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Introduction

Fed-batch baker’s yeast cultivation is a com-
plex biotechnological process from the viewpoint of 
measurement and control. It is a non-linear system 
with not well-known dynamics. The process is 
non-stationary due to metabolic changes, modifica-
tions in cell physiology and multiple increases in 
biomass concentration over the cultivation time. 
Furthermore, there is lack of cheap and reliable on-
line sensors for measurement of important biochem-
ical quantities, e.g. substrate and biomass concen-
tration.1 Because of the complexity and time variant 
nature of fed-batch cultivations, the use of PID con-
trollers with constant parameters is restricted and 
modification of these parameters is often necessary 
during the cultivation.2 This can be accomplished 
by an adaptive controller, which automatically ad-
justs its parameters to the actual state of the con-
trolled process, using either a mathematical model 
of the process – e.g. internal model control princi-
ple3 –, or an identification-free algorithm extracting 
information from the process data in real time as in 
this work.

Reported model-based adaptive controllers for 
the control of bioprocesses include approaches 
based on Haldane kinetics,4 adaptive-predictive 
controllers using a recursive least-square identifica-
tion method for prediction consisting of an incre-
mental linear model5,6 or a model reference adap-
tive estimation and control using Lyapunov’s 
method applied on a pilot-plant fermenter.7 Further 
there is an application in the lactic fermentation 
process, in which parameters are estimated on-line 
and an adaptive-multivariable predictive controller 
is used.8 Another application to an anaerobic diges-
tion pilot plant introduces non-linearity in the con-
trol scheme in order to compensate non-linearity of 
the system.9 A pole-placement control for time-vary-
ing multivariable first order plants10 and a pole-as-
signment method in conjunction with ARMAX 
structured process model11 can also be used. Other 
method is a discrete-time adaptive LQ control law,12 
an adaptive controller employing the linearized 
Kalman filter for the state estimation13,14 or the con-
cept of adaptive regulation based on respiratory 
quotient (RQ).15,16 Alternatively, neural-network-ba
sed adaptive controllers exploiting learning capabil-
ities of the artificial neural nets17,18,19,20 and fuzzy 
relational predictive controllers with a fuzzy rela-
tion model21 are used for the control of bioprocess-
es. Adaptive linear control strategies can be used for 
the optimal control of biotechnological processes 
with a yield–productivity conflict.22,23 Recently, 
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adaptive controllers are also frequently based on 
model predictive approach. The model is either in 
the form of a neural network,20 neuro-fuzzy piece-
wise linear model,24 non-linear model25 or the alter-
native to non-linear model – the bond graph mod-
el.26 Alternative methods using high gain robust 
control and non-linear observer27 are used as well.

There are also approaches, which are not based 
on mathematical models. For instance, the geomet-
ric adaptive-predictive control algorithm for control 
of the dissolved oxygen concentration in fermenta-
tion processes proposed by Gomes & Menawat uses 
information contained in the shape (geometry) of 
the profile of the state variables as they evolve in 
time for adaptation to process variations and may 
be considered as model independent.28 A promising 
method is the so-called probing control for tuning 
of the controller gain based on superimposing of a 
probing signal on the feed rate, which enables feed-
ing at the critical glucose uptake.29 Another exam-
ple is Maršík’s algorithm30,31 that is based on the 
automatic tuning of the PID type controller param-
eters following oscillation rate criterion calculated 
exclusively from the control error. Maršík’s heuris-
tic adaptive controller is considered one of the suc-
cessful adaptive control applications.32 In the field 
of biotechnology it was applied for control of con-
tinuous cultivations of Candida utilis yeast.33

The aim of this work was to apply the Maršík’s 
identification-free adaptive algorithm for fed-batch 
processes and to implement it into the BIO-
GENES  II knowledge-based computer control sys-
tem34,35 as an optional regulatory strategy for the 
control of a selected model process – fed-batch cul-
tivation process of Saccharomyces cerevisiae. The 
resulting adaptive controller named CO2MAR was 
used for maintaining the off-gas carbon dioxide 
(CO2) concentration as a controlled variable on pre-
calculated values of the CO2 concentration set point 
by adjusting medium feed rate as a manipulated 

variable during yeast’s cultivation. The set point 
profile of the CO2 concentration was calculated on-
line by a supervisory level of the knowledge-based 
system on the basis of the current metabolic state 
that was continuously inferred from a set of select-
ed on-line measured and calculated process vari-
ables using knowledge about the yeast physiology. 
Details of the design of the supervisory knowl-
edge-based system including the mechanism for the 
calculation of the CO2 set point profile have been 
published previously by Hrnčiřík et al.36 Alterna-
tively, CO2 set point profile could be calculated pri-
or to the start of the process from a desired specific 
growth rate profile using mathematical model. This 
alternative mechanism for CO2 set point profile cal-
culation has been described and published previous-
ly by Rychtera et al.37 A basic structure of the whole 
control system used in our studies is depicted in 
Fig. 1.

Materials and methods

Microorganism and cultivation

Saccharomyces cerevisiae, strain D7, prepared 
as a UV mutant giving better ergosterol biosynthe-
sis, was provided by a yeast factory.37

An optimised synthetic medium consisting of glu
cose (125 g L–1), yeast extract – DIFCO (31.2 g L–1), 
(NH4)2SO4 (7.8 g L–1), KH2PO4 (3.7 g L–1), MgSO4 · 7H2O 
(3.1 g  L–1), CaCl2 (1.25 g  L–1) dissolved in mains 
water was used. BREOX (solution of 5 vol %) was 
used as an antifoam agent and pH was controlled by 
adding 10  wt  % NaOH and 10  wt  % H2SO4 solu-
tions at value 5. The temperature was kept constant 
in all experiments at 30  °C as well as the airflow 
(5 L min–1) and stirrer speed (600 min–1).

Instrumentation and software

The laboratory bioreactor with a volume of 7 L 
(manufactured by newMBR Switzerland) was used 
for the experiments. The bioreactor was equipped 
with an IMCS–2000 analogue control unit (PCS 
AG, Switzerland). The analogue control unit was 
used to stabilise the environmental conditions in the 
bioreactor: temperature, pH of the medium (Mettler 
Toledo probe), frequency of stirrer revolutions, air 
flow rate and foam level. Dissolved oxygen tension 
was also measured by a polarographic oxygen probe 
(Mettler Toledo). For supplying of cultivation medi-
um to the bioreactor, a DP–200 peristaltic pump 
(New Brunswick Scientific) was used. SERVO-
MEX type 1100 and 1440 analysers with backpres-
sure compensation and regulation and a gas sample 
conditioner (Baldwin) were used for measurement 
of the oxygen and carbon dioxide concentrations, F i g .   1  – Overall scheme of the adaptive control
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respectively, in the outlet gas. The ethanol concen-
tration in the outlet gas was measured by the 
METREX analyser, on-line biomass concentration 
analyser CELLEX provided turbidimetry and neph-
elometry measurements, both experimental analy-
sers were constructed at the Institute of Chemical 
Technology, Prague.

All instruments were connected to a Compact 
(Schneider Electric) programmable logic controller, 
which provided all real-time measurement process-
ing and control tasks. The Compact controller was 
connected via an OPC server to the proprietary 
BIOGENES  II control system (based on Factory 
Suite 2000 software package, Wonderware, USA) 
running on PC.34,35

Maršík’s identification-free algorithm for direct 
adaptation of controller parameters

Maršík’s identification-free adaptive algorithm 
as a simple digital algorithm for direct heuristic ad-
aptation of the parameters of the digital or analogue 
PID controllers is based on performance criterion 
using geometrical properties of the control error 
signal. The error signal is used for evaluation of the 
so-called oscillation rate criteria. This approach 
does not lead to a standard search for the extreme, 
thus the adaptation can be carried out as a standard 
feedback control as will be explained in the follow-
ing sections. The algorithm needs no identification 
of the controlled system model and no special test 
signals.

The adaptation strategy is founded on the fact 
that optimal step responses of the controlled pro-
cesses are fairly similar. They are different in terms 
of time and amplitude scale only. However, the 
shape of these transient responses is more or less 
the same, as though the control loop was the third 
or the second order system, even if controlled sys-
tem is of higher order. Such a standard optimal re-
sponse is not generally allowed to have more than 
one distinct overshoot. It corresponds to the course 
of the error with practically only two damped half-
waves with all remaining oscillations negligible like 
in Fig.  2. The shape of more or less damped re-
sponses of this type, that is less or more oscillating, 
can be characterised by a value of the oscillation 
rate criterion. Therefore, the adaptation can be car-
ried on so that the oscillation rate is kept at the val-
ue corresponding to the optimal response by tuning 
the gain coefficient of the controller.

This algorithm is suitable for the control of sys-
tems with arbitrary order, even with a non-minimal 
phase transfer function, linear or non-linear. It as-
sumes that the controlled system is stable with mo-
notonous or slightly oscillatory step response. Dis-
turbances can be stochastic or deterministic.30,31 The 

controlled variable has to be free of high frequency 
noise. If the noise is not high then sampling corre-
sponding to approx. 10 samples during the rising 
phase of the step response is sufficient. High fre-
quency noise can also be removed by filtration of 
the control variable using e.g. moving average fil-
ter.

In the case of bioprocesses, these above listed 
conditions are generally satisfied with the exception 
of inherent system stability. Therefore, this issue al-
ways needs particular attention before considering 
the application of this type of algorithm in biopro-
cess control and for this case it will be discussed 
accordingly in the results and discussion part.

Basic structure of the control algorithm used is 
the PSD control law in the incremental form with 
proportional, summing and differencing terms

∆ ∆ ∆u n n e n n e n n e n( ) ( ) ( ) ( ) ( ) ( ) ( )]= + +α β γ 2 	 (1)

where u is the output variable of the controller, Δu 
is its increment, e, Δe and Δ2e are the control error 
and its first and second backward differences, i.e. 
Δu(n) = u(n) − u(n − 1), Δe(n) = e(n) − e(n − 1) and 
Δ2e(n) = e(n) − 2e(n − 1) + e(n − 1), respectively, 
and finally a is the overall gain of the controller.31 
The derivation of the adaptive algorithm below will 
follow the original paper by Maršík.30, 31

The adaptation criterion k, which is used for 
tuning of the controller, represents oscillation rate 
of the control error signal. Oscillation rate k is a 
dimensionless criterion, which is of heuristic char-
acter as explained above. It is defined by ratio of 
the frequency fe of the error signal transits thru zero 
value and the frequency fv of the first derivative of 
the error signal transits thru zero value.

	 κ=
f
f
e

v
	 (2)

It expresses the extent of the error oscillations; 
i.e. the more damped is the process the smaller is 

F i g .   2 	–	 Ideal response of a control loop with two half waves 
resulting in κ  =  0.5
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the criterion value and conversely the more oscillat-
ing is the process the greater is the criterion value. 
In the case of the optimal response, the error has 
two damped half-waves only and accordingly 
k = 0.5 because the error has only one zero level 
transit and its derivative has two zero level transits 
as depicted in Fig. 2.

Because determination of the frequencies fe, fv 
is difficult especially in case of infrequent distur-
bances, these frequencies can be calculated indirect-
ly using Rice’s formula38 for calculation of the 
number of transits of the continuous stochastic cen-
tred Gauss signal thru zero value.
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2  is variance of error, sv

2  is variance of 
its  first derivative (velocity v), and sa

2 is variance 
of  its second derivative (acceleration a). For dis-
crete signals the derivatives are replaced by differ-
ences and formulas for calculation of fe, fv will 
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in the n-th sample, where e(i) is the error in the i-th 
sample.

Continuous adaptation requires further rear-
rangement of the formulas above with respect to the 
continuous exponential forgetting with an appropri-
ate velocity. Therefore, the variances in the Eq.  4 
will be computed by passing of the variables e2, 
(Δe)2 and (Δ2e)2 through the first order filter and 
denoted as

	 e n
e n n e n

n
2

2 2 1
1

( )=
( )+ ( ) −( )

+ ( )
τ
τ

 	 (5)

and as well as for ( ( ))e n 2  and ( ( ))2 2e n .
The time constant t(n) of the first order filter 

determines the velocity of exponential forgetting 
and is defined as t(n) = 2 / fv(n − 1).

Finally, for the value of the oscillation criterion 
k in the n-th sample we obtain
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Because the value of the oscillation rate k de-
pends on overall gain a, it is possible to create an 
adaptation loop, which will adjust gain a in order to 
reach approximate optimum of k = 0.5. Adaptation 
loop can be organized as a standard feedback con-
trol loop with a summing controller, which will 
maintain value of the criteria k on pre-specified val-
ue kSP = 0.5 by means of the gain a as a manipulat-
ed variable. New values of a are then calculated 
according to the conceptual equation
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where the product 0.5  fv is of a heuristic nature, 
which facilitates conformity of the adaptation and 
control rates. It is impossible to do adaptation faster 
than control.

Resulting formula for adaptation of the overall 
gain a is
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The algorithm for the continuous adaptation 
thus consists of formulas for t(n), e n( )2 , ∆e n( ) ,( )2  

∆2 2
e n( )( ) , and Δa(n).
Thus far, the adaptation of the overall gain a 

has been derived. For the adaptation of the remain-
ing coefficients β and γ another heuristic can be 
applied. In order to have equally significant contri-
bution to the total controller output, all three terms 
of the controller should have comparable quantity. 
Therefore, the b and g coefficients are adapted in 
such a way, so that standard deviations of all three 
terms are the same:

	  e  e  e2 2 2 2= =β γ( ) ( )∆ ∆ 	 (9)

From this condition the formulas for adaptation 
of b and g parameters are hence simply

	 β γ= =
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In the algorithm, it is necessary to handle situ-
ations when the error is zero or near to the zero lev-
el and hence a division by zero error or inaccuracy 
in the adaptation calculation could occur. Accord-
ingly, if the error decreases below a certain level 
(e.g. 10  % of the standard deviation), calculations 
for the adaptation are stopped – if there is no need 
to control then there is no need to adapt.

Results and discussion

Maršík’s controller implementation 
for fed-batch bioprocess control

Application of the Maršík’s adaptive algorithm 
to the control of the Saccharomyces cerevisiae D7 
yeast fed-batch cultivations necessitated the en-
hancement of the controller with additional features.

1. It is preferable to have an option for a modi-
fication of the condition for turning off the adapta-
tion especially during testing of the controller. So 
the fixed 10 % level in this condition has been re-
placed by a variable parameter φ

	 e n ne( ) ≤ −( )2 2 1
100

σ
φ

	 (11)

which denotes the percentage of the error variance 
and can be changed by the operator through the cul-
tivation. The error variance is calculated according 
to the original paper30 using a filter with slow for-
getting relatively to the calculations of the variances 
in Eq. 5.

	 σ
τ σ
τe

en
e n n n

n
2

2 23 1
1 3

( )=
( )+ ( ) −( )

+ ( )
	 (12)

2. For practical usage of the controller, it is also 
important to turn off adaptation if saturation of the 
actuator occurs. The adaptation is undesirable as 
long as the actuator is saturated at the limits of its 
range.

3. For the removal of an eventual high frequen-
cy noise from the control error signal a filtration 
was added and it was realized by means of the for-
mula

	 e n e n c e n e n* * *( )= −( )+ ( )− −( )( )1 1 	( 13 )

The terms e and e* are the error and the filtered 
error respectively. Turning this filtration off and on 
and setting up also the level of the filtration can be 
accomplished by adjusting the constant c of the fil-
ter in the interval 0;1.

Finally, the important issue of stability had to 
be addressed because fed-batch operated biopro-
cesses are known to be inherently unstable.39 De-

spite the fact that this inherent instability appears to 
have limited impact on the way many industrial 
fed-batch fermentations are still operated – applica-
tion of open-loop control strategies in the form of 
feeding recipes (i.e. repeating feeding profiles from 
successful fermentations) is still widespread40 – in 
the presented case this issue had to be examined be-
cause the original design of the Maršík’s adaptive 
algorithm is based on the assumption of inherent 
process stability. Specifically in the case of Saccha-
romyces cerevisiae fed-batch fermentations, for 
which a non-monotonic Haldane-type biomass 
growth kinetics is characteristic, it has been shown 
that process set points corresponding to the left 
flank of the Haldane kinetics, i.e. set points related 
to process states with no carbon-substrate inhibi-
tion, low ethanol concentration and specific bio-
mass growth rates lower than the maximum specific 
biomass growth rate, are stable.41 For the process in 
question, i.e. Saccharomyces cerevisiae D7 fed-
batch fermentation for ergosterol production, this 
additional condition is fulfilled as the process is op-
erated exclusively within this stable region since 
lower specific growth rates are also favourable for 
the product formation37 and hence under these con-
ditions the proposed adaptive control strategy is ap-
plicable.

Experiments

Two experiments were carried out in the labo-
ratory bioreactor for verifying functionality of the 
adaptive controller itself and within the whole 
scheme of the knowledge-based control system 
(Fig.  1). A further aim of the experiments was to 
find out the influence of the parameters that affect 
the adaptation process. The adaptive controller used 
the carbon dioxide concentration in the exhaust gas 
as the controlled variable and the feed rate of glu-
cose as the manipulated one. Hence the adaptive 
controller was responsible for standard regulatory 
control (that is maintaining CO2 values near or 
equal to CO2SP) in varying process conditions 
caused both by external disturbances and variations 
in the microbial culture itself. The CO2 set point 
profile for the controller was computed continuous-
ly by the supervisory knowledge-based system us-
ing the mechanism for on-line set point adjustments 
as described and published previously in the paper 
by Hrnčiřík et al.36 However, the primary aim of the 
experiments was the testing of the controller under 
process conditions wider than those of normal oper-
ation favourable for ergosterol production.37 In or-
der to achieve this, the settings of the supervisory 
knowledge-based system were set in such a way as 
to allow CO2 set point adjustments leading the pro-
cess towards and slightly beyond the upper limits of 
normal operation into process regions characterized 
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by mixed oxidative-fermentative metabolism with 
RQ values above 1.3 and moderate ethanol produc-
tion – metabolic state 3. Under normal operation, 
the process is maintained at the border between 
purely oxidative and mixed oxidative-fermentative 
metabolism with glucose as substrate – metabolic 
state 2 (for the definition of all metabolic states see 
Hrnčiřík et al.36).

Cultivation I

In the first experiment, the coefficients of the 
controller were preset to the values of 1. These val-
ues were verified in preliminary experiments as suf-
ficiently low to guarantee stable control from the 
start of the controller. The initial value of se

2 0( )  
was set to the rough estimate of real error variance 
and the initial values of e2 0( ) , 2( (0))eD  and 

2 2( (0))eD  were set equal to 0 1 02. ( )se , just to pre-
vent division by zero, their influence will however 
gradually disappear due to the exponential forget-
ting. The control period was set to 1 minute to be 
slightly longer than the system transportation lag. 
The value of the parameter j in Eq. 11 for turning 
off the adaptation when the error variance is small 
had been set to the value of five. The filtration of 
the control error was turned off.

The feed rate was adjusted manually during the 
first one and a half hour of the experiment to in-
crease the CO2 concentration in the exhaust gas in 
order to reach reasonably high set point of the CO2 
concentration for the controller. After that, the con-
troller was switched on with the initial set point 
slope calculated by the supervisory level. In the 
starting phase of the cultivation, the set point was 
gradually set by the supervisory level to values, 
which forced the culture into the metabolic state 3 
(mixed oxidative-fermentative metabolism with 
glucose as substrate) with RQ values above 1.3. 
This state lasted until approx. the 8th hour of the 

experiment, when the metabolic state 2 (border be-
tween purely oxidative and mixed oxidative-fer-
mentative metabolism with glucose as substrate) 
was set, which was maintained till the end of the 
cultivation. The entire course of the CO2 set point 
profile, as defined by individual set point slope val-
ues set by the supervisory level presented in Table 
1, is shown in Fig. 3 together with CO2 concentra-
tion and feed rate. In Figs.  4 and  5 the courses of 
the ethanol concentration, biomass concentration 

F i g .   3 	–	 Time courses of selected process variables during 
Cultivation I: CO2 – off gas carbon dioxide concen-
tration, CO2SP – off gas carbon dioxide concentra-
tion set point and Fm – feed rate

F i g .   4 	–	 Time courses of selected process variables during 
Cultivation  I: RQ – respiratory quotient, EtOH – 
ethanol concentration and X – biomass (dry cell 
weight) concentration

Ta b l e  1 	–	 Changes in CO2SP slope values during Cultivation I together with the values of the current metabolic state and related 
process variables

Time 
(h)

CO2SP 
(vol %)

CO2SP slope 
(vol % h–1)

Metabolic 
state

EtOH 
(wt %)

dEtOH/dt 
(wt % h–1) RQ

1.57 0.55 0.00 3 0.00 ~ 0 1.23
2.17 0.55 0.10 3 0.00 ~ 0 1.15
2.87 0.62 0.20 3 0.01 > 0 1.15
3.57 0.76 0.15 3 0.04 > 0 1.29
4.78 0.94 0.10 3 0.11 > 0 1.37
5.68 1.03 0.05 3 0.16 > 0 1.32
6.85 1.09 0.00 3 0.23 > 0 1.25
7.95 1.09 0.05 2 0.26 > 0 1.14
9.58 1.17 0.07 2 0.31 ~ 0 1.09
15.02 1.54 0.10 2 0.36 ~ 0 1.06
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with respiratory quotient and of the controller pa-
rameters with k criterion are presented respectively.

The controller performed well during this culti-
vation with standard deviation in smooth phases on 
the level of 0.02  vol  %. In the 10th hour, a distur-
bance has been introduced intentionally by using a 
new more concentrated feeding medium (135 g L–1 
in place of 125 g L–1). This disturbance was elimi-
nated by the controller within less than an hour ex-
hibiting oscillations with absolute error above 
0.2 vol %. Other significant oscillations in the 16th 
hour were caused by a rapid re-adaptation of the pa-
rameters as a result of the process shifting towards 
a higher CO2 production induced by set point slope 
changes. In both cases the disturbance meant that 
the control error was no longer oscillating around 
the zero value and hence the κ coefficient decreased 
below its set point of 0.5. The controller conse-
quently steeply increased the gain to elevate κ and 
also appropriately changed the other two coeffi-
cients thus facilitating good regulatory process in 
this situation. Subsequently the parameters were 
adapted to lower values again according to κ coeffi-
cient. In this manner, the Maršík’s controller re-
adapts its parameters to follow the value of κSP or-
dinarily.

Throughout this experiment the specific bio-
mass growth rate did not exceed 0.20 h–1, final yeast 
biomass (dry cell weight) concentration was 
13.8  g  L–1, the attained concentration of sterols in 
yeast biomass dry matter was 1.34  wt  % and the 
concentration of ergosterol in total sterol fraction 
was 88 wt %.

Cultivation II

In the Cultivation  II, the coefficients of the 
controller had been preset as before but the filtra-
tion of the error was turned on, with the filter con-
stant c set to 0.7. The cultivation was initiated in the 
same manner as the Cultivation I, first the feed rate 
had been adjusted manually and then the controller 
was switched on in the 3rd hour. Then, in the first 
half of the cultivation, the set point was, as in the 

Cultivation I, gradually set by the supervisory level 
to values, which forced the culture into the metabol-
ic state 3 (mixed oxidative-fermentative metabolism 
with glucose as substrate) with RQ values above 
1.3. During the second half of the cultivation, from 
the 11th hour approximately, the metabolic state 2 
(border between purely oxidative and mixed oxida-
tive-fermentative metabolism with glucose as sub-
strate) was maintained up to the 20th hour, when the 
dissolved oxygen tension decreased below 15 sat % 
causing an oxygen limitation and leading to a mod-
erate increase in the ethanol concentration during 
the final two hours of the experiment (see Fig. 7). 
The onset of oxygen limitation was caused by bio-
mass reaching concentrations above 20  g  L–1 and 
hence surpassing the current aeration capacity of 
the bioreactor. During this period of the oxygen 
limitation, the set point of CO2 was adjusted thus to 
retain the exponential trend in the CO2 concentra-
tion as before. Changes in the slope are listed in 
Table 2.

In the 8th hour of the cultivation, the length of 
the control period was changed by the operator 
from 1 to 2 minutes, because of greater oscillations 
than in the Cultivation  I. The increase of oscilla-

F i g .   5 	–	 Time courses of the oscillation rate k and controller 
parameters a, b and g during cultivation I

F i g .   6 	–	 Time courses of selected process variables during 
Cultivation  II: CO2 – off gas carbon dioxide con-
centration, CO2SP – off gas carbon dioxide concen-
tration set point and Fm – feed rate

F i g .   7 	–	 Time courses of selected process variables during 
Cultivation  II: RQ – respiratory quotient, EtOH – 
ethanol concentration and X – biomass (dry cell 
weight) concentration
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tions occurred due to the increase of transportation 
lag of the system caused by the turning on of the 
control error filtration, meaning as a result that the 
lag value was greater than control period of the con-
trol algorithm itself. In order to eliminate this prob-
lem the control period was set to 2 minutes. In the 
15th hour the value of the filter constant was changed 
from 0.7 to 0.3 to check the effect of this value on 
the controller performance. The controller perfor-
mance consequently improved and adaptation of the 
parameters was less frequent thereafter.

The second significant oscillation in this exper-
iment (the first one followed the switch-on of the 
controller) in approx. the 16th hour with maximal 
absolute error of 0.3 vol % was induced by a regu-
lar rapid re-adaptation of the controller parameters 
in the case of changes of the controlled process. The 
reason was an enforcement of the process to a high 
CO2 production by set point slope, probably in con-
junction with a prior sample of the volume equal to 
approx. 10  % of the bioreactor broth that reduced 
the number of cells producing CO2.

As an intentional disturbance, the substrate 
concentration in the feeding medium was increased 
from 125 g L–1 to 156 g L–1 after the 20th hour of 
the cultivation. However, it was accompanied by 
unwanted clogging of the output piping from the 
feeding pump, which occurred just before the 
change in the feeding solution concentration. Due 
to this failure, the CO2 concentration decreased, i.e. 

it changed in the opposite direction than anticipated 
originally. Nevertheless, the controller was able to 
suppress the influence of both disturbances within 
one hour. A less distinct fall in CO2 concentration in 
the 21st hour was caused by a short break in the 
feeding due to disconnection of the supply tube 
from the reservoir, the corresponding disturbance 
was however subsequently effectively eliminated 
by the controller. See Figs. 6 to 8 for the results of 
the Cultivation II.

Throughout this experiment the specific bio-
mass growth rate did not exceed 0.11 h–1, final yeast 
biomass (dry cell weight) concentration was 
23.4  g  L–1, the attained concentration of sterols in 
yeast biomass dry matter was 1.77  wt  % and the 

Ta b l e  2 	–	 Changes in CO2SP slope values during Cultivation II together with the values of the current metabolic state and related 
process variables

Time 
(h)

CO2SP 
(vol %)

CO2SP slope 
(vol % h–1)

Metabolic 
state

EtOH 
(wt %)

dEtOH/dt 
(wt % h–1) RQ DO 

(sat %)
3.18 0.75 0.25 2 0.01 ~ 0 1.51 76
4.20 0.97 0.12 3 0.09 > 0 1.63 75
5.00 1.06 0.07 3 0.22 > 0 1.66 77

10.80 1.47 0.38 3 0.56 > 0 1.16 57
12.83 1.67 0.10 2 0.62 ~ 0 1.11 48
14.15 1.83 0.12 2 0.64 ~ 0 1.10 42
15.02 1.95 0.14 2 0.66 ~ 0 1.09 38
16.88 2.25 0.16 2 0.71 ~ 0 1.06 28
17.18 2.30 0.18 2 0.71 ~ 0 1.11 26
18.03 2.47 0.20 2 0.71 ~ 0 1.09 22
18.35 2.54 0.22 2 0.71 ~ 0 1.13 20
19.00 2.70 0.24 2 0.71 ~ 0 1.14 18
19.50 2.83 0.26 2 0.72 ~ 0 1.20 16
20.23 3.03 0.28 3 0.75 > 0 1.20 9
20.52 3.12 0.30 3 0.76 > 0 1.23 8
20.72 3.18 0.32 3 0.77 > 0 1.27 8
21.00 3.28 0.34 3 0.79 > 0 1.12 8
21.33 3.40 0.36 3 0.82 > 0 1.33 6

F i g .   8 	–	 Time courses of the oscillation rate k and controller 
parameters a, b and g during cultivation II
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concentration of ergosterol in total sterol fraction 
was 85 wt %.

In both experiments the choice of the set point 
profile was done by the supervisory knowl-
edge-based level ensuring that the yeast culture was 
maintained in metabolic states with no carbon-sub-
strate inhibition and hence low ethanol concentra-
tion, therefore the adaptive controller was operating 
within a region of stable set points on the left flank 
of the non-monotonic kinetics.41

Conclusion

An adaptive strategy for the control of the Sac-
charomyces cerevisiae D7 fed-batch cultivation 
process capable of coping with process uncertain-
ties and dynamical changes of process properties 
was introduced and studied. The CO2MAR adap-
tive controller is based on the Maršík’s algorithm 
for direct adaptation of the discrete PID controller 
parameters and it was implemented in the BIO-
GENES II control system, which was used for ex-
periments.

Two experimental fed-batch cultivations were 
carried out, which have verified good CO2MAR 
controller functionality in the changing environ-
ment. Particularly, the controller was maintaining 
the carbon dioxide concentration in the exhaust gas 
on the set point profile, which slopes were deter-
mined by the supervisory knowledge-based level. 
The response of the controller to the disturbances in 
the feeding (substrate concentration changes in the 
feeding medium, faults of the feeding pump) proved 
to be very satisfactory as was its performance 
throughout the whole cultivation, during which the 
biomass concentration increased several times with 
corresponding changes in the dynamics of the 
yeast’s culture.

Even though the experimental tests were not 
primarily aimed at maximising the ergosterol pro-
duction, the obtained results are fully comparable 
with those for the same strain reported by Rychtera 
et al.37

CO2MAR controller used in connection with 
the supervisory knowledge-based level represents a 
robust and flexible tool for control of biotechnolog-
ical processes, which are all inherently non-station-
ary. In addition, it operates on the basis of informa-
tion available in the on-line measured process data 
only with no mathematical model. It can be used 
not only for control of the presented process but 
also for a number of similar processes using micro-
organisms with the same type of metabolism, e.g. 
genetically modified Saccharomyces cerevisiae 
yeast, and operating under similar process condi-
tions.
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L i s t  o f  s y m b o l s  a n d  a b b r e v i a t i o n s

a	 –	overall gain of the controller
b	 –	proportional coefficient of the controller
g	 –	difference coefficient of the controller
∆	 –	 first backward difference
∆2	 –	second backward difference
φ	 –	 fraction of error variance, %
κ	 –	oscillation rate
κSP	 –	oscillation rate set point
p	 –	pi
v	 –	velocity
a	 –	acceleration
s2

e	 –	error variance
s2

v	 –	error’s first derivative variance
s2

a	 –	error’s second derivative variance
t	 –	 time constant of the first order filter
c	 –	constant for set point filtration
e	 –	error
e*	 –	 filtered error
 e2 	 –	s2

e computed by passing of the variable e2 
through the first order filter

2( )eD 	–	s2
v computed by passing of the variable (Δe)2 

through the first order filter
2 2( )eD 	 –	s2

a computed by passing of the variable 
(Δ2e)2 through the first order filter

fe	 –	 frequency of the zero level transits of the error
fv	 –	 frequency of the zero level transits of the first de-

rivative of the error
i	 –	summation index
n	 –	number of sample
u	 –	controller output
CO2	 –	carbon dioxide
CO2	 –	off-gas carbon dioxide concentration, vol %
CO2SP	 –	set point of CO2 for the controller, vol %
CO2MAR	 –	 implementation of Maršík’s adaptive 

			   controller to CO2 control
dEtOH/dt	–	ethanol concentration trend, wt % h–1

DO	 –	dissolved oxygen tension, sat %
EtOH	 –	ethanol concentration, wt %
Fm	 –	glucose feed rate, mL min–1

OLE	 –	Object Linking and Embedding
PC	 –	personal computer
PID	 –	proportional-integral-derivative (controller)
RQ	 –	respiratory quotient
X	 –	biomass (dry cell weight) concentration, g L–1
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