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Abstract. In this paper we give the characterization of hyperspher-
ical curves in n-dimensional k-isotropic space Ik
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1. Introduction

The n-dimensional k-isotropic space Ik
n is introduced in [5] where it is defined as a

pair (A, V ) where A is a real n-dimensional affine space and V its corresponding
vector space decomposed in a direct sum of subspaces

V = U1 ⊕ U2, dim U1 = n− k, dim U2 = k.

The space U1 is endowed with a scalar product · : U1 × U1 → R which is extended
on the whole V by

x · y = π1(x) · π1(y),

where π1 : V → U1 denotes the canonical projection. In such a way a semi-definite
scalar product on V is defined.

In this paper we describe the osculating hyperspheres of an admissible curve in
the space Ik

n . The theory of curves in Ik
n is developed in [2]. Furthermore, we study

the conditions under which an admissible curve is hyperspherical.

2. Osculating hypersphere in Ik
n

As it is shown in [5], a hypersphere in Ik
n is defined in affine coordinates by the

equation
n−k∑
i=1

x2
i + 2

n∑
i=1

αixi + α0 = 0, (1)
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where α1, . . . , αn ∈ R.
We distinguish the following types of hyperspheres in Ik

n ([5], Theorem 7.1). If
(αn−k+1, . . . , αn) �= (0, . . . , 0), then by an isotropic motion we obtain the normal
form of a parabolic hypersphere of type l, l ∈ {0, . . . , k − 1},

n−k∑
i=1

x2
i + αn−lxn−l = 0,

Its radius is defined by −αn−l

2 , αn−l �= 0.
If αn−k+1 = · · · = αn = 0, then by an isotropic motion we get a cylindrical
hypersphere

n−k∑
i=1

x2
i = r2.

Its radius is defined by r.
Definition 1. Let c : I → Ik

n be a regular Cr-curve and f(x) = 0 a regular
Cr-hypersurface, r ≥ 1. A point P0(t0) is a point of contact of rth order of the
curve c and the hypersurface f if the function

F (t) = f(c(t))

satisfies F (t0) = . . . = F (r)(t0) = 0, F (r+1)(t0) �= 0.
Definition 2. Let c be an admissible Cr-curve in Ik

n, r ≥ n, P0 a point of c.
A hypersphere which has contact of nth order with the curve c in P0 is called the
osculating hypersphere.

We can write equation (1) of a hypersphere in the following form. Let P0 =
(p1, . . . , pn) be a point of hypersphere (1). Then

n−k∑
i=1

p2
i + 2

n∑
i=1

αipi + α0 = 0. (2)

Subtracting (2) from (1) we get

n−k∑
i=1

(x2
i − p2

i ) + 2
n∑

i=1

αi(xi − pi) = 0,

which can be written as

n−k∑
i=1

(xi − pi)2 + 2
n−k∑
i=1

(αi + pi)(xi − pi) + 2
n∑

i=n−k+1

αi(xi − pi) = 0.

By introducing vectors

x = (x1, . . . , xn), p = (p1, . . . , pn),

u = 2(α1 + p1, . . . , αn−k + pn−k, αn−k+1, . . . , αn)
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the previous expression can be written in the form

(x − p)2 + u ·e (x − p) = 0, (3)

where square denotes the isotropic square of the given vector and

u ·e (x − p) =
n∑

i=1

ui(xi − pi)

is introduced as a symbolic Euclidean inner product to make the calculations easier.
Let us consider the function F : I → R, F (s) = (c(s) − p)2 + u ·e (c(s) − p),

where c(s) : I → Ik
n is an admissible curve parametrized by the arc length, which

represents no loss of generality. Let s0 ∈ I be such that c(s0) = p. Then F (s0) = 0.
Let us determine the conditions under which the curve c and hypersphere (3) have
the contact of nth order.

By differentiating F we get

F ′(s) = 2(c(s) − p) · t1(s) + u ·e t1(s).

Hence in s = s0 we have
u ·e t1(s0) = 0. (4)

By differentiating F again we get

F ′′(s) = 2 + 2(c(s) − p) · c′′(s) + u ·e c′′(s),
and therefore

u ·e t2(s0) = −2
1
κ1

(s0). (5)

Let us define the functions ρl, hl : I → R by

ρl(s) =
1

κl(s)
, l = 1, . . . n− 1,

u ·e tl(s) = −2hl−1(s), l = 1, . . . , n,

and let us prove by induction

hl(s0) = ρl(h′
l−1 + κl−1hl−2)(s0), l = 3, . . . , n− k, (6)

hn−k+l(s0) = ρn−k+lh
′
n−k+l−1(s0), l = 1, . . . , k − 1, (7)

h0(s0) = 0, h1(s0) = ρ1(s0), h2(s0) = ρ′1ρ2(s0),

The statement has already been proved for l = 0, 1. Now suppose that it is true for
l ≤ j − 1 and let us prove it for l = j. We can write

F (j)(s) = 2(c(s) − p) · c(j)(s) + u ·e c(j)(s) + Gj(s). (8)

By differentiating the previous expression we get

F (j+1)(s) = 2t1 · c(j)(s) + 2(c(s) − p) · c(j+1)(s) + u ·e c(j+1)(s) + G′
j(s).
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From the construction of the Frenet frame of an admissible curve ([2]) it follows
that there exist functions ai : I → R such that

c(j)(s) =
j∑

i=1

ai(s)ti(s), (9)

and therefore

F (j+1)(s) = 2a1(s) + 2(c(s) − p) · c(j+1)(s) + u ·e c(j+1)(s) + G′
j(s).

By comparing the previous equation and equation (8) for j + 1

F (j+1)(s) = 2(c(s) − p) · c(j+1)(s) + u ·e c(j+1)(s) + Gj+1(s) (10)

we conclude the following

2a1(s) + G′
j(s) = Gj+1(s).

Now, let j ≤ n − k. By sustituting (9) in (10), the condition F (j+1)(s0) = 0
implies

−2hj(s0) = − 1
ajκj

[
− 2

j−1∑
i=2

(a′ihi−1 − aiκi−1hi−2 + aiκihi)

(11)
+a′j(−2hj−1) − ajκj−1(−2hj−2) − 2a1 + Gj+1

]
(s0).

On the other hand, by substituting (9) and the definition of the functions hi in the
expression (8) we get

F (j)(s) = 2(c(s) − p) · c(j)(s) +
j∑

i=1

ai(s)(−2hi−1)(s) + Gj(s),

and therefore

F (j+1)(s) = 2a1(s)+2(c(s)−p) ·c(j+1)(s)+
j∑

i=1

[
a′i(−2hi−1)+ai(−2hi−1)′

]
+G′

j(s),

or in s = s0

−2h′
j−1(s0) =− 1

aj

[
2a1(s0)− 2

j−1∑
i=1

(a′ihi−1 + aih
′
i−1)(s0)− 2a′jhj−1(s0) +G′

j(s0).
]

(12)

Comparing equations (11) and (12) we get recursion (6)

hj(s0) = ρj(h′
j−1 + κj−1hj−2)(s0).

In the same way we can prove recursion (7).
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From these conditions we can determine vector u = (u1, . . . , un). Since

u ·e ti = u · ti +
n∑

j=n−k+1

ujtij = −2hi−1, i = 1, . . . , n,

where tij denotes the jth coordinate of the vector ti according to the base of the
space U2, we have

u ·e tn = un = −2hn−1,

and therefore the last component of the vector u is determined. The components
un−1, . . . , un−k+1 can be determined from the system TU = H , where T is the
upper triangular matrix with units on the diagonal such that in its jth row there
vector tn−k+j , j = 1, . . . , k, U is the matrix-column [un−k+1, . . . , un]τ , and H the
matrix-column −2[hn−k+1, . . . , hn]τ . If components un−k+1, . . . , un, are already
determined, the components u1, . . . , un−k can be determined from the system

u · ti = −
n∑

j=n−k+1

ujtij − 2hi−1, i = 1, . . . , n− k.

Since the determinant of this system is det(π1(t1), . . . , π1(tn−k)) = 1, the system
has a unique solution.

It can be shown that the equation of the osculating hypersphere obtained in
this way coincides with the equations of the osculating hyperspheres in I1

3 and in
I2
3 ([1], [4]).

If the osculating hypersphere is a hypersphere of type l, l ∈ {1, . . . , k− 1}, then
its equation is

(x − p)2 +
n∑

i=1

ui(xi − pi) = 0,

where un−l �= 0, un = . . . = un−l+1 = 0. We can notice that this holds if and
only if hn−1 = · · · = hn−l = 0. The radius of such a hypersphere is given by
R = −un−l

2 = hn−l−1.

3. Hyperspherical curves

Definition 3. An admissible Cr-curve c, r ≥ n+ 1, is called hyperspherical of type
l, l ∈ {0, . . . k − 1}, if it lies on a hypersphere of type l.

The equation of an osculating hypersphere of type l can be written in the fol-
lowing form

(x − c(s))2 + u · (x − c(s)) +
n−l∑

i=n−k+1

ui(xi − ci(s)) = 0, (13)

where un−l �= 0. If we define

w(s) = 2π1(c(s)) − u
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v(s) = c(s)2 − c(s) ·e u,

equation (13) can be written as

x2 − x ·e w(s) + v(s) = 0.

If a curve is hyperspherical of type l, then it lies on its osculating hypersphere of type
l which does not depend on the point c(s) of a curve. Then the expressions w(s)
and v(s) do not depend on s, i.e., w′(s) = 0, v′(s) = 0, s ∈ I. By differentiating we
get

w′(s) = 2π1(t1(s)) − u′,

v′(s) = 2c(s) · t1(s) − t1 ·e u − c(s) ·e u′.

Since
t1 ·e u(s) = 0, (14)

we have
v′(s) = c(s) ·e w′(s).

Therefore, it is sufficient to show w′(s) = 0. First we can notice that the components
of w′ with respect to the basis of U2 satisfy

u′
n−k+1 = · · · = u′

n−l = 0.

However, we can show that the condition u′
n−l = 0 implies that the derivatives

u′
n−k+1, . . . , u

′
n−l−1 are also 0. For an osculating hypersphere of type l we have

un = . . . = un−l+1 = 0, un−l−1 = −2hn−l−2 − tn−l−1,n−lun−l.

By using Frenet’s equations and the definition of the functions hn−l−1 we get
u′

n−l−1 = 0. Analogously we show that the other derivatives are 0.
Furthermore, let us show that the vector

π1(2t1 − u′)

is a zero-vector under the given conditions. Differentiating (14) we get

u′ ·e t1 = u′ · t1 = 2.

Therefore, the isotropic scalar product of π1(2t1 − u′) and t1 is equal to 0. Fur-
thermore, from

u ·e t2 = −2h1(s)

there follows
u′ ·e t2 = u′ · t2 = 0,

so the scalar product of π1(2t1 − u′) and t2 is equal to 0. In the same way
we can show that the vector π1(2t1 − u′) is orthogonal to each of the vectors
π1(t1), . . . , π1(tn−k) which form the basis of U1. Hence, it is a zero-vector.
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Therefore, we have proved the following theorem.
Theorem 1. An admissible Cr-curve c, r ≥ n + 1, is hyperspherical of type l,

l ∈ {0, . . . , k−1}, if and only if hn−1 = · · · = hn−l = 0, R := hn−l−1 = const. �= 0.
At the end, let us notice that the proof of the previous theorem also holds for

the curves on cylindrical hyperspheres. As before, we can write the cylindrical
hypersphere in the form

(x − p)2 + u · (x − p) = 0

by using only the isotropic scalar product. When written in this form, the radius
of the cylindrical hypersphere is given by

r2 =
(u

2

)2

,

where u =
∑n−k

i=1 −2hi−1π1(ti). The following theorem is true.
Theorem 2. An admissible Cr-curve c, r ≥ n + 1, lies on a cylindrical hyper-

sphere if and only if hn−1 = · · · = hn−k = 0.
The radius of that hypersphere is given by r2 =

∑n−k
i=1 h2

i−1.
We can obtain the same result by noticing that a curve c lies on a cylindrical
hypersphere if and only if the projection of c onto the space U1 lies on the hyperphere
of the space U1 and by applying Euclidean results ([3]).
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