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Position control system of moderate precision based on ‘forced dynamics control’ for the drive with significant
vibration modes is described. To exploit the only position sensor on the motor side, all necessary control variables
are estimated in observers based on motor position and stator current measurements. The designed controller is of
a cascade structure, comprising an inner speed control loop, which respects vector control principles and an outer
position control loop, which is designed to control load angle with prescribed dynamics in the presence of flexible
modes. Simulations of the overall control system indicate that the proposed control system exhibits the desired
robustness and therefore warrants further development and experimental investigation.
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Prisilno upravljanje dinamikom pogona elastičnog zgloba s jednim senzorom pozicije rotora.U radu
je opisano upravljanje sustavom pozicioniranja srednje preciznosti s izraženim vibracijskim modovima korišten-
jem metodologije prisilnog upravljanja dinamikom. Kako bi se iskoristio senzor pozicije na strani motora, sve
potrebne varijable stanja estimiraju se na temelju mjerenja pozicije motora i statorskih struja. Projektirani regulator
je kaskadne strukture, s unutarnjom petljom po brzini vrtnje koja se temelji na principima vektorskog upravljanja,
i vanjskom petljom po poziciji za upravljanje kutom tereta s definiranom dinamikom u prisustvu slabo prigušenih
modova. Simulacijski rezultati cjelokupnog sustava upravljanja potvr�uju da predloženi sustav upravljanja posje-
duje željenu robusnost i time opravdava budući razvoj i eksperimentalna istraživanja.

Klju čne riječi: prisilno upravljanje dinamikom, obzerveri, upravljanje pozicijom, bezsenzorsko upravljanje

1 INTRODUCTION

To reduce the number of sensors for position control of
the drive with flexible coupling, a control system based on
‘Forced Dynamics Control’ (FDC) with measurement of
rotor position and stator current torque component is de-
veloped. An overall control system is therefore completed
with observation of all necessary control variables. Posi-
tion control algorithm of the drive with torsion vibrations
is developed in two steps.

Firstly, an inner speed control loop is formed for the
PMSM rotor using feedback linearisation principles, [1].
This control algorithm is formulated in the rotor fixed d_q
frame, respecting mutual orthogonality of the stator current
vector and rotor magnetic flux vector, to achieve maximum
torque under vector control [2-3]. Assuming a known load
torque, FDC forces the speed control system to respond
with a prescribed linear first order dynamic, which has a
specified time constant,Tω. This prescribed behavior of
the speed control loop then enables to replace it with a first

order delay which substantially simplifies the design of the
outer position control loop. Presence of the load torque es-
timate in the speed control algorithm automatically coun-
teracts the load torque on the motor shaft by producing a
nearly equal and opposite control torque component. Its
estimate is provided by the motor torque observer. This
gives FDC a certain degree of robustness not only with re-
spect to external disturbances, but also with respect to plant
parameter variations, since such variations are equivalent
to load torques applied to the unperturbed plant model.

The second step is the design of the position control
loop, which is also based on FDC and therefore complies
with the prescribed closed-loop dynamics for load angle
control, in spite of the presence of vibration modes and
external load torque [4-5]. This approach achieves non-
oscillatory position control with a settling time,Tss, which
can be described as a function of the natural frequency of
two mass system.

Linearisation of the speed control algorithm and the de-
sign of the FDC based position control algorithm, operat-
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ing with the motor position sensor only, require estimation
of state variables including load torques. To achieve these
tasks three observers complete the overall control system.
State dependence of the flexible load variables is exploited
to design their observer as a state observer. The second ob-
server, which produces the first and second derivatives of
the load torque is Luenberger’s type and the reason for its
separation from the state observer is to decrease order of
the first one. The third observer is based on similar princi-
ples for estimation of load torque acting on the motor shaft
for correct operation of FDC speed control loop.

Systematic analysis of speed control of the drive with
flexible coupling with PI and PID regulators designed by
pole-placement method is described in [6-7]. Analysis re-
sults in an important observation that the different pole-
assignment patterns are necessary for the different inertia
ratios between load and motor. If for an over damped sys-
tem with a higher moment of load inertia PI regulator with
specified damping coefficients satisfies non-oscillatory op-
eration, then for highly under damped systems with load
inertia lower than inertia of motor PID regulator is required
to improve the control system performance.

An optimal speed controller design for a two inertia
system stabilization based on ‘The Integral of Time multi-
ply by Absolute Error’ criterion described in [8] results in
analysis of four different controllers. Improvement of con-
troller tracking performance was achieved with pseudo-
derivative feedback and for better disturbance rejection a
feed-forward controller is proposed.

A servo-system, which exploits the model of two-
inertia system and Kalman filter based observer to predict
one step ahead all state variables as well as disturbances,
is described in [9]. Capability of the proposed algorithm to
estimate and control the speed and position of the drive is
verified by simulation with good results.

Possibility to exploit FDC for control of the drive with
flexible coupling was already verified in [10-11]. Simu-
lation results including preliminary experimental verifica-
tion, confirm the effectives of the proposed control method.
These works have also confirmed that FDC is capable to
control vibration modes while offering precisely defined
dynamic response to the reference position.

FDC based control system designed in [12] requires
two position sensors for rotor and load position measure-
ments as the inputs of FDC position control law. Prelimi-
nary experiments confirmed the possibility to control rotor
and load angle with prescribed dynamics.

Further study based on simulations, verifies the ability
to control the drive with flexible coupling with rotor po-
sition and current torque component measurements only.
The control algorithm fed by observed state variables in-
cluding torque on the motor shaft and load torque oper-

ates in agreement with theoretical assumptions made dur-
ing its development. Results of simulations confirmed that
the designed control system is capable to eliminate the in-
fluence of flexible coupling while controlling the load po-
sition with moderate precision.

2 CONTROL LAW DEVELOPMENT

Development of the position control system is made in
two steps. At first the speed control system is linearised to
achieve the first order response to the step angular speed
demand [13]. Secondly, FDC position control system with
prescribed closed-loop dynamics is designed. If compared
with previous works the designed observers require mea-
surements of rotor position and torque component of stator
current. This way elimination of position sensor on the
side of load was achieved.

2.1 Description of PMSM and Flexible Load

As a driving motor PMSM is supposed and its descrip-
tion in the synchronously rotating d_q co-ordinate system
fixed to the rotor is as follows:

dθR
dt

= ωR, (1)

dωR

dt
=

1

JR
[c (Ψdiq +Ψqid)− ΓLs] , (2)

did
dt

=
−Rs

Ld
id + pωR

Lq

Ld
iq +

1

Ld
ud, (3)

diq
dt

=
−Rs

Lq
iq − pωR

Ld

Lq
id −

pωR

Lq
ΨPM +

1

Lq
uq, (4)

whereid, iq andud, uq are, respectively, the stator current
and voltage components,Ld, Lq are, respectively, the in-
ductances in direct and quadrature axisRs is resistance of
stator phase,θR andωR are the rotor position and angular
velocity respectively andΓLs is the external motor torque,
p is the number of pole pairs andc = 3p/2 andJR is the
rotor moment of inertia.

Flexible coupling between motor and load for its de-
scription is shown in Figure 1.
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Fig. 1. Flexible coupling between motor and load
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The driven mechanism is a balanced mass with mo-
ment of inertiaJL, coupled to the motor shaft via a torsion
spring representing the flexible coupling with spring con-
stant,KS . The electrical torque developed by the motor is
Γel. ΓLe andΓLs are load torques externally applied, re-
spectively, to the load mass and the rotor. The torque,ΓLs

is direct proportional to the position displacement. Block
diagram for flexible coupling representation is shown in
Figure 2.
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Fig. 2. Block diagram of flexible coupling

Mathematical description of flexible coupling between
rotor and load is as follows:

θ̇R = ωR, (5)

θ̈R =
1

JR
[Γel − ΓLs] , whereΓLs = Ks (θR − θL) (6)

θ̇L = ωL, (7)

θ̈L =
1

JL
[ΓLs − ΓLe] . (8)

Using Mason’s formula the transfer function between
the electrical torque and the rotor angle can be derived di-
rectly from Figure 2 as:

F (s) =
θR (s)

Γel (s)
=

s2 + Ks

JL

s2JR

(
s2 + Ks

JR
+ Ks

JL

)

=
1

s2JR

s2 + v2n
s2 + ω2

n

(9)

where:

vn =

√
Ks

JL
andωn =

√
Ks

JR
+

Ks

JL
= vn

√
1 +

JL
JR

(10)
Here, the ‘encastre natural frequency’, vn, is the frequency
of the oscillations of the spring and load with the rotor
held inertially fixed and withΓLe = 0. The ‘free natu-
ral frequency’,ωn , is the frequency of the oscillations of
the combined rotor, spring and load withΓLe = 0 and
Γel = 0.

2.2 FDC of Motor Speed

FDC law for rotor speed is based on the feedback lin-
earisation that yields the first order linear dynamics, where
Tω is the prescribed time constant andθ̇Rdem is the de-
manded rotor speed

θ̈R =
1

Tω

(
θ̇Rdem − θ̇R

)
. (11)

Linearisation is achieved through comparison of equa-
tion for prescribed dynamics, (11) with equation for rotor
speed, (2). Settingid = 0 up to nominal speed for vector
control of the PMSM, [2] and equating the RHS of (2) and
(11) yields the following FDC law for speed control loop:

id dem = 0,

iq dem = 1
cΨPM

[
Jr

Tω

(
θ̇R dem − θ̇R

)
+ ΓLs

] (12)

henceid = id dem and iq = iq dem are regarded as the
control variables. A current controlled inverter is used to
vary the stator voltage components,ud anduq, in such a
way that stator componentsid andiq follow their respec-
tive demands,id dem andiq dem , with nearly zero dynamic
lag.

Since the motor load torque,ΓLs appears on the right
hand side of the demanded current,iq dem, (12) it is nec-
essary to design an observer for estimation of the net load
torque on the shaft of the motor (see section 3.3). Derived
stator current demands (12) are used for FDC of PMSM
rotor speed with the first order dynamics and prescribed
settling time,Tω as it requires prescribed linearising func-
tion (11).

2.3 Design of Load Position FDC

To design the prescribed response for a control sys-
tem with n closed loop poles having equal real parts,
−1/Tc = ω0, and with a specified settling time,Ts, then
the Dodds settling time formula, [14] applies. If zero over-
shoot of the step response is required, then:

y (s)

ydem (s)
=

[
1

1 + sTs/1.5 (1 + n)

]n
(13)

wherey(s) is the controlled output andydem(s) is the ref-
erence input. This formula is valid for the design of FDC
speed control algorithms as well as for the design of load
angle control algorithm of the drive with flexible coupling.

Plant for load position control is formed by the first
order transfer function block representing FDC of rotor
speed completed with kinematics integrator and integrating
these blocks with the model of load. The resulting plant is
shown in Figure 3. Load torque acting on the rotor shaft
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Fig. 3. Block diagram for load angle control

does not appear because it has been cancelled in the speed
FDC loop.

Successive differentiation of (8) combined with (6)
gives:

...
θL =

1

JL

[
Ks

(
θ̇R − θ̇L

)
− Γ̇Le

]
, (14)

θIVL =
1

JL

[
Ks

(
θ̈R − θ̈L

)
− Γ̈Le

]
. (15)

Substituting in (14) for̈θR from (11) and forθ̈L from
(8) yields for load angle control following 4th order equa-
tion:

θIVL =
Ks

JLTω

(
θ̇Rdem − θ̇R

)
− K2

s

J2
L

(θR − θL)

+
Ks

J2
L

ΓLe −
1

JL
Γ̈Le.

(16)

Using (13) forn = 4, the following 4th order system
will yield a specified settling time,Tsθ :

θL (s)

θL dem (s)
=

(
15

2Tsθ

)4

A(s)
,

A(s) = s4+4

(
15

2Tsθ

)
s3 + 6

(
15

2Tsθ

)2

s2

+4

(
15

2Tsθ

)3

s+

(
15

2Tsθ

)4

.

(17)

The comparison of the 4th derivative (16) of load posi-
tion, θL, with prescribed position (17) results in:

Ks

JLTω

(
θ̇Rdem − θ̇R

)
− K2

s

J2
L

(θR − θL) +
Ks

J2
L

ΓLe

− 1

JL
Γ̈Le +

4

b

...
θL +

6

b2
θ̈L +

4

b3
θ̇L =

1

b4
(θLdem − θL) ,

(18)

where θ̇R dem is treated as the control variable and
b = 2Tsθ/15. By manipulation of (18) the following FDC

control law for load angle control is derived:

θ̇Rdem = Tω

{
JL

b4Ks
(θLdem − θL) +

1

Tω
θ̇R

− 4

b

(
θ̇R − θ̇L

)
−

[
6

b2
− Ks

JL

]
(θR − θL)− 4JL

b3Ks
θ̇L

−
[

1

JL
− 6

b2Ks

]
ΓLe +

4

bKs
Γ̇Le +

1

Ks
Γ̈Le

}
.

(19)

This control law also satisfies ideal transfer function:

F (s) =
θL id (s)

θL dem (s)
=

1

b4s4 + 4b3s3 + 6b2s2 + 4bs+ 1
.

(20)

The derived position control algorithm, (19) is in the
form of a state feedback control law with the gains already
determined as functions of the plant parameters and the
desired closed loop system parameters (17). But in this
case, the first and second derivatives of the external load
torque also appear on the right hand side. This is a general
feature of FDC when external disturbances are included
into the plant model used for the control system synthesis.
The designed overall control system is shown in Figure 4.

3 OBSERVATION OF CONTROL VARIABLES

All the state variables for the designed control law are
generated by a state observer, which needs rotor position
and stator current torque component as the inputs. For
the estimation of external load torque derivatives an ob-
server with filtering effect is designed. Load torque acting
on the shaft of the motor is estimated in the motor torque
observer.

3.1 Observer of State Variables

Due to state dependence of the deflection torque,ΓLs

the ‘state variablesobserver’ is based on a real time model
of the two-mass system, whereΓLe is an external load
torque. In this case the external torque is treated as if it
is constant provided that its change over a period equal to
the observer correction loop settling timeTsO is negligible.
System state equations are:

sθL = ωL, (21)

sθR = ωR, (22)

sωL = −Ks

JL
θL +

Ks

JL
θR − 1

JL
ΓLe , (23)

sωR =
Ks

JR
θL − Ks

JR
θR +

1

JR
Γel , (24)

sΓLe = 0. (25)
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Fig. 4. Overall position control system block diagram

Rewritten in matrix form:




ṗL
ṗR
ω̇L

ω̇R

Γ̇Le



=




0 0 1 0 0
0 0 0 1 0

−a1 a1 0 0 −a2
a3 −a3 0 0 0
0 0 0 0 0







θL
θR
ωL

ωR

ΓLe




+
[
0 0 0 a4 0

]T
Γel,

(26)

where constants are defined,a1 = Ks/JL, a2 = 1/JL,
a3 = Ks/JR anda4 = 1/JR.
Observer’s equation in matrix form is:




ˆ̇
θL
ˆ̇
θR
ˆ̇ωL

ˆ̇ωR

ˆ̇ΓLe



=




0 0 1 0 0
0 0 0 1 0

−a1 a1 0 0 −a2
a3 −a3 0 0 0
0 0 0 0 0







θ̂L
θ̂R
ω̂L

ω̂R

Γ̂Le




+




0
0
0
a4
0



Γel +




kθ1

kθ2

kω1

kω2

kΓ1




(
θR − θ̂R

)
.

(27)

Equation of the ‘dynamical error system’ is obtained
by subtracting observer equations (27) from its real time

model (26):




ε̇θL
ε̇θR
ε̇ωL

ε̇ωR

ε̇ΓLe



=




0 −kθ1 1 0 0
0 −kθ2 0 1 0

−a1 a1 − kω1 0 0 −a2
a3 −a3 − kω2 0 0 0
0 kΓ1 0 0 0







εθL
εθR
εωL

εωR

εΓLe




(28)

To ensure convergence of the state estimates toward the
real states the gains of observer,kθ1 , kθ2 , kω1

, kω2
and

kΓ1
must be chosen in such a way that dynamical error

system satisfies condition fort → ∞ εi(t) → 0. Such
convergence is guaranteed if the eigenvalues of the system
matrix have negative real parts.

det




λ kθ1 −1 0 0
0 λ+ kθ2 0 −1 0
a1 kω1 − a1 λ 0 a2
−a3 kω2 + a3 0 λ 0
0 −kΓ1 0 0 λ




=

=
λ5 + λ4kθ2 + λ3 (a3 + kω2)+λ2a3kθ1

+λ (a1kω2 + a3kω1)+a2a3kΓ1.

(29)

Under assumption of collocations of all five error sys-
tem eigenvalues atλ = −ω0 (the observers settling time
can be determined by formula,(13), which forn = 5 re-
sults inTsO = 9/ω0), the desired characteristic equation
has form:

(s+ ω0)
5
= s5+5ω0s

4+10ω2
0s

3+10ω3
0s

2+5ω4
0s+ω5

0 .
(30)

Comparing the coefficients of the same degree in (29)
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and (30) yields the required values of observer gains:

kΓ1 =ω5
0/a2a3kθ2 = 5ω0kω2 = 10ω2

0 − a1 − a3kθ1

= (10ω
3
0 − a1kθ2)/a1kω1 =

(
5ω4

0 − a1kω2

)
/a3.

(31)

Although the load torque is assumed constant in the
formulation of the observer real time model, its estimate
ΓLe, will follow a time varying load torque and will do so
more faithfully asω0 is enlarged with respect of the com-
putational step. Block diagram of load torque observer 1 is
shown in Figure 5.
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1

Rθ̂
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Rθ̂

 

 
Fig. 5. Block diagram of state variables observer

Correct function of observer was verified for estimation
of uncontrolled flexible coupling state variables when con-
stant torque,Γel = 2 Nm was applied att = 0.1 s which
was followed by equivalent load torqueΓLe = 2 Nm at
t = 0.5 s. Settling time of the observer was chosen as
TsO = 50 ms. Simulation results are shown in Figure 6.
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Fig. 6. Simulation results of state variables observer

3.2 Load Torque Derivatives Observer

To produce the first and second derivative of load
torque required by the derived control law (19), a similar
observer to the previous one was designed. In this case the
second derivative of external torque load is treated as if itis
constant provided that its change over a period equal to the

observer correction loop settling time Tso, is negligible.
System state equations in matrix form are as follows:




sΓLe

sΓ̇Le

sΓ̈Le


 =




0 1 0
0 0 1
0 0 0







ΓLe

Γ̇Le

Γ̈Le


 . (32)

If the error between load torque as the output of state
variables observer and load torque estimated in the deriva-
tives observer defined ase = ΓLe − Γ̂Le is added with
proper gain into every observer correction loop, then the
torque derivatives observer equations are as follows:




sΓ̂Le

sˆ̇ΓLe

sˆ̈ΓLe


 =




0 1 0
0 0 1
0 0 0







Γ̂Le

ˆ̇ΓLe

ˆ̈ΓLe




+




k1
k2
k3



(
ΓLe − Γ̂Le

)
.

(33)

Subtraction of (33) from (32) gives dynamical error
system, which has the form




ε̇1
ε̇2
ε̇3


 =




−k1 1 0
−k2 0 1
−k3 0 0







ε1
ε2
ε3


 . (34)

Convergence of dynamical error system fort → ∞
εi(t) → 0 is guaranteed for the eigenvalues of the system
matrix with negative real parts. Under assumption of all
three eigenvalues collocations atλ = −ω0 (using(13) for
n = 3 results in observer’s settling timeTso = 6/ω0).
Comparing the desired third order characteristic equation
with equation of system matrix eigenvalues results in the
following gains of observer correction loops:

s3 + 3ω0s
2 + 3ω2

0s+ ω3
0 = λ3 + λ2k1 + λk2 + k3,

(35)

k3 = ω3
0 , k2 = 3ω2

0 , k1 = 3ω0. (36)

Load torque observer block diagram of is shown in
Fig. 7.

Figure 8 illustrates correct function of the observer
when the numerically computed first and second deriva-
tives of exponential load torque are compared with the
derivatives gained from the load torque observer.
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Fig. 7. Load torque observer
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Fig. 8. Computed and estimated the first and second
derivative

3.3 Motor Load Torque Observer

Load torque on the motor shaft needed for FDC speed
control is estimated in ‘motor load observer’. Due to the
fact that the form ofΓLs(t) is unknown, its differential
equations cannot be formed. Motor load torqueΓLs is
therefore treated as state variable, which is constant pro-
vided that its change over a period equal to the observer
correction loop settling timeTsu is negligible. Thus, the
observer real time model is based on (1) and (2) augmented
by a new state equation,− dΓLs/dt = 0.

dθ∗R
dt

= ω∗
R + kθe

∗
θ, (37)

dω∗
R

dt
=

1

JR
[cΨPM iq − Γ∗

Ls] + kωe
∗
θ, (38)

−dΓ∗
Ls

dt
= 0 + kΓe

∗
θ. (39)

Mathematical description of the observer is available in
[13] therefore to save some space only the final compari-
son of characteristic polynomial of the observer’s transfer
function with desired characteristic equation is given:

s3+kθs
2+kωs+

kΓ
JR

= s3+s2
18

Tsu
+s

108

T 2
su

+
216

T 3
su

. (40)

Observer’s gainskθ, kω andkΓ for a specified correc-
tion loop settling time, Tso are as follows:

kθ = 3ω0, kω = 3ω2
0 , kΓ = JRω

3
0 . (41)

So with sufficiently small settling time of observerTsu,
the observer, which is shown in Figure 9, produces a net
load torque estimate,Γ∗

LR(t) able to track real load torque,
ΓLs(t) with very small and defined dynamic lag.

s

1
*
Rθ

Rθ

s

1

*
Rω

*
LsΓ

s

1-

RJ

1

PM
R

Ψ
2J

3p

qi  

 Fig. 9. Block diagram of motor load torque observer

Correct function of the motor load torque observer il-
lustrates Figure 10. Subplot a) shows the real and esti-
mated rotor speed including the difference between them
magnified 5x. Applied and estimated load torque on the
shaft of the motor is shown in subplot b) including the er-
ror between them. In spite of dynamic lag of the estimated
variable, which can be seen in this subplot, the observer
produces a correct estimate of load torque on the shaft of
the motor demanded by FDC of rotor speed.
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Fig. 10. Real and estimated rotor speed and load torque

4 OVERALL CONTROL SYSTEM VERIFICA-
TION

Simulations of the proposed FDC system followed by
verification of the designed observers via experimental
data collected for control of flexible coupling with two po-
sition sensors described in [12] were carried out to verify
overall performances of the proposed control of flexible
coupling with single position sensor on motor side.
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Simulation results of FDC of the load position are pre-
sented in Figure 11 and Figure 12. Verification of the ob-
servers’ operation from measured data is shown in Fig-
ure 13.
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Fig. 11. Simulation results for position control of the drive
with flexible coupling

The computational step of simulations ish = 1·10−4s,
which corresponds to the sampling frequency achieved
during a previous implementation of the algorithm for FDC
of load position. All the simulations presented are carried
out with zero initial state variables. A step load angle de-
mandθL dem = 10 rad with settling timeTsθ = 0.2 s was
applied to investigate response of the FDC based control
system. An external load torque with exponential increase
given asΓLe = 5(1 − e−t/0.05) is applied att = 0.5 s,
being zero for the time intervalt < 0.5 s. The settling
time of the state and load torque observer were chosen as
TsO = Tso = 12.5 ms, while settling time of motor torque
observer is set asTsu = 1.5 ms respectively.

Subplot (a) of Fig. 11 shows the ideal response and re-
sponse of the control system to the step load position de-
mand,θL dem = 10 rad. including magnified difference
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Fig. 12. Simulation results for position control of the drive
with various moment of inertia

between them (10x). The realisation of the prescribed po-
sition dynamics is very accurate, which is clear from the
magnified difference. Also the prescribed settling time
is precisely kept because the load position,θL(t) passes
through9.5 radian at a time very close to0.2s. Subplot
b) shows load position and rotor position together with the
error between real and estimated load position (magnified
10x). From this subplot can be seen also that in the steady
state, the motor electrical torque is transmitted via the tor-
sion spring to counteract the external load torque applied
to the load mass. This entails a constant torsional deflec-
tion of the spring, which is evident from the constant dif-
ference betweenθR and θL occurring just after the load
torque achieves its steady state.

Subplot (c) shows the angular velocities of the rotor
and load as functions of time together with the difference
between real and estimated rotor speed (magnified 10x).
This subplot illustrate that the acceleration period is fol-
lowed by the deceleration one, as expected. Correct func-
tion of ‘states observer’ is shown in subplot (d) where the
estimated rotor and load speeds are shown including the
difference between real and estimated load speed (magni-
fied 10x). It can be seen that the errors in estimates occur
during transients only.

Demanded rotor speed as an input to FDC speed al-
gorithm together with real response of the motor speed is
shown in subplot (e). The PMSMiq-current torque com-
ponent is shown in subplot (f) while theid-current compo-
nent is kept at zero value up to the nominal motor speed
satisfying condition for vector control of PMSM.
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Figure 12 shows simulation results of robustness inves-
tigation when two different moments of load inertia were
applied (JL1 = 0.75 · 10−3 kgm2 andJL2 = 12 · 10−3

kgm2) while the moment of motor inertia (JR = 3 · 10−3

kgm2) was constant. The corresponding encastre natural
frequency (v1 = 109.5 rads−1 and v2 = 27.4 rads−1)
and free natural frequency (w1 = 122.5 rads−1 andw2 =
61.2 rads−1) were determined using (10) for spring con-
stantKs = 9 Nmrad−1. To achieve satisfactory results the
prescribed settling time for the drive with higher free nat-
ural frequency was set toTsθ = 0.1 s and for lower free
natural frequency was set toTsθ = 0.2 s.

Simulation results for both chosen moments of inertia
are compressed into two subplots. Subplots (a) and (b)
show the ideal response and response of the control system
to the step load position demand,θL dem = 10 rad with
prescribed settling time ofTsθ1 = 0.1 s andTsθ2 = 0.2 s
including difference between them (magnified 10x). Po-
sition response of the drive including prescribed settling
time is accurate, which is clear from the magnified differ-
ence between ideal and real position response. Subplots (c)
and (d) show the estimated velocities of the rotor and load
as functions of time together with the difference between
real and estimated rotor speed (magnified 10x). These re-
sults also confirm correct function of the state observer un-
der various load conditions.

Correct operation of the designed observers was inves-
tigated using data collected during control of flexible cou-
pling with two position sensors. Results are shown in Fig-
ure 13. Experiments were carried out for load angle de-
mandθL dem = 2π rad with settling timeTsθ = 0.2 s
and with exponential increase of external load torque and
spring constantKs = 24 Nmrad−1.

Subplot (a) of Figure 13 shows measured rotor posi-
tion for whole data collecting interval. Measured compo-
nents of stator current are shown in subplot (b). Proper
function of state observer, which exploits both measured
data as the inputs, shows subplot (c) where measured and
observed load position are shown including error between
them (magnified 10x). Subplot (d) shows estimated rotor
and load angular speed. Estimated load position together
with both estimated speeds serve as the inputs of FDC al-
gorithm to control load position.

One of the output of state variables observer is esti-
mated load torque, which is utilized in FDC of load po-
sition, as well as creates input for load torque derivatives
observer. Estimation of the first and second derivative of
load torque shows subplot (e). This way proper function of
load torque derivates observer was confirmed.

Presented simulation results and preliminary investiga-
tions of correct observers operation confirmed possibility
to control load angle with single position sensor on the
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Fig. 13. Comparison of measured and estimated control
variables by the designed observers

motor side using FDC. An important observation based on
simulation results is that the mechanical oscillations are
completely damped and the peak of transient error if com-
pared with ideal transfer function doesn’t exceed 0.5 rad
allowing position control of the load with moderate accu-
racy.

5 CONCLUSION

A position control system based on the principles of
‘Forced Dynamics Control’ for electric drives with flexible
couplings has been presented and verified by simulations.
Simulation results confirmed that the proposed position
control system can be made to follow the prescribed ideal
closed-loop dynamics with moderate precision in spite of
the presence of flexible modes and external torque. Sim-
ulation results also confirm accomplishment of the vector
control conditions by keeping direct axis current to small
proportion.

Implementation of three observers enables control of
load position with fair precision and to eliminate the load
position sensor. Preliminary tests of observers based on
previously measured data has shown their capability to
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provide estimates of all state variables for control algo-
rithm including rotor torsion torque,ΓLs, and external load
torque,ΓLe respectively. The same is valid about estima-
tion of load torque the first and second derivatives required
by the position control algorithm.

Simulation results indicate that the designed position
control system exhibits the desired robustness and there-
fore warrants further development and experimental inves-
tigation.
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