin{gather*}
\frac{x^{n}-S_{2}^{n} x^{n-2}+S_{4}^{n} x^{n-4}-\cdots+(-1)^{s} S_{n-1}^{n} x}{S_{1}^{n} x^{n-1}-S_{3}^{n} x^{n-3}+S_{5}^{n} x^{n-5}-\cdots+(-1)^{s} S_{n}^{n}}=\lambda, \quad n \text { is odd } \tag{5}\\
\frac{S_{1}^{n} x^{n-1}-S_{3}^{n} x^{n-3}+S_{5}^{n} x^{n-5}-\cdots+(-1)^{s} S_{n-1}^{n} x}{-x^{n}+S_{2}^{n} x^{n-2}-S_{4}^{n} x^{n-4}+\cdots+(-1)^{s} S_{n}^{n}}=\lambda, \quad n \text { is even, } \tag{6}
\end{gather*}
$$

where λ is any given positive number. Then the number of positive roots of the first equation is $\frac{n+1}{2}$, and of the second $\frac{n}{2}$. For each positive root x_{i} of those equations there holds

$$
\begin{equation*}
\min \left\{t_{1}, \ldots, t_{n}\right\} \operatorname{tg} \frac{\varphi}{n} \leq x_{i} \leq \max \left\{t_{1}, \ldots, t_{n}\right\} \operatorname{tg} \frac{\varphi+(n-1) \pi}{n} \tag{7}
\end{equation*}
$$

where $\varphi=\operatorname{arctg} \lambda$.

Proof. We shall use the following two trigonometric equalities

$$
\begin{align*}
\operatorname{tg}\left(\beta_{1}+\cdots+\beta_{n}\right) & =\frac{T_{1}^{n}-T_{3}^{n}+T_{5}^{n}-\cdots+(-1)^{s} T_{n}^{n}}{1-T_{2}^{n}+T_{4}^{n}-\cdots+(-1)^{s} T_{n-1}^{n}}, n \text { is odd } \tag{8}\\
\operatorname{tg}\left(\beta_{1}+\cdots+\beta_{n}\right) & =\frac{T_{1}^{n}-T_{3}^{n}+T_{5}^{n}-\cdots+(-1)^{s} T_{n-1}^{n}}{1-T_{2}^{n}+T_{4}^{n}-\cdots+(-1)^{s} T_{n}^{n}}, n \text { is even, } \tag{9}
\end{align*}
$$

which can be easily proved by induction on n.
First we prove the following lemma.
Lemma 1. For each integer $k \in\left\{0,1, \ldots, \frac{\hat{n}-1}{2}\right\}$ there are angles $\beta_{1}^{(k)}, \ldots, \beta_{n}^{(k)}$ such that

$$
\begin{align*}
& \beta_{1}^{(k)}+\cdots+\beta_{n}^{(k)}=\varphi+k \pi \tag{10}\\
& t_{1} \operatorname{tg} \beta_{1}^{(k)}=\cdots=t_{n} \operatorname{tg} \beta_{n}^{(k)} \tag{11}
\end{align*}
$$

Proof. We need to prove that there are angles $\beta_{1}^{(k)}, \ldots, \beta_{n}^{(k)}$ satisfying (10) and they have the property that there exists a positive number x_{k} such that

$$
\begin{equation*}
t_{1} \operatorname{tg} \beta_{1}^{(k)}=\cdots=t_{n} \operatorname{tg} \beta_{n}^{(k)}=x_{k} \tag{12}
\end{equation*}
$$

or

$$
\operatorname{tg} \beta_{i}^{(k)}=\frac{x_{k}}{t_{i}}, \quad i=1, \ldots, n
$$

Thus we have the condition

$$
\sum_{i=1}^{n} \operatorname{arctg} \frac{x_{k}}{t_{i}}=\varphi+k \pi
$$

which obviously can be fulfiled since the function $\operatorname{arctg} x$ is continuous for every real number x. So, our lemma is proved.

Now, if in (8) and (9) we replace $\beta_{1}+\cdots+\beta_{n}$ by $\varphi+k \pi$ and $\operatorname{tg} \beta_{i}$ by $\frac{x}{t_{i}}$, $i=1, \ldots, n$, we shall get the equations which can be written as (5) and (6). Each x_{k} given by (12) is a positive root of the corresponding equation.

In proving that inequalities (7) hold well, we shall use the following obvious fact: If u_{1}, \ldots, u_{n} are positive numbers, then

$$
\min \left\{u_{1}, \ldots, u_{n}\right\} \leq \frac{u_{1}+\cdots+u_{n}}{n} \leq \max \left\{u_{1}, \ldots, u_{n}\right\}
$$

So from (10) it follows that

$$
\begin{equation*}
\min \left\{\beta_{1}^{(k)}, \ldots, \beta_{n}^{(k)}\right\} \leq \frac{\varphi+k \pi}{n} \leq \max \left\{\beta_{1}^{(k)}, \ldots, \beta_{n}^{(k)}\right\} \tag{13}
\end{equation*}
$$

and from (11) we see that $t_{i}<t_{j}$ implies $\beta_{i}^{(k)}>\beta_{j}^{(k)}$. Thus the following holds:
if $t_{i}=\min \left\{t_{1}, \ldots, t_{n}\right\}$, then $\beta_{i}^{(k)}=\max \left\{\beta_{1}^{(k)}, \ldots, \beta_{n}^{(k)}\right\}$
if $t_{j}=\max \left\{t_{1}, \ldots, t_{n}\right\}$, then $\beta_{j}^{(k)}=\min \left\{\beta_{1}^{(k)}, \ldots, \beta_{n}^{(k)}\right\}$,
and in this case

$$
t_{i} \operatorname{tg} \beta_{i}^{(k)}=t_{j} \operatorname{tg} \beta_{j}^{(k)}
$$

Now, using (12) and (13), it is obvious that

$$
\min \left\{t_{1}, \ldots, t_{n}\right\} \operatorname{tg} \frac{\varphi+k \pi}{n} \leq x_{k} \leq \max \left\{t_{1}, \ldots, t_{n}\right\} \operatorname{tg} \frac{\varphi+k \pi}{n}
$$

Since $\varphi \leq \varphi+k \pi \leq \frac{\hat{n}-1}{2} \pi$ for each $k=0,1, \ldots, \frac{\hat{n}-1}{2}$, the proof of Theorem 1 is complete.

The following corollaries may also be interesting.
Corollary 1. Equations (5) and (6) have all real roots. For each negative root x_{k} there holds

$$
\max \left\{t_{1}, \ldots, t_{n}\right\} \operatorname{tg}\left(\frac{\varphi}{n}+\frac{(n-1) \pi}{n}\right) \leq x_{k} \leq \min \left\{t_{1}, \ldots, t_{n}\right\} \operatorname{tg}\left(\frac{\varphi}{n}+\frac{(n+1) \pi}{2 n}\right)
$$

Proof. In the same way as in Lemma 1 it can be shown that for each $k \in$ $\left\{\frac{\hat{n}+1}{2}, \ldots, n-1\right\}$ there are angles $\beta_{1}^{(k)}, \ldots, \beta_{n}^{(k)}$ such that

$$
\begin{gathered}
\beta_{1}^{(k)}+\cdots+\beta_{n}^{(k)}=\varphi+k \pi \\
t_{1} \operatorname{tg} \beta_{1}^{(k)}=\cdots=t_{n} \operatorname{tg} \beta_{n}^{(k)}=x_{k}
\end{gathered}
$$

but now x_{k} is negative since $\varphi+k \pi>n \frac{\pi}{2}$.
So, we have the following situation: if $k=0,1, \ldots, \frac{\hat{n}-1}{2}$, we get positive roots, if $k=\frac{\hat{n}+1}{2}, \ldots, n-1$, we get negative roots, if $k=n, \ldots, n+\frac{\hat{n}-1}{2}$, we again get all positive roots, and so on.

For example, if $n=5$, then for $k=0,1,2$ we get positive roots, for $k=3,4$ negative, and so on.

Corollary 2. Let λ in equations (5) and (6) be negative and let φ be the least positive angle such that $\varphi=\operatorname{arctg} \lambda$. Then we have angles $\varphi+k \pi$ for $k=0,1,2, \ldots$ and the situation is like when $\lambda>0$.

For example, if $\lambda=-3, n=5$, then for $k=0,1$ we get positive roots, and for $k=2,3,4$ negative.

Corollary 3. Let λ in equations (5) and (6) be zero. Then we have the following two equations

$$
\begin{gather*}
x^{n}-S_{2}^{n} x^{n-2}+S_{4}^{n} x^{n-4}-\cdots+(-1)^{s} S_{n-1}^{n} x=0, \quad n \text { is odd } \tag{14}\\
S_{1}^{n} x^{n-1}-S_{3}^{n} x^{n-3}+S_{5}^{n} x^{n-5}-\cdots+(-1)^{s} S_{n-1}^{n} x=0, \quad n \text { is even, } \tag{15}
\end{gather*}
$$

and the angles are $k \pi, k=0,1, \ldots$ For $k=0$ we get the root equal to zero. For $k=1, \ldots, \frac{\hat{n}-1}{2}$ we get positive roots, and for $k=\frac{\hat{n}+1}{2}, \ldots, \hat{n}-1$ negative. For each positive root there holds

$$
\min \left\{t_{1}, \ldots, t_{n}\right\} \operatorname{tg} \frac{\pi}{n} \leq x_{k} \leq \max \left\{t_{1}, \ldots, t_{n}\right\} \operatorname{tg} \frac{(\hat{n}-1) \pi}{n}
$$

and for each negative root

$$
\max \left\{t_{1}, \ldots, t_{n}\right\} \operatorname{tg} \frac{(\hat{n}+1) \pi}{2 n} \leq x_{k} \leq \min \left\{t_{1}, \ldots, t_{n}\right\} \operatorname{tg} \frac{(\hat{n}-1) \pi}{n}
$$

Corollary 4. Let λ in equations (5) and (6) be ∞. Then we have the following two equations

$$
\begin{align*}
& S_{1}^{n} x^{n-1}-S_{3}^{n} x^{n-3}+S_{5}^{n} x^{n-5}-\cdots+(-1)^{s} S_{n}^{n}=0, \quad n \text { is odd }, \tag{16}\\
& x^{n}-S_{2}^{n} x^{n-2}+S_{4}^{n} x^{n-4}-\cdots+(-1)^{s+1} S_{n}^{n}=0, \quad n \text { is even }, \tag{17}
\end{align*}
$$

and the angles are $(2 k-1) \frac{\pi}{2}, k=1,2, \ldots$ The situation is similar to the one in Corollary 3.

Before stating with the following theorem let us remark that the angle φ will be as in Theorem $1, \varphi=\operatorname{arctg} \lambda$, and the expressions

$$
U_{1}^{(n)}(x), V_{1}^{(n)}(x), U_{2}^{(n)}(x), V_{2}^{(n)}(x)
$$

will be as follows

$$
\begin{aligned}
& U_{1}^{(n)}(x)=x^{n}-S_{2}^{n} x^{n-2}+S_{4}^{n} x^{n-4}-\cdots+(-1)^{s} S_{n-1}^{n} x, \quad n \text { is odd } \\
& V_{1}^{(n)}(x)=S_{1}^{n} x^{n-1}-S_{3}^{n} x^{n-3}+S_{5}^{n} x^{n-5}-\cdots+(-1)^{s} S_{n}^{n}, \quad n \text { is odd } \\
& U_{2}^{(n)}(x)=S_{1}^{n} x^{n-1}-S_{3}^{n} x^{n-3}+S_{5}^{n} x^{n-5}-\cdots+(-1)^{s} S_{n-1}^{n}, \quad n \text { is even } \\
& V_{2}^{(n)}(x)=-x^{n}+s_{2}^{n} x^{n-2}-S_{4}^{n} x^{n-4}+\cdots+(-1)^{s} S_{n}^{n}
\end{aligned}
$$

Thus equations (5) and (6) can be written as

$$
\begin{align*}
& U_{1}^{(n)}(x)-\lambda V_{1}^{(n)}(x)=0 \tag{18}\\
& U_{2}^{(n)}(x)-\lambda V_{2}^{(n)}(x)=0 . \tag{19}
\end{align*}
$$

Theorem 2. Let m, n, q be positive integers such that $m q=n$ and let t_{1}, \ldots, t_{n} be positive numbers such that

$$
\begin{equation*}
t_{i+j m}=t_{i}, \quad i=1, \ldots, m, \quad j=1, \ldots, q-1 \tag{20}
\end{equation*}
$$

Then depending on which of the following three possibilities occurs

$$
\begin{aligned}
& m \text { is odd, } n \text { is odd, } m \mid n \\
& m \text { is odd, } n \text { is even, } m \mid n \\
& m \text { is even, } n \text { is even, } m \mid n
\end{aligned}
$$

one of the following three assertions holds

$$
\begin{array}{lll}
\left(U_{1}^{(m)}(x)-\tau V_{1}^{(m)}(x)\right) & \mid & \left(U_{1}^{(n)}(x)-\lambda V_{1}^{(n)}(x)\right) \\
\left(U_{1}^{(m)}(x)-\tau V_{1}^{(m)}(x)\right) & \mid & \left(U_{2}^{(n)}(x)-\lambda V_{2}^{(n)}(x)\right) \\
\left(U_{2}^{(m)}(x)-\tau V_{2}^{(m)}(x)\right) & \mid & \left(U_{2}^{(n)}(x)-\lambda V_{2}^{(n)}(x)\right) \tag{23}
\end{array}
$$

where $\tau=\operatorname{tg} \frac{\varphi}{q}$, and \mid is a symbol for divides.
Of course, in the expressions $U_{1}^{(m)}(x), V_{1}^{(m)}(x), U_{2}^{(m)}(x), V_{2}^{(m)}(x)$ stand m instead of n. So, for example

$$
U_{1}^{(m)}(x)=x^{m}-S_{2}^{m} x^{m-2}+S_{4}^{m} x^{m-4}-\cdots+(-1)^{s} S_{m-1}^{m} x,
$$

where $S_{j}^{m}=S_{j}\left(t_{1}, \ldots, t_{m}\right), j=2,4, \ldots, m-1$.
Proof. From

$$
\begin{gathered}
\beta_{1}^{(k)}+\cdots+\beta_{n}^{(k)}=\varphi+k \pi, \quad k=0,1, \ldots, n-1 \\
\quad t_{1} \operatorname{tg} \beta_{1}^{(k)}=\cdots=t_{m} \operatorname{tg} \beta_{m}^{(k)} \\
=t_{1} \operatorname{tg} \beta_{m+1}^{(k)}=\cdots=t_{m} \operatorname{tg} \beta_{2 m}^{(k)} \\
\vdots \\
\quad \ddots \quad \vdots \\
=t_{1} \operatorname{tg} \beta_{(q-1) m}^{(k)}=\cdots=t_{m} \operatorname{tg} \beta_{q m}^{(k)}=x_{k}
\end{gathered}
$$

it follows that

$$
\beta_{1}^{(k)}+\cdots+\beta_{n}^{(k)}=q\left(\beta_{1}^{(k)}+\cdots+\beta_{m}^{(k)}\right)
$$

Accordingly

$$
\varphi+k \pi=q\left(\frac{\varphi}{q}+\frac{k}{q} \pi\right), \quad k=0, q, 2 q, \ldots,(m-1) q
$$

that is

$$
\beta_{1}^{(k)}+\cdots+\beta_{n}^{(k)}=\frac{\varphi}{q}+\frac{k}{q} \pi, \quad k=0, q, 2 q, \ldots,(m-1) q .
$$

Thus Theorem 2 is proved.
Before stating with some corollaries from it, here is an example.
Let $n=6, t_{1}=t_{4}=1, t_{2}=t_{5}=2, t_{3}=t_{6}=3, \varphi=\frac{\pi}{3}$. Thus $m=3, q=2$, $\lambda=\sqrt{3}, \tau=\operatorname{tg} \frac{\pi}{6}=\frac{\sqrt{3}}{3}$, and

$$
\begin{gathered}
U_{1}^{(3)}(x)-\frac{\sqrt{3}}{3} V_{1}^{(3)}(x)=x^{3}-2 \sqrt{3} x^{2}-11 x+2 \sqrt{3}, \\
U_{2}^{(6)}(x)-\sqrt{3} V_{2}^{(6)}(x)=\sqrt{3} x^{6}+12 x^{5}-58 \sqrt{3} x^{4}-144 x^{3}+193 \sqrt{3} x^{2}+132 x-36 \sqrt{3}, \\
\left(U_{2}^{(6)}(x)-\sqrt{3} V_{2}^{(6)}(x)\right):\left(U_{1}^{(3)}(x)-\frac{\sqrt{3}}{3} V_{1}^{(3)}(x)\right)=\sqrt{3} x^{3}+18 x^{2}-11 \sqrt{3} x-18 .
\end{gathered}
$$

Corollary 5. Let $\lambda=0$. If (20) is fulfiled, then

$$
\begin{array}{ll}
U_{1}^{(m)}(x) \mid U_{1}^{(n)}(x), & \text { when } m \text { is odd, } n \text { is odd } \\
U_{1}^{(m)}(x) \mid U_{2}^{(n)}(x), & \text { when } m \text { is odd, } n \text { is even } \\
U_{2}^{(m)}(x) \mid U_{2}^{(n)}(x), & \text { when } m \text { is even, } n \text { is even. }
\end{array}
$$

Corollary 6. Let $\lambda=\infty$. If (20) is fulfiled, then

$$
\begin{array}{ll}
V_{1}^{(m)}(x) \mid V_{1}^{(n)}(x), & \text { when } m \text { is odd, } n \text { is odd } \\
V_{1}^{(m)}(x) \mid V_{2}^{(n)}(x), & \text { when } m \text { is odd, } n \text { is even } \\
V_{2}^{(m)}(x) \mid V_{2}^{(n)}(x), & \text { when } m \text { is even, } n \text { is even. }
\end{array}
$$

Corollary 7. Let condition (20) in Theorem 2 be replaced by

$$
\begin{align*}
& S_{j}\left(t_{1}, \ldots, t_{m}\right)=S_{j}\left(t_{m+1}, \ldots, t_{2 m}\right)=\ldots \\
& \quad=S_{j}\left(t_{(q-1) m}, \ldots, t_{q m}\right), \quad j=1, \ldots, m \tag{24}
\end{align*}
$$

Then (21), (22) and (23) hold, too. Also Corollary 5 and Corollary 6 hold, too.
Proof. It is easy to see that each $S_{j}\left(t_{1}, \ldots, t_{n}\right), j=1, \ldots, n$ can be expressed as a sum of the products such that each factor is of the form

$$
S_{i}\left(t_{1+k}, \ldots, t_{m+k}\right),
$$

where $i \in\{1, \ldots, m\}, k \in\{0,1, \ldots,(q-1) m-1\}$. So, for example, if $n=12$, $m=2, j=3$, then

$$
\begin{aligned}
S_{3}\left(t_{1}, \ldots, t_{12}\right) & =S_{3}\left(t_{1}, \ldots, t_{6}\right)+S_{3}\left(t_{7}, \ldots, t_{12}\right) \\
& +S_{1}\left(t_{1}, \ldots, t_{6}\right) S_{2}\left(t_{7}, \ldots, t_{12}\right) \\
& +S_{1}\left(t_{7}, \ldots, t_{12}\right) S_{2}\left(t_{1}, \ldots, t_{6}\right)
\end{aligned}
$$

Thus the essentiall in the expressions $U_{1}^{(m)}(x), \ldots, V_{2}^{(n)}(x)$ remains unchanged.
Example. Let $n=6, t_{1}=1, t_{2}=3, t_{3}=\frac{16}{5}, t_{4}=2, t_{5}=6, t_{6}=\frac{6}{5}$. Then

$$
t_{1}+t_{2}+t_{3}=t_{4}+t_{5}+t_{6}, \quad t_{1} t_{2} t_{3}=t_{4} t_{5} t_{6}
$$

If $\varphi=\pi$, then $\lambda=0, \tau=\operatorname{tg} \frac{\pi}{2}=\infty$, and we have

$$
\begin{gathered}
U_{2}^{(6)}(x)=14.4 x^{4}-242.4 x^{2}+297.6 \\
V_{1}^{(3)}(x)=7.2 x^{2}-9.6 \\
U_{2}^{(6)}(x): V_{1}^{(3)}(x)=2 x^{2}-31
\end{gathered}
$$

3. Some properties of tangential semi-polygons

An essential characteristic of a tangential semi-polygon expresses the following theorem.

Theorem 3. Let t_{1}, \ldots, t_{n} be any given lengths (in fact positive numbers) and let λ be any given real number or either ∞ or $-\infty$. Further, let $\beta_{1}, \ldots, \beta_{n}$ be angles such that

$$
\begin{gather*}
0<\beta_{i}<\frac{\pi}{2}, \quad i=1, \ldots, n \\
\operatorname{tg}\left(\beta_{1}+\cdots+\beta_{n}\right)=\lambda \tag{25}
\end{gather*}
$$

If v denotes the number of all tangential semi-polygons whose tangents have the lengths t_{1}, \ldots, t_{n} and the angles $\beta_{1}, \ldots, \beta_{n}$ satisfy (25), then the following assertions hold:

1) If $\lambda>0$ or $\lambda=\infty$, then $v=\frac{n+1}{2}$ if n is odd, and $v=\frac{n}{2}$ if n is even.
2) If $\lambda=0$, then $v=\frac{\hat{n}-1}{2}$.

Analogously in the case when $\lambda<0$ or $\lambda=-\infty$.
Proof. Follows from Theorem 1 and Theorem 2 and theirs corollaries.
Example. Let $n=6, t_{1}=\cdots=t_{6}=1, \lambda=\infty$. Then we have the equation

$$
x^{6}-15 x^{4}+15 x^{2}-1=0
$$

whose positive roots are

$$
\begin{aligned}
& x_{1}=\operatorname{tg} \frac{\pi}{6}=0,267949192 \\
& x_{2}=\operatorname{tg} \frac{\pi}{4}=1 \\
& x_{3}=\operatorname{tg} \frac{5 \pi}{12}=3.732050808
\end{aligned}
$$

and these are the radii of the corresponding tangential semi-polygons. The first polygon "lie" on five semicircles, the second one on three, and the third one on one. (The first is showen in figure below. Its end-vertices are denoted by 1 and 8.)

Figure 1.

References

[1] V. K. Jain, On Cauchy's bound for zeros of a polynomial, Glasnik Matematički 31(51)(1996), 245-251.
[2] M. Radić, Some inequalities and properties concerning chordal polygons, Math. Inequal. Appl. 2(1998), 141-150.
[3] M. Radić, Some relations and properties concerning tangential polygons, Mathematical Communications 4(1999), 197-206.

[^0]: *Department of Mathematics, University of Rijeka, Omladinska 14, HR-51 000 Rijeka, Croatia

