CERTAIN CLASSES OF POLYGONS IN R^2 AND AREAS OF POLYGONS

MIRKO RADIĆ, RENE SUŠANJ AND NENAD TRINAJSTIĆ

In this article we consider certain classes of polygons in \mathbb{R}^2 and areas of polygons. The classes are connected with definitions like the following.

Let $A_1 ... A_n$ be a polygon in R^2 and let k be a positive integer such that 1 < k < n. A polygon $P_1 ... P_n$ (if such exists) will be called k-outscribed polygon to the polygon $A_1 ... A_n$ if it holds

$$P_i + \ldots + P_{i+k-1} = kA_i, \quad i = 1, \ldots, n.$$

First we prove the following theorem.

THEOREM 1. Let h,k,n be positive integers such that

$$hk = n - 2, \quad GCD(k, n) = 2 \tag{1}$$

and let $A_1...A_n$ be any given polygon in \mathbb{R}^2 such that (1) is satisfied and that

$$\sum_{i=1}^{n} (-1)^{i} A_{i} = 0. (2)$$

Then for every point $P_1 \in \mathbb{R}^2$ there are points P_2, \dots, P_n in \mathbb{R}^2 such that

$$P_i + \ldots + P_{i+k-1} = kA_i, \quad i = 1, \ldots, n$$
 (3)

and that area of the polygon $P_1 ldots P_n$ is a constant, that is, does not depend of P_1 and is given by

2 area of
$$P_1 ... P_n = |U_1, \sum_{i=2}^n (-1)^i U_i| + |U_2, \sum_{i=3}^n (-1)^{i+1} U_i| + |U_3, \sum_{i=4}^n (-1)^i U_i| + |U_4, \sum_{i=5}^n (-1)^{1+i} U_i| + ... + |U_{n-1}, U_n|$$

$$(4)$$

Mathematics subject classification (2000): 51M04.

Keywords and phrases: polygon, area, determinant of rectangular matrix.

(Accepted May 30, 2006)

where $U_i = P_i + P_{i+1}$ and $P_i + P_{i+1}$ for each i = 1, ..., n is given by

$$P_{i} + P_{i+1} = 2A_{i} - (k-2)A_{i+2} + 2A_{i+4} + 2A_{i+6} + \dots + 2A_{i+k} - (k-2)A_{i+2+k} + 2A_{i+4+k} + 2A_{i+6+k} + \dots + 2A_{i+2k} - (k-2)A_{i+2+2k} + 2A_{i+4+2k} + 2A_{i+6+2k} + \dots + 2A_{i+3k} - \dots - (k-2)A_{i+2+(h-1)k} + 2A_{i+4+(h-1)k} + 2A_{i+6+(h-1)k} + \dots + 2A_{i+hk}.$$
(5)

Here let us remark that by |K,L| is denoted determinant $\begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix}$, where $K(x_1,y_1)$, $L(x_2,y_2)$.

Proof. The proof that holds (5) is as follows. First let n = 14 and k = 6. Thus, in this case, h = 2. Supposing that

$$P_i + \ldots + P_{i+5} = 6A_i, \quad i = 1, \ldots, 14$$
 (6)

we can write the following equations

$$P_i - P_{i+6} = 6(A_i - A_{i+1}), \quad i = 1, \dots, 14$$
 (7)

from which follows

$$\begin{split} P_7 &= P_1 - 6(A_1 - A_2), \\ P_{13} &= P_1 - 6(A_1 - A_2) - 6(A_7 - A_8), \\ P_5 &= P_1 - 6(A_1 - A_2) - 6(A_7 - A_8) - 6(A_{13} - A_{14}), \\ P_{11} &= P_1 - 6(A_1 - A_2) - 6(A_7 - A_8) - 6(A_{13} - A_{14}) - 6(A_5 - A_6), \\ P_3 &= P_1 - 6(A_1 - A_2) - 6(A_7 - A_8) - 6(A_{13} - A_{14}) - 6(A_5 - A_6) - 6(A_{11} - A_{12}), \\ P_9 &= P_1 - 6(A_1 - A_2) - 6(A_7 - A_8) - 6(A_{13} - A_{14}) \\ &\qquad \qquad - 6(A_5 - A_6) - 6(A_{11} - A_{12}) - 6(A_3 - A_4). \end{split}$$

Here let us remark that $P_{13} = P_{7+6}$, $P_5 = P_{13+6} = P_{7+2\cdot6}$ and so on. Analogously we have

$$P_8 = P_2 - 6(A_2 - A_3), \quad P_{14} = P_2 - 6(A_2 - A_3) - 6(A_8 - A_9)$$

and so on.

Let us remark that in expressions of $P_8, P_{14}, \dots, P_{10}$, in relation to expressions of P_7, P_{13}, \dots, P_9 , each index grow up to 1.

From (6) we see that $P_9 - P_1 = 6(A_9 - A_{10})$, and from the expression of P_9 we see that

$$P_9 - P_1 = -6(A_1 - A_2 + A_3 - A_4 + A_5 - A_6 + A_7 - A_8 + A_{11} - A_{12} + A_{13} - A_{14}).$$

Thus, the system (6) will be consistent iff $\sum_{i=1}^{14} (-1)^i A_i = 0$.

In the same way can be seen that the system (3) will be consistent iff holds (2).

Using, for example, the equation $P_1 + P_2 + P_3 + P_4 + P_5 + P_6 = 6A_1$ and expressions of P_3, P_4, P_5, P_6 we find that

$$P_1 + P_2 = 2A_1 - 4A_3 + 2A_5 + 2A_7 - 4A_9 + 2A_{11} + 2A_{13}$$
.

Since each equation of the system (6) can be used, it holds

$$P_i + P_{i+1} = 2A_i - 4A_{i+2} + 2A_{i+4} + 2A_{i+6} - 4A_{i+8} + 2A_{i+10} + 2A_{i+12}, \quad i = 1, \dots, 14.$$

Now, in relation to (5), let us remark that on the right side of (5) there are h negative terms and that between two negative terms there are $\frac{k-2}{2}$ positive terms. Thus, it holds

$$1 + h + h \cdot \frac{k-2}{2} = \frac{n}{2}$$
 or $hk + 2 = n$.

If right side of (5) is denoted by U_i , then

where P_1 can be taken arbitrary. Hence

Thus, we have to prove that

$$U_i + U_{i+2} + \ldots + U_{i+k-2} = kA_i, \quad i = 1, \ldots, n.$$
 (9)

First let us consider the case where n = 14 and k = 6. In this case we have

$$P_1 + P_2 = U_1 = 2A_1 - 4A_3 + 2A_5 + 2A_7 - 4A_9 + 2A_{11} + 2A_{13},$$

$$P_3 + P_4 = U_3 = 2A_3 - 4A_5 + 2A_7 + 2A_9 - 4A_{11} + 2A_{13} + 2A_1,$$

$$P_5 + P_6 = U_5 = 2A_5 - 4A_7 + 2A_9 + 2A_{11} - 4A_{13} + 2A_1 + 2A_3,$$
(10)

from which, by adding, we get

$$P_1 + P_2 + P_3 + P_4 + P_5 + P_6 = U_1 + U_3 + U_5 = 6A_1$$
.

Since analogously holds for i = 2, ..., 14, also we have

$$P_2 + P_3 + P_4 + P_5 + P_6 + P_7 = U_2 + U_4 + U_6 = 6A_2$$
 and so on.

It is not difficult to see that analogously holds generally for the case where positive integers h, k, n are such that n - 2 = hk. To see this, it is important to see that

$$-(k-2)A_{i}$$

$$2A_{i} - (k-2)A_{i+2}$$

$$\vdots$$

$$2A_{i} + \dots - (k-2)A_{i+k-2}$$

and
$$-(k-2)A_i + \frac{k-2}{2} \cdot 2A_i = 0$$
.

Concerning area of the polygon $P_1 cdots P_n$, first let us remark that, as it is known, area of a polygon $A_1 cdots A_n$ in R^2 is given by

2 area of
$$A_1 ... A_n = \sum_{i=1}^n |A_i, A_{i+1}|$$
.

Using expressions for P_2, \dots, P_n given by (8) it can be found that holds (4).

This completes the proof of Theorem 1.

In the following theorem will be shown that area of the polygon $P_1 ... P_n$ can be written in a much simpler and interesting form. For this purpose will be used determinant of rectangular matrix. In short about this.

In [1] the following definition of a determinant of rectangular matrix is given: The determinant of a $m \times n$ matrix A with columns A_1, \ldots, A_n and $m \le n$, is the sum

$$\sum_{1 \leqslant j_1 < j_2 < \dots < j_m \leqslant n} (-1)^{r+s} |A_{j_1}, \dots, A_{j_m}|,$$

where r = 1 + ... + m, $s = j_1 + ... + j_m$.

This determinant is a skew-symmetric multilinear functional with respect to the rows and therefore has many well known standard properties, for example, the general Laplace's expansion along rows.

In particular, if m = 2, then

$$|A_1, \dots, A_n| = \sum_{1 \le i < j \le n} (-1)^{3+i+j} |A_i, A_j|.$$
(11)

In [2] the following theorem (Theorem 3) is proved.

Let $A_1 ... A_n$ be any given polygon in \mathbb{R}^2 . Then

2 area of
$$A_1 ... A_n = |A_1 + A_2, A_2 + A_3, ..., A_n + A_1|$$
. (12)

It is easy to see that, according to (11), relation (4) can be written as

$$\sum_{i=1}^{n} |P_i, P_{i+1}| = \sum_{1 \le i < j \le n} (-1)^{3+i+j} |U_i, U_j|.$$

In the following theorem we shall use the following two theorems given in [2].

Theorem 7. Let $A_1 ... A_n$ be a polygon in R^2 with even n and let $\sum_{i=1}^n (-1)^i A_i = 0$. Then for every point $X \in R^2$ it holds

$$|A_1 + X, \dots, A_n + X| = |A_1, \dots, A_n|.$$
 (13)

Theorem 8. Let $A_1 ... A_n$ be as in Theorem 7. Then for each i = 1, ..., n it holds

$$|A_{i+1}, \dots, A_n, A_1, \dots, A_i| = |A_1, A_2, \dots, A_n|.$$
 (14)

Now we can prove the following theorem.

THEOREM 2. Let $P_1 \dots P_n$ be polygon as in Theorem 1. If k = 2, then

2 area of
$$P_1 ... P_n = 4|A_1, ..., A_n|$$
, (15)

and if k > 2, then

2 area of
$$P_1 ... P_n = k^2 |V_1, ..., V_n|$$
, (16)

where

$$V_i = A_i + A_{i+k} + \dots + A_{i+(h-1)k}, \quad i = 1, \dots, n.$$
 (17)

Proof. If k = 2, then from (5) can be seen that $P_i + P_{i+1} = 2A_i$. Since determinant has two rows, it holds

$$|2A_1,\ldots,2A_n|=4|A_1,\ldots,A_n|.$$

The proof that holds (16) if k > 2 is as follows. Since $U_i = P_i + P_{i+1}$, it is easy to see that $\sum_{i=1}^{n} (-1)^i U_i = 0$. Thus, we can use Theorem 7 given in [2] and take

$$X = -2(A_1 + A_3 + ... + A_{n-1})$$
 or $X = -2(A_2 + A_4 + ... + A_n)$.

Here let us remark that from (2) follows $A_1 + A_3 + ... + A_{n-1} = A_2 + A_4 + ... + A_n$. Thus, relation

2 area of
$$P_1 \dots P_n = |U_1, \dots, U_n|$$

can be written as

2 area of
$$P_1 ... P_n = |U_1 - X_1 ... U_n - X|$$

or

2 area of
$$P_1 \dots P_n = |-kV_1 + 2S_1, \dots, -kV_n + 2S_n|$$
, (18)

where $S = \sum_{i=1}^{n} A_i$. Now, according to the properties expressed by (13) and (14), the relation (18) can be written as (16).

For example, let n = 14 and k = 6. Then, as can be seen from the considered example (see (10)), it holds

$$\begin{aligned} P_1 + P_2 - 2S &= -6A_3 - 6A_9, \quad P_2 + P_3 - 2S &= -6A_4 - 6A_{10}, \dots, \\ P_{13} + P_{14} - 2S &= -6A_1 - 6A_7, \quad P_{14} + P_1 - 2S &= -6A_2 - 6A_8, \\ |-6A_3 - 6A_9, -6A_4 - 6A_{10}, \dots, -6A_1 - 6A_7, -6A_2 - 6A_8| &= 6^2 |A_1 + A_7, \dots, A_{14} + A_6|. \end{aligned}$$

This proves Theorem 2.

The proof that holds (16) seems to be far from to be easy without using properties of determinant given by (11).

REFERENCES

- M. RADIĆ, A Definition of Determinant of Rectangular Matrix, Glasnik Matematički 1 (21), (1966), 17–22.
- [2] M. RADIĆ, *About a Determinant of Rectangular* 2 × n matrix and its Geometric Interpretation, Contribution to Algebra and Geometry (appeared Vol.6, 2005).

Mirko Radić, Rene Sušanj, Nenad Trinajstić, University of Rijeka, Department of Mathematics, 51000 Rijeka, Omladinska 14, Croatia