On algebraic equations concerning semi-tangential polygons

Mirko Radić*

Abstract. Some properties of equations (5) and (6) are proved (Theorem 1-2) and it was established that the positive roots of these equations are radii of a sequence of tangential semi-polygons which have the same lengths of tangents.

Key words: algebraic equation, semi-tangential polygon

AMS subject classifications: 51E12

Received March 3, 2000 Accepted April 25, 2001

1. Preliminaries

First, on notations which will be used.

Symbol $S_j(x_1, \ldots, x_n)$. Let x_1, \ldots, x_n be real numbers, and let j be an integer such that $1 \leq j \leq n$. Then $S_j(x_1, \ldots, x_n)$ is the sum of all $\binom{n}{j}$ products of the form $x_{i_1} \cdots x_{i_j}$, where i_1, \ldots, i_j are different elements of the set $\{1, \ldots, n\}$, that is

$$S_j(x_1, \dots, x_n) = \sum_{1 \le i_1 < \dots < i_j \le n} x_{i_1} \cdots x_{i_j}.$$
 (1)

Of course, $S_1(x_1, ..., x_n) = x_1 + \dots + x_n$.

Semi-polygon. Let A_1, \ldots, A_n be any given different points in a plane. Then the union

$$A_1 A_2 \cup A_2 A_3 \cup \dots \cup A_{n-1} A_n \cup S \tag{2}$$

of line segments $A_1A_2, \ldots, A_{n-1}A_n$ and the set S which is either ab empty set or a segment A_nA_1 , will be called a semi-polygon and denoted by $A_1 \cdots A_n$ or briefly by <u>A</u>.

So, each polygon may be termed a semi-polygon, but not conversely, if ${\cal S}$ is an empty set.

If $A_1 \cdots A_n$ is a semi-polygon which is not a polygon, then its vertices A_1 and A_n will be called end-vertices.

^{*}Department of Mathematics, University of Rijeka, Omladinska 14, HR-51 000 Rijeka, Croatia

M. Radić

Tangential semi-polygon. A semi-polygon $A_1 \cdots A_n$ will be called a tangential semi-polygon if there is a circle C such that each side of <u>A</u> lies on a tangent line of C and, in case $A_1 \cdots A_n$ is not a polygon, the end-vertices A_1 and A_n lie on C.

Now something about the angles which play an important role in the following. Let $A_1 \cdots A_n$ be a tangential semi-polygon and let C be the centre of its inscribed circle. In case <u>A</u> is a polygon, then

$$\beta_i = \angle CA_i A_{i+1}, \quad i = 1, \dots, n \tag{3}$$

and in case \underline{A} is not a polygon, then

$$\beta_i = \angle CA_{i+1}A_{i+2}, \quad i = 1, \dots, n-2.$$
(4)

Of course, in any case, for each β_i there holds $\beta_i < \frac{\pi}{2}$, since no two of the consecutive vertices are the same.

2. On some algebraic equations

In what follows, for brevity, S_j^n will be written instead of $S_j(t_1, \ldots, t_n)$, where t_1, \ldots, t_n are real numbers different from zero, and T_j^n will be written nstead of $S_j(\operatorname{tg} \beta_1, \ldots, \operatorname{tg} \beta_n)$. So,

$$S_j^n = S_j(t_1, \dots, t_n), \quad T_j^n = S_j(\operatorname{tg} \beta_1, \dots, \operatorname{tg} \beta_n), \quad j = 1, \dots, n.$$

Also, the symbol \hat{n} will be used which is defined as follows: If n is a natural number, then

$$\hat{n} = \begin{cases} n \text{ if } n \text{ is odd} \\ n-1 \text{ if } n \text{ is even.} \end{cases}$$

The number s in the expression $(-1)^s$ will always be given by

$$s = (1 + 3 + 5 + \dots + \hat{n}) + 1.$$

Theorem 1. Let the following two equations be given

$$\frac{x^n - S_2^n x^{n-2} + S_4^n x^{n-4} - \dots + (-1)^s S_{n-1}^n x}{S_1^n x^{n-1} - S_3^n x^{n-3} + S_5^n x^{n-5} - \dots + (-1)^s S_n^n} = \lambda, \quad n \text{ is odd}$$
(5)

$$\frac{S_1^n x^{n-1} - S_3^n x^{n-3} + S_5^n x^{n-5} - \dots + (-1)^s S_{n-1}^n x}{-x^n + S_2^n x^{n-2} - S_4^n x^{n-4} + \dots + (-1)^s S_n^n} = \lambda, \quad n \text{ is even}, \tag{6}$$

where λ is any given positive number. Then the number of positive roots of the first equation is $\frac{n+1}{2}$, and of the second $\frac{n}{2}$. For each positive root x_i of those equations there holds

$$\min\{t_1, \dots, t_n\} \operatorname{tg} \frac{\varphi}{n} \le x_i \le \max\{t_1, \dots, t_n\} \operatorname{tg} \frac{\varphi + (n-1)\pi}{n},$$
(7)

where $\varphi = \operatorname{arctg} \lambda$.

Proof. We shall use the following two trigonometric equalities

$$tg(\beta_1 + \dots + \beta_n) = \frac{T_1^n - T_3^n + T_5^n - \dots + (-1)^s T_n^n}{1 - T_2^n + T_4^n - \dots + (-1)^s T_{n-1}^n}, \quad n \text{ is odd},$$
(8)

$$tg(\beta_1 + \dots + \beta_n) = \frac{T_1^n - T_3^n + T_5^n - \dots + (-1)^s T_{n-1}^n}{1 - T_2^n + T_4^n - \dots + (-1)^s T_n^n}, \quad n \text{ is even}, \qquad (9)$$

which can be easily proved by induction on n.

First we prove the following lemma.

Lemma 1. For each integer $k \in \{0, 1, \dots, \frac{\hat{n}-1}{2}\}$ there are angles $\beta_1^{(k)}, \dots, \beta_n^{(k)}$ such that

$$\beta_1^{(k)} + \dots + \beta_n^{(k)} = \varphi + k\pi, \tag{10}$$

$$t_1 \operatorname{tg} \beta_1^{(k)} = \dots = t_n \operatorname{tg} \beta_n^{(k)}.$$
(11)

Proof. We need to prove that there are angles $\beta_1^{(k)}, \ldots, \beta_n^{(k)}$ satisfying (10) and they have the property that there exists a positive number x_k such that

$$t_1 \operatorname{tg} \beta_1^{(k)} = \dots = t_n \operatorname{tg} \beta_n^{(k)} = x_k \tag{12}$$

or

$$\operatorname{tg}\beta_i^{(k)} = \frac{x_k}{t_i}, \ i = 1, \dots, n.$$

Thus we have the condition

$$\sum_{i=1}^{n} \operatorname{arctg} \frac{x_k}{t_i} = \varphi + k\pi$$

which obviously can be fulfiled since the function $\operatorname{arctg} x$ is continuous for every real number x. So, our lemma is proved. \Box

Now, if in (8) and (9) we replace $\beta_1 + \cdots + \beta_n$ by $\varphi + k\pi$ and $\operatorname{tg} \beta_i$ by $\frac{x}{t_i}$, $i = 1, \ldots, n$, we shall get the equations which can be written as (5) and (6). Each x_k given by (12) is a positive root of the corresponding equation.

In proving that inequalities (7) hold well, we shall use the following obvious fact: If u_1, \ldots, u_n are positive numbers, then

$$\min\{u_1,\ldots,u_n\} \le \frac{u_1+\cdots+u_n}{n} \le \max\{u_1,\ldots,u_n\}.$$

So from (10) it follows that

$$\min\{\beta_1^{(k)}, \dots, \beta_n^{(k)}\} \le \frac{\varphi + k\pi}{n} \le \max\{\beta_1^{(k)}, \dots, \beta_n^{(k)}\}$$
(13)

and from (11) we see that $t_i < t_j$ implies $\beta_i^{(k)} > \beta_j^{(k)}$. Thus the following holds:

if
$$t_i = \min\{t_1, \dots, t_n\}$$
, then $\beta_i^{(k)} = \max\{\beta_1^{(k)}, \dots, \beta_n^{(k)}\}$
if $t_j = \max\{t_1, \dots, t_n\}$, then $\beta_j^{(k)} = \min\{\beta_1^{(k)}, \dots, \beta_n^{(k)}\}$,

and in this case

$$t_i \operatorname{tg} \beta_i^{(k)} = t_j \operatorname{tg} \beta_j^{(k)}.$$

Now, using (12) and (13), it is obvious that

$$\min\{t_1,\ldots,t_n\} \operatorname{tg} \frac{\varphi+k\pi}{n} \le x_k \le \max\{t_1,\ldots,t_n\} \operatorname{tg} \frac{\varphi+k\pi}{n}.$$

Since $\varphi \leq \varphi + k\pi \leq \frac{\hat{n}-1}{2}\pi$ for each $k = 0, 1, \dots, \frac{\hat{n}-1}{2}$, the proof of *Theorem 1* is complete.

The following corollaries may also be interesting.

Corollary 1. Equations (5) and (6) have all real roots. For each negative root x_k there holds

$$\max\{t_1,\ldots,t_n\}\operatorname{tg}\left(\frac{\varphi}{n}+\frac{(n-1)\pi}{n}\right) \le x_k \le \min\{t_1,\ldots,t_n\}\operatorname{tg}\left(\frac{\varphi}{n}+\frac{(n+1)\pi}{2n}\right).$$

Proof. In the same way as in Lemma 1 it can be shown that for each $k \in \{\frac{\hat{n}+1}{2}, \ldots, n-1\}$ there are angles $\beta_1^{(k)}, \ldots, \beta_n^{(k)}$ such that

$$\beta_1^{(k)} + \dots + \beta_n^{(k)} = \varphi + k\pi$$
$$t_1 \operatorname{tg} \beta_1^{(k)} = \dots = t_n \operatorname{tg} \beta_n^{(k)} = x_k$$

but now x_k is negative since $\varphi + k\pi > n\frac{\pi}{2}$.

So, we have the following situation: if $k = 0, 1, \ldots, \frac{\hat{n}-1}{2}$, we get positive roots, if $k = \frac{\hat{n}+1}{2}, \ldots, n-1$, we get negative roots, if $k = n, \ldots, n + \frac{\hat{n}-1}{2}$, we again get all positive roots, and so on.

For example, if n = 5, then for k = 0, 1, 2 we get positive roots, for k = 3, 4 negative, and so on.

Corollary 2. Let λ in equations (5) and (6) be negative and let φ be the least positive angle such that $\varphi = \operatorname{arctg} \lambda$. Then we have angles $\varphi + k\pi$ for $k = 0, 1, 2, \ldots$ and the situation is like when $\lambda > 0$.

For example, if $\lambda = -3$, n = 5, then for k = 0, 1 we get positive roots, and for k = 2, 3, 4 negative.

Corollary 3. Let λ in equations (5) and (6) be zero. Then we have the following two equations

$$x^{n} - S_{2}^{n} x^{n-2} + S_{4}^{n} x^{n-4} - \dots + (-1)^{s} S_{n-1}^{n} x = 0, \quad n \text{ is odd}$$
(14)

$$S_1^n x^{n-1} - S_3^n x^{n-3} + S_5^n x^{n-5} - \dots + (-1)^s S_{n-1}^n x = 0, \quad n \text{ is even},$$
(15)

and the angles are $k\pi$, k = 0, 1, ... For k = 0 we get the root equal to zero. For $k = 1, ..., \frac{\hat{n}-1}{2}$ we get positive roots, and for $k = \frac{\hat{n}+1}{2}, ..., \hat{n}-1$ negative. For each positive root there holds

$$\min\{t_1,\ldots,t_n\}\operatorname{tg}\frac{\pi}{n} \le x_k \le \max\{t_1,\ldots,t_n\}\operatorname{tg}\frac{(\hat{n}-1)\pi}{n},$$

and for each negative root

$$\max\{t_1,\ldots,t_n\}\operatorname{tg}\frac{(\hat{n}+1)\pi}{2n} \le x_k \le \min\{t_1,\ldots,t_n\}\operatorname{tg}\frac{(\hat{n}-1)\pi}{n}.$$

Corollary 4. Let λ in equations (5) and (6) be ∞ . Then we have the following two equations

$$S_1^n x^{n-1} - S_3^n x^{n-3} + S_5^n x^{n-5} - \dots + (-1)^s S_n^n = 0, \ n \ is \ odd,$$
(16)

$$x^{n} - S_{2}^{n} x^{n-2} + S_{4}^{n} x^{n-4} - \dots + (-1)^{s+1} S_{n}^{n} = 0, \quad n \text{ is even},$$
(17)

and the angles are $(2k-1)\frac{\pi}{2}$, k = 1, 2, ... The situation is similar to the one in Corollary 3.

Before stating with the following theorem let us remark that the angle φ will be as in *Theorem* 1, $\varphi = \operatorname{arctg} \lambda$, and the expressions

$$U_1^{(n)}(x), V_1^{(n)}(x), U_2^{(n)}(x), V_2^{(n)}(x)$$

will be as follows

$$\begin{aligned} U_1^{(n)}(x) &= x^n - S_2^n x^{n-2} + S_4^n x^{n-4} - \dots + (-1)^s S_{n-1}^n x, & n \text{ is odd} \\ V_1^{(n)}(x) &= S_1^n x^{n-1} - S_3^n x^{n-3} + S_5^n x^{n-5} - \dots + (-1)^s S_n^n, & n \text{ is odd} \\ U_2^{(n)}(x) &= S_1^n x^{n-1} - S_3^n x^{n-3} + S_5^n x^{n-5} - \dots + (-1)^s S_{n-1}^n, & n \text{ is even} \\ V_2^{(n)}(x) &= -x^n + s_2^n x^{n-2} - S_4^n x^{n-4} + \dots + (-1)^s S_n^n \end{aligned}$$

Thus equations (5) and (6) can be written as

$$U_1^{(n)}(x) - \lambda V_1^{(n)}(x) = 0, \qquad (18)$$

$$U_2^{(n)}(x) - \lambda V_2^{(n)}(x) = 0.$$
(19)

Theorem 2. Let m, n, q be positive integers such that mq = n and let t_1, \ldots, t_n be positive numbers such that

$$t_{i+jm} = t_i, \ i = 1, \dots, m, \ j = 1, \dots, q-1.$$
 (20)

Then depending on which of the following three possibilities occurs

$$m$$
 is odd, n is odd, $m|n$
 m is odd, n is even, $m|n$
 m is even, n is even, $m|n$

one of the following three assertions holds

$$\begin{pmatrix} U_1^{(m)}(x) - \tau V_1^{(m)}(x) \end{pmatrix} \mid \begin{pmatrix} U_1^{(n)}(x) - \lambda V_1^{(n)}(x) \end{pmatrix}$$
(21)
$$\begin{pmatrix} -(m) & -(m$$

$$\left(U_1^{(m)}(x) - \tau V_1^{(m)}(x)\right) \mid \left(U_2^{(n)}(x) - \lambda V_2^{(n)}(x)\right)$$
(22)

$$\left(U_2^{(m)}(x) - \tau V_2^{(m)}(x)\right) \quad | \quad \left(U_2^{(n)}(x) - \lambda V_2^{(n)}(x)\right) \tag{23}$$

where $\tau = \operatorname{tg} \frac{\varphi}{q}$, and | is a symbol for divides. Of course, in the expressions $U_1^{(m)}(x)$, $V_1^{(m)}(x)$, $U_2^{(m)}(x)$, $V_2^{(m)}(x)$ stand m instead of n. So, for example

$$U_1^{(m)}(x) = x^m - S_2^m x^{m-2} + S_4^m x^{m-4} - \dots + (-1)^s S_{m-1}^m x,$$

where $S_j^m = S_j(t_1, ..., t_m), \ j = 2, 4, ..., m - 1.$ **Proof.** From

$$\beta_1^{(k)} + \dots + \beta_n^{(k)} = \varphi + k\pi, \ k = 0, 1, \dots, n-1$$

$$t_1 \operatorname{tg} \beta_1^{(k)} = \cdots = t_m \operatorname{tg} \beta_m^{(k)}$$
$$= t_1 \operatorname{tg} \beta_{m+1}^{(k)} = \cdots = t_m \operatorname{tg} \beta_{2m}^{(k)}$$
$$\vdots \quad \ddots \quad \vdots$$
$$= t_1 \operatorname{tg} \beta_{(q-1)m}^{(k)} = \cdots = t_m \operatorname{tg} \beta_{qm}^{(k)} = x_k$$

it follows that

$$\beta_1^{(k)} + \dots + \beta_n^{(k)} = q\left(\beta_1^{(k)} + \dots + \beta_m^{(k)}\right).$$

Accordingly

$$\varphi + k\pi = q\left(\frac{\varphi}{q} + \frac{k}{q}\pi\right), \ k = 0, q, 2q, \dots, (m-1)q$$

that is

$$\beta_1^{(k)} + \dots + \beta_n^{(k)} = \frac{\varphi}{q} + \frac{k}{q}\pi, \ k = 0, q, 2q, \dots, (m-1)q.$$

Thus *Theorem* 2 is proved.

Before stating with some corollaries from it, here is an example.

Let n = 6, $t_1 = t_4 = 1$, $t_2 = t_5 = 2$, $t_3 = t_6 = 3$, $\varphi = \frac{\pi}{3}$. Thus m = 3, q = 2, $\lambda = \sqrt{3}$, $\tau = tg \frac{\pi}{6} = \frac{\sqrt{3}}{3}$, and

$$U_1^{(3)}(x) - \frac{\sqrt{3}}{3}V_1^{(3)}(x) = x^3 - 2\sqrt{3}x^2 - 11x + 2\sqrt{3},$$

$$U_2^{(6)}(x) - \sqrt{3}V_2^{(6)}(x) = \sqrt{3}x^6 + 12x^5 - 58\sqrt{3}x^4 - 144x^3 + 193\sqrt{3}x^2 + 132x - 36\sqrt{3},$$
$$\left(U_2^{(6)}(x) - \sqrt{3}V_2^{(6)}(x)\right) : \left(U_1^{(3)}(x) - \frac{\sqrt{3}}{3}V_1^{(3)}(x)\right) = \sqrt{3}x^3 + 18x^2 - 11\sqrt{3}x - 18.$$

Corollary 5. Let $\lambda = 0$. If (20) is fulfiled, then

$U_1^{(m)}(x) U_1^{(n)}(x),$	when m is odd, n is odd
$U_1^{(m)}(x) U_2^{(n)}(x),$	when m is odd, n is even
$U_2^{(m)}(x) U_2^{(n)}(x),$	when m is even, n is even.

Corollary 6. Let $\lambda = \infty$. If (20) is fulfiled, then

$V_1^{(m)}(x) V_1^{(n)}(x),$	when m is odd, n is odd
$V_1^{(m)}(x) V_2^{(n)}(x),$	when m is odd, n is even
$V_2^{(m)}(x) V_2^{(n)}(x),$	when m is even, n is even.

Corollary 7. Let condition (20) in Theorem 2 be replaced by

$$S_{j}(t_{1},...,t_{m}) = S_{j}(t_{m+1},...,t_{2m}) = ...$$
$$= S_{j}(t_{(q-1)m},...,t_{qm}), \quad j = 1,...,m.$$
(24)

Then (21), (22) and (23) hold, too. Also Corollary 5 and Corollary 6 hold, too.

Proof. It is easy to see that each $S_j(t_1, \ldots, t_n)$, $j = 1, \ldots, n$ can be expressed as a sum of the products such that each factor is of the form

$$S_i(t_{1+k},\ldots,t_{m+k}),$$

where $i \in \{1, ..., m\}$, $k \in \{0, 1, ..., (q-1)m-1\}$. So, for example, if n = 12, m = 2, j = 3, then

$$S_3(t_1, \dots, t_{12}) = S_3(t_1, \dots, t_6) + S_3(t_7, \dots, t_{12}) + S_1(t_1, \dots, t_6)S_2(t_7, \dots, t_{12}) + S_1(t_7, \dots, t_{12})S_2(t_1, \dots, t_6).$$

Thus the essential in the expressions $U_1^{(m)}(x), \ldots, V_2^{(n)}(x)$ remains unchanged.

Example. Let n = 6, $t_1 = 1$, $t_2 = 3$, $t_3 = \frac{16}{5}$, $t_4 = 2$, $t_5 = 6$, $t_6 = \frac{6}{5}$. Then

$$t_1 + t_2 + t_3 = t_4 + t_5 + t_6, \quad t_1 t_2 t_3 = t_4 t_5 t_6.$$

If $\varphi = \pi$, then $\lambda = 0$, $\tau = tg \frac{\pi}{2} = \infty$, and we have

$$U_2^{(6)}(x) = 14.4x^4 - 242.4x^2 + 297.6,$$

$$V_1^{(3)}(x) = 7.2x^2 - 9.6$$

$$U_2^{(6)}(x) : V_1^{(3)}(x) = 2x^2 - 31.$$

3. Some properties of tangential semi-polygons

An essential characteristic of a tangential semi-polygon expresses the following theorem. M. Radić

Theorem 3. Let t_1, \ldots, t_n be any given lengths (in fact positive numbers) and let λ be any given real number or either ∞ or $-\infty$. Further, let β_1, \ldots, β_n be angles such that

$$0 < \beta_i < \frac{\pi}{2}, \quad i = 1, \dots, n$$
$$\operatorname{tg}(\beta_1 + \dots + \beta_n) = \lambda. \tag{25}$$

If v denotes the number of all tangential semi-polygons whose tangents have the lengths t_1, \ldots, t_n and the angles β_1, \ldots, β_n satisfy (25), then the following assertions hold:

1) If $\lambda > 0$ or $\lambda = \infty$, then $v = \frac{n+1}{2}$ if n is odd, and $v = \frac{n}{2}$ if n is even.

Proof. Follows from *Theorem* 1 and *Theorem* 2 and theirs corollaries.

2) If
$$\lambda = 0$$
, then $v = \frac{\hat{n} - 1}{2}$.

Analogously in the case when $\lambda < 0$ or $\lambda = -\infty$.

Example. Let
$$n = 6, t_1 = \cdots = t_6 = 1, \lambda = \infty$$
. Then we have the equation

$$x^6 - 15x^4 + 15x^2 - 1 = 0$$

whose positive roots are

$$x_1 = \operatorname{tg} \frac{\pi}{6} = 0,267949192$$
$$x_2 = \operatorname{tg} \frac{\pi}{4} = 1$$
$$x_3 = \operatorname{tg} \frac{5\pi}{12} = 3.732050808$$

and these are the radii of the corresponding tangential semi-polygons. The first polygon "lie" on five semicircles, the second one on three, and the third one on one. (The first is showen in figure below. Its end-vertices are denoted by 1 and 8.)

Figure 1.

References

- V. K. JAIN, On Cauchy's bound for zeros of a polynomial, Glasnik Matematički 31(51)(1996), 245–251.
- [2] M. RADIĆ, Some inequalities and properties concerning chordal polygons, Math. Inequal. Appl. 2(1998), 141–150.
- [3] M. RADIĆ, Some relations and properties concerning tangential polygons, Mathematical Communications 4(1999), 197–206.