CERTAIN RELATIONS BETWEEN TRIANGLES AND BICENTRIC HEXAGONS

Mirko Radić and Zoran Kaliman

Abstract. In this article we prove, using relatively very elementary mathematical facts, that every
triangle completely determines a bicentric hexagon. Obtained relations can be interesting.

1. Introduction

A polygon which is both chordal and tangential is called bicentric polygon. The following notation will be used.

If $A_{1} \ldots A_{n}$ is a considered bicentric polygon, then
C_{1} is incircle of $A_{1} \ldots A_{n}$,
C_{2} is circumcircle of $A_{1} \ldots A_{n}$,
r is radius of C_{1} and R is radius of C_{2},
I is center of C_{1} and O is center of $C_{2}, d=|I O|$.
In the following we shall deal with bicentric hexagons and triangles. First let us remark that German mathematician Nicolaus Fuss(1755-1826) has proved that a tangential hexagon $A_{1} \ldots A_{6}$ will also be a chordal one iff holds relation

$$
\begin{equation*}
3\left(R^{2}-d^{2}\right)^{4}-4 r^{2}\left(R^{2}+d^{2}\right)\left(R^{2}-d^{2}\right)^{2}-16 R^{2} r^{4} d^{2}=0 \tag{1.1}
\end{equation*}
$$

Concerning triangle, holds Euler's relation

$$
\begin{equation*}
R^{2}-d^{2}=2 R r . \tag{1.2}
\end{equation*}
$$

In the following will also be used Poncelet's closure theorem. This theorem for bicentric polygons can be stated as follows.

Let C_{1} and C_{2} be any given two circles in a plane such that one is completely inside of the other. Then only one of the following two assertions is true:
(a) There is no bicentric n-gon whose incircle is C_{1} and circumcircle C_{2}.

[^0](b) There are infinitely many bicentric n-gons whose incircle is C_{1} and circumcircle C_{2}. For every point A_{1} on C_{2} there is bicentric n-gon $A_{1} \ldots A_{n}$ whose incircle is C_{1} and circumcircle C_{2}.

For example, if C_{1} and C_{2} are circles such that holds Euler's relation (1.2), then for any point A_{1} on C_{2} there is triangle whose incircle is C_{1} and circumcircle C_{2} (Figure 1.1).

Figure 1.1

Figure 1.2

Although the Poncelet's closure theorem date from nineteenth century, many mathematicians have been working on number of problems in connection with it. Here let us remark that Richolet in [5], using some results given in [1], showed how some relations for bicentric $2 n$-gon can be obtained from relations for bicentric n-gon. For this purpose elliptic functions are used.

Important role in the following will play tangent lengths t_{m} and t_{M} given by

$$
\begin{equation*}
t_{m}=\sqrt{(R-d)^{2}-r^{2}}, \quad t_{M}=\sqrt{(R+d)^{2}-r^{2}} \tag{1.3}
\end{equation*}
$$

By t_{m} and t_{M} are denoted, respectively, the lengths of the least and the largest tangent that can be drawn from C_{2} to C_{1} (see Figure 1.2).

Instead of $t_{m} t_{M}$ will be shorter written t^{2}.
In the following will also be used relation between two consecutive tangents of a bicentric n-gon, see Figure 1.3. If t_{1} is given, then t_{2} can be calculated in the following way. From rectangular triangles $A_{1} I T_{1}$ and $A_{2} I T_{1}$ it follows

$$
\begin{equation*}
t_{1}^{2}+r^{2}=\left(x_{1}-d\right)^{2}+y_{1}^{2}=R^{2}+d^{2}-2 d x_{1}, \quad t_{2}^{2}+r^{2}=R^{2}+d^{2}-2 d x_{2} \tag{1.4}
\end{equation*}
$$

or

$$
\begin{equation*}
x_{1}=\frac{-t_{1}^{2}+R^{2}-r^{2}+d^{2}}{2 d}, \quad x_{2}=\frac{-t_{2}^{2}+R^{2}-r^{2}+d^{2}}{2 d} \tag{1.5}
\end{equation*}
$$

Since for area of triangle $A_{1} A_{2} I$ it holds

$$
\begin{equation*}
\left(t_{1}+t_{2}\right)^{2} r^{2}=\left[x_{1}\left(y_{2}-0\right)+x_{2}\left(0-y_{1}\right)+d\left(y_{1}-y_{2}\right)\right]^{2}, \tag{1.6}
\end{equation*}
$$

Figure 1.3
we can write

$$
\begin{gather*}
\left(t_{1}+t_{2}\right)^{2} r^{2}=\left[y_{1}\left(d-x_{2}\right)-y_{2}\left(d-x_{1}\right)\right]^{2} \\
{\left[y_{1} y_{2}\left(d-x_{1}\right)\left(d-x_{2}\right)\right]^{2}=\left[y_{1}^{2}\left(d-x_{2}\right)^{2}+y_{2}^{2}\left(d-x_{1}\right)^{2}-\left(t_{1}+t_{2}\right)^{2} r^{2}\right]^{2}} \\
\left(t_{1}+t_{2}\right)^{4}-4 R^{2}\left(t_{1}+t_{2}\right)^{2}+4 x_{1} x_{2}\left(t_{1}+t_{2}\right)^{2}+4 R^{2}\left(x_{1}-x_{2}\right)^{2}=0 \tag{1.7}\\
\left(t_{1}+t_{2}\right)^{4}-4 R^{2}\left(t_{1}+t_{2}\right)^{2}+4 x_{1} x_{2}\left(t_{1}+t_{2}\right)^{2}+4 R^{2} \frac{\left(t_{1}-t_{2}\right)^{2}\left(t_{1}+t_{2}\right)^{2}}{4 d^{2}}=0
\end{gather*}
$$

from which we get the following equation for t_{2}

$$
\begin{equation*}
\left(r^{2}+t_{1}^{2}\right) t_{2}^{2}-2 t_{1} t_{2}\left(R^{2}-d^{2}\right)-4 R^{2} d^{2}+r^{2} t_{1}^{2}+\left(R^{2}+d^{2}-r^{2}\right)^{2}=0 \tag{1.8}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
\left(t_{2}\right)_{1,2}=\frac{t_{1}\left(R^{2}-d^{2}\right) \pm \sqrt{D}}{r^{2}+t_{1}^{2}} \tag{1.9a}
\end{equation*}
$$

where

$$
\begin{equation*}
D=t_{1}^{2}\left(R^{2}-d^{2}\right)^{2}+\left(r^{2}+t_{1}^{2}\right)\left[4 R^{2} d^{2}-r^{2} t_{1}^{2}-\left(R^{2}+d^{2}-r^{2}\right)^{2}\right] . \tag{1.9b}
\end{equation*}
$$

(The length $\left(t_{2}\right)_{1}$ in Figure 1.3 is denoted by t_{2}.)

2. Certain relations between triangles and bicentric hexagons

First about notation which will be used in the following theorem.
Let $A B C$ be any given triangle and let the following notation be used:
\hat{C}_{1} is incircle of $A B C, \hat{C}_{2}$ is circumcircle of $A B C$
I is center of \hat{C}_{1}, O is center of $\hat{C}_{2}, d_{T}=|I O|$
r_{T} is radius of \hat{C}_{1}, R_{T} is radius of $\hat{C_{2}}$

$$
\begin{gather*}
t_{1}+t_{3}=|A B|, t_{3}+t_{5}=|B C|, t_{5}+t_{1}=|C A| \tag{2.1}\\
\hat{t}_{m}=\sqrt{\left(R_{T}-d_{T}\right)^{2}-r_{T}^{2}}, \quad \hat{t}_{M}=\sqrt{\left(R_{T}+d_{T}\right)^{2}-r_{T}^{2}} \tag{2.2}\\
\hat{t}^{2}=\hat{t}_{m} \hat{t}_{M} \tag{2.3}
\end{gather*}
$$

THEOREM 1. There are lengths (in fact positive numbers) R, d, r such that holds

$$
\begin{gather*}
(R-d)^{2}-r^{2}=\left(R_{T}-d_{T}\right)^{2}-r_{T}^{2} \tag{2.4}\\
(R+d)^{2}-r^{2}=\left(R_{T}+d_{T}\right)^{2}-r_{T}^{2} \tag{2.5}\\
r^{2}=4 R_{T} r_{T}+d_{T}^{2} \tag{2.6}
\end{gather*}
$$

Proof. It is easy to see that above relations are satisfied if

$$
\begin{gather*}
R=\frac{1}{2}\left(\sqrt{\left(R_{T}+d_{T}\right)^{2}+4 R_{T} r_{T}}+\sqrt{\left(R_{T}-d_{T}\right)^{2}+4 R_{T} r_{T}}\right), \tag{2.7}\\
d=\frac{1}{2}\left(\sqrt{\left(R_{T}+d_{T}\right)^{2}+4 R_{T} r_{T}}-\sqrt{\left(R_{T}-d_{T}\right)^{2}+4 R_{T} r_{T}}\right), \tag{2.8}\\
r=\sqrt{4 R_{T} r_{T}+r_{T}^{2}} \tag{2.9}
\end{gather*}
$$

So, using relation (2.6), the relations (2.4) and (2.5) can be written as

$$
(R-d)^{2}=\left(R_{T}-d_{T}\right)^{2}+4 R_{T} r_{T}, \quad(R+d)^{2}=\left(R_{T}+d_{T}\right)^{2}+4 R_{T} r_{T}
$$

In connection with relation (2.6) let us remark that, according to Theorem 2.1 in [2], for triangle $A B C$ holds relation

$$
4 R_{T} r_{T}+r_{T}^{2}=t_{1} t_{3}+t_{3} t_{5}+t_{5} t_{1} .
$$

From the following theorem it will be clear that there is a bicentric hexagon whose incircle has radius r and it holds

$$
r^{2}=t_{1} t_{3}+t_{3} t_{5}+t_{5} t_{1}
$$

THEOREM 2. There is a bicentric hexagon $A_{1} \ldots A_{6}$ such that

$$
\begin{equation*}
t_{i}+t_{i+1}=\left|A_{i} A_{i+1}\right|, \quad i=1, \ldots, 6 \tag{2.10}
\end{equation*}
$$

where t_{1}, t_{3}, t_{5} are given by (2.1) and

$$
\begin{equation*}
t_{2}=\frac{\hat{t}^{2}}{t_{5}}, \quad t_{4}=\frac{\hat{t}^{2}}{t_{1}}, \quad t_{6}=\frac{\hat{t}^{2}}{t_{3}} . \tag{2.11}
\end{equation*}
$$

The corresponding values R, d, r for bicentric hexagon $A_{1} \ldots A_{6}$ are given by (2.7), (2.8) and (2.9).

Proof. First, using computer it is easy to check that R, d, r given by (2.7)-(2.9) satisfy Fuss' relation (1.1) for bicentric hexagon. Namely, it can be found that (1.1) can be written as

$$
\begin{equation*}
64\left(R_{T}^{2}-d_{T}^{2}-2 R_{T} r_{T}\right) r_{T} R_{T}^{2}\left(r_{T}+R_{T}\right)\left(r_{T}+4 R_{T}\right)=0 \tag{2.12}
\end{equation*}
$$

where only second factor is zero since holds Euler's relation

$$
\begin{equation*}
R_{T}^{2}-d_{T}^{2}=2 R_{T} r_{T} \tag{2.13}
\end{equation*}
$$

From relations (2.4) and (2.5) we see that

$$
\begin{equation*}
t_{m}=\hat{t}_{m}, \quad t_{M}=\hat{t}_{M} \tag{2.14}
\end{equation*}
$$

where

$$
\begin{equation*}
t_{m}=\sqrt{(R-d)^{2}-r^{2}}, \quad t_{M}=\sqrt{(R+d)^{2}-r^{2}} . \tag{2.15}
\end{equation*}
$$

Thus, it holds

$$
\begin{equation*}
t^{2}=\hat{t}^{2} \tag{2.16}
\end{equation*}
$$

where

$$
\begin{equation*}
t^{2}=t_{m} t_{M} \tag{2.17}
\end{equation*}
$$

It is easy to prove that

$$
\begin{gather*}
r_{T}=\frac{t^{2}}{r} \tag{2.18}\\
R_{T}=\frac{r^{4}-t^{4}}{4 r t^{2}} \tag{2.19}
\end{gather*}
$$

So, using relations (2.9) and (2.16), the proof that holds (2.18) can be written as

$$
\begin{aligned}
r^{2} r_{T}^{2}-t^{4} & =\left(4 R_{T} r_{T}+r_{T}^{2}\right) r_{T}^{2}-\hat{t}^{4} \\
& =4 R_{T} r_{T}^{3}-\left(R_{T}^{2}-d_{T}^{2}\right)^{2}+2 r_{T}^{2}\left(R_{T}^{2}+d_{T}^{2}\right) \\
& =4 R_{T} r_{T}^{3}-\left(2 R_{T} r_{T}\right)^{2}+2 R_{T}^{2} r_{T}^{2}+2 r_{T}^{2} d_{T}^{2} \\
& =2 r_{T}^{2}\left(-R_{T}^{2}+d_{T}^{2}+2 R_{T} r_{T}\right)=0, \text { since holds (2.13) }
\end{aligned}
$$

Using relations (2.9) and (2.18), the proof that holds (2.19) can be written as

$$
R_{T}=\frac{r^{2}-r_{T}^{2}}{4 r_{T}}=\frac{r^{2}-\frac{t^{4}}{r^{2}}}{4 \frac{t^{2}}{r}}=\frac{r^{4}-t^{4}}{4 r t^{2}}
$$

Now, let t_{1}, t_{3}, t_{5} be given by (2.1). The tangent lengths t_{3} and t_{5}, according to Theorem 2.2 in [2], can be expressed as

$$
\begin{equation*}
t_{3}=\frac{2 R_{T} r_{T} t_{1}+\sqrt{D}}{r_{T}^{2}+t_{1}^{2}}, \quad t_{5}=\frac{2 R_{T} r_{T} t_{1}-\sqrt{D}}{r_{T}^{2}+t_{1}^{2}} \tag{2.20}
\end{equation*}
$$

where

$$
\begin{equation*}
D=4 R_{T}^{2} r_{T}^{2} t_{1}^{2}-r_{T}^{2}\left(r_{T}^{2}+t_{1}^{2}\right)\left(4 R_{T} r_{T}+r_{T}^{2}+t_{1}^{2}\right) \tag{2.21}
\end{equation*}
$$

Using relations for R_{T} and r_{T} given by (2.18) and (2.19), the tangent lengths t_{3} and t_{5} given by (2.20) can be expressed as

$$
\begin{equation*}
t_{3}=\frac{\left(r^{4}-t^{4}\right) t_{1}+2 r^{2} \sqrt{D_{1}}}{2\left(t^{4}+r^{2} t_{1}^{2}\right)}, \quad t_{5}=\frac{\left(r^{4}-t^{4}\right) t_{1}-2 r^{2} \sqrt{D_{1}}}{2\left(t^{4}+r^{2} t_{1}^{2}\right)} \tag{2.22}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{1}=\frac{\left(r^{4}-t^{4}\right)^{2} t_{1}^{2}-4 t^{4}\left(t^{4}+r^{2} t_{1}^{2}\right)\left(r^{2}+t_{1}^{2}\right)}{4 r^{4}} \tag{2.23}
\end{equation*}
$$

Now, using expression (1.9) it is not difficult to show that t_{2} given by (2.11) can be written as t_{2} given by (1.9a), that is

$$
\begin{equation*}
\frac{t^{2}}{t_{5}}=\frac{t_{1}\left(R^{2}-d^{2}\right)+\sqrt{D}}{r^{2}+t_{1}} \tag{2.24}
\end{equation*}
$$

where D is given by (1.9b). Namely, starting from the above relation and using computer, we find that

$$
\begin{equation*}
\frac{t^{2}}{t_{5}}-\frac{t_{1}\left(R^{2}-d^{2}\right)+\sqrt{D}}{r^{2}+t_{1}}=0 \Leftrightarrow\left[(R-d)^{2}-r^{2}\right]\left[(R+d)^{2}-r^{2}\right] \phi_{6}=0 \tag{2.25}
\end{equation*}
$$

where ϕ_{6} is Fuss' relation given by (1.1) and $(R-d)^{2}-r^{2}=t_{m}^{2},(R+d)^{2}-r^{2}=t_{M}^{2}$.
In the same way can be found that t_{3}, t_{4}, t_{5} and t_{6} are also tangent lengths of bicentric hexagon whose Fuss' relation $\phi_{6}=0$ is given by (1.1).

In this connection let us remark that it is easy to check that

$$
\begin{equation*}
t_{1} t_{3}+t_{3} t_{5}+t_{5} t_{1}=t_{2} t_{4}+t_{4} t_{6}+t_{6} t_{2}=r^{2} \tag{2.26}
\end{equation*}
$$

Also let us remark that from

$$
\begin{equation*}
\hat{t}_{m} \leqslant t_{1} \leqslant \hat{t}_{M} \tag{2.27}
\end{equation*}
$$

and from (2.14) it follows that

$$
\begin{equation*}
t_{m} \leqslant t_{1} \leqslant t_{M} \tag{2.28}
\end{equation*}
$$

Since holds (2.16), the relations (2.11) can be rewritten as

$$
\begin{equation*}
t_{2}=\frac{t^{2}}{t_{5}}, \quad t_{4}=\frac{t^{2}}{t_{1}}, \quad t_{6}=\frac{t^{2}}{t_{3}} \tag{2.29}
\end{equation*}
$$

Thus, there is bicentric hexagon $A_{1} \ldots A_{6}$ such that holds (2.10), where t_{1}, t_{3}, t_{5} are given by (2.1) and t_{2}, t_{4}, t_{6} are given by (2.29).

This completes the proof of Theorem 2.
Corollary 2.1. It holds

$$
\begin{equation*}
t^{2}=r \sqrt{\frac{t_{1} t_{3} t_{5}}{t_{1}+t_{3}+t_{5}}} \tag{2.30}
\end{equation*}
$$

Proof. The above relation follows from $t_{2} t_{4}+t_{4} t_{6}+t_{6} t_{2}=r^{2}$, using relations (2.11)

Corollary 2.2. It holds

$$
\begin{equation*}
t^{2}=r \sqrt{\frac{t_{2} t_{4} t_{6}}{t_{2}+t_{4}+t_{6}}} . \tag{2.31}
\end{equation*}
$$

THEOREM 3. There is triangle $P Q R$ whose incircle and circumcircle are the same as of the triangle ABC considered in Theorem 2 and it holds

$$
\begin{equation*}
t_{2}+t_{4}=|P Q|, \quad t_{4}+t_{6}=|Q R|, \quad t_{6}+t_{2}=|R P| \tag{2.32}
\end{equation*}
$$

where t_{2}, t_{4}, t_{6} are given by (2.11).

Proof. First we shall prove that there is triangle $P Q R$ such that holds (2.32) and that incircle and circumcircle of $P Q R$ are congruent to the incircle and circumcircle of the triangle $A B C$, namely, we shall prove that

$$
\begin{gather*}
\left(t_{2}+t_{4}+t_{6}\right) r_{T}^{2}=t_{2} t_{4} t_{6}, \tag{2.33}\\
t_{2} t_{4}+t_{4} t_{6}+t_{6} t_{2}=4 R_{T} r_{T}+r_{T}^{2} . \tag{2.34}
\end{gather*}
$$

The proof that holds (2.33), using relations (2.11), (2.16) and (2.18), can be written as

$$
\begin{aligned}
\left(t_{2}+t_{4}+t_{6}\right) r_{T}^{2} & =\left(\frac{t^{2}}{t_{5}}+\frac{t^{2}}{t_{1}}+\frac{t^{2}}{t_{3}}\right) r_{T}^{2} \\
& =\frac{t^{2}\left(t_{1} t_{3}+t_{3} t_{5}+t_{5} t_{1}\right) r_{T}^{2}}{t_{1} t_{3} t_{5}} \\
& =\frac{t^{2} r^{2} r_{T}^{2}}{t_{1} t_{3} t_{5}}=\frac{t_{6}}{t_{1} t_{3} t_{5}}, \\
t_{2} t_{4} t_{6} & =\frac{t^{2}}{t_{5}} \cdot \frac{t^{2}}{t_{1}} \cdot \frac{t^{2}}{t_{3}}=\frac{t^{6}}{t_{1} t_{3} t_{5}} .
\end{aligned}
$$

Now, using relations (2.29) and (2.18), the proof that holds (2.34), can be written as

$$
t_{2} t_{4}+t_{4} t_{6}+t_{6} t_{2}=\frac{t^{4}\left(t_{1}+t_{3}+t_{5}\right)}{t_{1} t_{3} t_{5}}=\frac{t^{4}}{r_{T}^{2}}=r^{2}=4 R_{T} r_{T}+r_{T}^{2}
$$

since from (2.33) it follows

$$
\frac{t_{1}+t_{3}+t_{5}}{t_{1} t_{3} t_{5}}=\frac{1}{r_{T}^{2}}
$$

Now we shall prove that triangle $P Q R$ has property that holds

$$
\begin{equation*}
\text { area of } A B C \cdot \text { area of } P Q R=r^{2} t^{2} \tag{2.35}
\end{equation*}
$$

that is

$$
\left(t_{1}+t_{3}+t_{5}\right)\left(t_{2}+t_{4}+t_{6}\right) r_{T}^{2}=\left(4 R_{T} r_{T}+r_{T}^{2}\right) \hat{t}^{2}
$$

since by Theorem 2 it holds

$$
r^{2}=4 R_{T} r_{T}+r_{T}^{2}=t_{1} t_{3}+t_{3} t_{5}+t_{5} t_{1}, \quad t^{2}=\hat{t}^{2} .
$$

The proof, using relations (2.11), can be written as

$$
\left(t_{1}+t_{3}+t_{5}\right)\left(t_{2}+t_{4}+t_{6}\right)=\left(t_{1}+t_{3}+t_{5}\right) \frac{\hat{t}^{2}\left(t_{1} t_{3}+t_{3} t_{5}+t_{5} t_{1}\right) r_{T}^{2}}{t_{1} t_{3} t_{5}}=r^{2} \hat{t}^{2}
$$

Besides we have to prove the following two lemmas.
Lemma 1. Let EFG and KLM be axial symmetric triangles whose incircle and circumcircle are the same as of the triangle $A B C$. Then

$$
\begin{equation*}
\text { area of } E F G \cdot \text { area of } K L M=r^{2} t^{2} \tag{2.36}
\end{equation*}
$$

(See Figure 2.1 For easy reference we have drawn two figures.)
Proof. Let

$$
\begin{array}{lll}
u_{1}+u_{3}=|E F|, & u_{3}+u_{5}=|F G|, & u_{5}+u_{1}=|G E| \\
u_{2}+u_{4}=|K L|, & u_{4}+u_{6}=|L M|, & u_{6}+u_{2}=|M K| .
\end{array}
$$

Figure 2.1
From Figure 2.1 can be seen that

$$
\begin{array}{ccc}
u_{1}^{2}=\left(R_{T}-d_{T}\right)^{2}-r_{T}^{2}, & u_{3}^{2}=R_{T}^{2}-\left(r_{T}-d_{T}\right)^{2}, & u_{5}=u_{3} \\
u_{2}^{2}=R_{T}^{2}-\left(r_{T}+d_{T}\right)^{2}, & u_{4}^{2}=\left(R_{T}+d_{T}\right)^{2}-r_{T}^{2}, & u_{6}=u_{2} . \tag{2.38}
\end{array}
$$

In this connection let us remark that $\hat{t}_{m}=u_{1}, \hat{t}_{M}=u_{4}$.
It is easy to check that holds

$$
\frac{\hat{t}^{2}}{u_{5}}=u_{2}, \quad \frac{\hat{t}^{2}}{u_{1}}=u_{4}, \quad \frac{\hat{t}^{2}}{u_{3}}=u_{6} .
$$

So, for example, the check that $\frac{\hat{t}^{2}}{u_{5}}=u_{2}$ or $\hat{t^{4}}=u_{2}^{2} u_{5}^{2}$ can be written as

$$
\begin{aligned}
& \hat{t}_{m}^{2} \hat{t}_{M}^{2}-u_{2}^{2} u_{5}^{2}= \\
& \quad\left[\left(R_{T}^{2}-d_{T}^{2}\right)^{2}-2 r_{T}^{2}\left(R_{T}^{2}+d_{T}^{2}+r_{T}^{2}\right)\right]-\left[R_{T}^{4}-2 R_{T}^{2}\left(r_{T}^{2}+d_{T}^{2}\right)+\left(r_{T}^{2}-d_{T}^{2}\right)\right]=0 .
\end{aligned}
$$

Lemma 2. For given triangle $A B C$ there is triangle $P Q R$ whose incircle and circumcircle are the same as of the triangle $A B C$ and it holds

$$
\text { area of } A B C \text {. area of } P Q R=r^{2} t^{2} \text {. }
$$

Proof. Between all triangles whose incircle is \hat{C}_{1} and circumcircle \hat{C}_{2}, the triangle $E F G$ (shown in Figure 2.1a) has minimal area and triangle $K L M$ (shown in Figure 2.1b) has maximal area.(See [4, Theorem 1].) Since

$$
\text { area of } A B C \leqslant \text { area of } K L M,
$$

it is clear that there is triangle $P Q R$ whose incircle and circumcircle are the same as of the triangle $A B C$ and it holds

$$
\text { area of } A B C \cdot \text { area of } P Q R=\text { area of } E F G \cdot \text { area of } K L M \text {. }
$$

This completes the proof of Theorem 3.
Remark 1. Triangles $A B C$ and $P Q R$ can be called conjugate triangles in relation to bicentric hexagon $A_{1} \ldots A_{6}$.

In connection with important of Lemma 2 in Theorem 3 we shall prove the following theorem.

THEOREM 4. Let NPQ and RST be any given two triangles whose incircle and circumcircle are the same as of the triangle ABC considered in Theorem 2 and let it hold

$$
\begin{equation*}
\left(v_{1}+v_{3}+v_{5}\right)\left(v_{2}+v_{4}+v_{6}\right) r_{T}^{2}=r^{2} t^{2} \tag{2.39}
\end{equation*}
$$

where

$$
\begin{array}{ll}
v_{1}+v_{3}=|N P|, & v_{3}+v_{5}=|P Q|, \quad v_{5}+v_{1}=|Q N| \\
v_{2}+v_{4}=|R S|, \quad v_{4}+v_{6}=|S T|, \quad v_{6}+v_{2}=|T R| .
\end{array}
$$

Then

$$
\begin{equation*}
\left\{v_{2}, v_{4}, v_{6}\right\}=\left\{\frac{t^{2}}{v_{1}}, \frac{t^{2}}{v_{3}}, \frac{t^{2}}{v_{5}}\right\} . \tag{2.40}
\end{equation*}
$$

Proof. According to Theorem 2.2 in [2], the equality (2.39) can be written as

$$
\left(v_{1}+\frac{4 R_{T} r_{T} v_{1}}{r_{T}^{2}+v_{1}^{2}}\right)\left(v_{2}+\frac{4 R_{T} r_{T} v_{2}}{r_{T}^{2}+v_{2}^{2}}\right) r_{T}^{2}=r^{2} t^{2}
$$

or

$$
\begin{equation*}
v_{2}^{3}-k v_{2}^{2}+\left(4 R_{T} r_{T}+r_{T}^{2}\right) v_{2}-k r_{T}^{2}=0 \tag{2.41}
\end{equation*}
$$

where

$$
\begin{equation*}
k=\frac{r^{2} t^{2}\left(r_{T}^{2}+v_{1}^{2}\right)}{v_{1} r_{T}^{2}\left(v_{1}^{2}+4 R_{T} r_{T}+r_{T}^{2}\right)} \tag{2.42}
\end{equation*}
$$

Since

$$
v_{2}+v_{4}+v_{6}=v_{2}+\frac{4 R_{T} r_{T} v_{2}}{r_{T}^{2}+v_{2}^{2}}=v_{4}+\frac{4 R_{T} r_{T} v_{4}}{r_{T}^{2}+v_{4}^{2}}=v_{6}+\frac{4 R_{T} r_{T} v_{6}}{r_{T}^{2}+v_{6}^{2}},
$$

it is clear that equation (2.41) has roots v_{2}, v_{4}, v_{6}, that is

$$
\left\{\left(v_{2}\right)_{1},\left(v_{2}\right)_{2},\left(v_{2}\right)_{3}\right\}=\left\{v_{2}, v_{4}, v_{6}\right\}
$$

Thus, we have to prove that holds (2.40), that is

$$
\begin{aligned}
& v_{2}+v_{4}+v_{6}=\frac{r^{2} t^{2}}{v_{1} v_{3} v_{5}} \\
& v_{2} v_{4}+v_{4} v_{6}+v_{6} v_{2}=\frac{t^{4}\left(v_{1}+v_{3}+v_{5}\right)}{v_{1} v_{3} v_{5}}=\frac{t^{4}}{r_{T}^{2}}=r^{2}=4 R_{T} r_{T}+r_{T}^{2} \\
& v_{2} v_{4} v_{6}=\frac{t^{6}}{v_{1} v_{3} v_{5}}
\end{aligned}
$$

Using expressions

$$
\begin{align*}
& v_{3}=\frac{2 R_{T} r_{T} v_{1}+\sqrt{D}}{r_{T}^{2}+v_{1}^{2}}, \quad v_{5}=\frac{2 R_{T} r_{T} v_{1}-\sqrt{D}}{r_{T}^{2}+v_{1}^{2}} \tag{2.43}\\
& D=4 R_{T}^{2} r_{T}^{2} v_{1}^{2}-r_{T}^{2}\left(r_{T}^{2}+v_{1}^{2}\right)\left(4 R_{T} r_{T}+r_{T}^{2}+v_{1}^{2}\right)
\end{align*}
$$

we find that

$$
\begin{equation*}
\frac{1}{v_{1} v_{3} v_{5}}=\frac{r_{T}^{2}+v_{1}^{2}}{r_{T}^{2}\left(r^{2}+v_{1}^{2}\right) v_{1}} \tag{2.44}
\end{equation*}
$$

It is easy to see that holds

$$
\frac{r^{2} t^{2}}{v_{1} v_{3} v_{5}}=k, \quad \frac{t_{6}}{v_{1} v_{3} v_{5}}=k r_{T}^{2}
$$

where k is given by (2.42).
Of course, the same can be proved if instead of relations (2.43) we use relations

$$
\begin{equation*}
v_{3}=\frac{\left(r^{4}-t^{4}\right) v_{1}+2 r^{2} \sqrt{D_{1}}}{2\left(t^{4}+r^{2} v_{1}^{2}\right)}, \quad v_{5}=\frac{\left(r^{4}-t^{4}\right) v_{1}-2 r^{2} \sqrt{D_{1}}}{2\left(t^{4}+r^{2} v_{1}^{2}\right)} \tag{2.45}
\end{equation*}
$$

$$
D_{1}=\frac{\left(r^{4}-t^{4}\right)^{2} v_{1}^{2}-4 t^{4}\left(t^{4}+r^{2} v_{1}^{2}\right)\left(r^{2}+v_{1}^{2}\right)}{4 r^{4}}
$$

where v_{3} and v_{5} are expressed as tangent lengths of a bicentric hexagon. In this case instead of (2.44) we have

$$
\frac{1}{v_{1} v_{3} v_{5}}=\frac{t^{4}+r^{2} v_{1}^{2}}{v_{1} t^{4}\left(r^{2}+v_{1}^{2}\right)}
$$

It is easy to see that

$$
\frac{t^{4}+r^{2} v_{1}^{2}}{v_{1} t^{4}\left(r^{2}+v_{1}^{2}\right)}=\frac{r_{T}^{2}+v_{1}^{2}}{r_{T}^{2}\left(r^{2}+v_{1}^{2}\right) v_{1}}
$$

since holds relation (2.18).
This completes the proof of Theorem 4.
Of course, proving this theorem we have proved(according to Theorem 2) that there is a bicentric hexagon whose tangent lengths are v_{1}, \ldots, v_{6}.

THEOREM 5. Let $A_{1} \ldots A_{6}$ be any given bicentric hexagon whose incircle is C_{1} and circumcircle C_{2}. Then

$$
\begin{equation*}
\frac{\left|A_{1} A_{3}\right|}{t_{1}+t_{3}}=\frac{4 t^{2} R r}{r^{4}-t^{4}} . \tag{2.46}
\end{equation*}
$$

Proof. First we see (Figure 2.2) that

$$
\left|A_{1} A_{3}\right|^{2}=\left(t_{1}+t_{2}\right)^{2}+\left(t_{2}+t_{3}\right)^{2}-2\left(t_{1}+t_{2}\right)\left(t_{2}+t_{3}\right) \cos 2 \beta_{2}
$$

where $\beta_{2}=$ measure of $\measuredangle I A_{2} A_{3}$.

Figure 2.2
Since

$$
\begin{aligned}
\cos 2 \beta_{2} & =\cos ^{2} \beta_{2}-\sin ^{2} \beta_{2}=2 \cos ^{2} \beta_{2}-1 \\
& =\frac{2}{1+\tan ^{2} \beta_{2}}-1=\frac{1-\tan ^{2} \beta_{2}}{1+\tan ^{2} \beta_{2}}
\end{aligned}
$$

and $\tan \beta_{2}=\frac{r}{t_{2}}$, we have

$$
\begin{gather*}
\cos 2 \beta_{2}=\frac{t_{2}^{2}-r^{2}}{t_{2}^{2}+r^{2}} \\
\frac{\left|A_{1} A_{3}\right|^{2}}{\left(t_{1}+t_{3}\right)^{2}}=\frac{\left[\left(t_{1}+t_{2}\right)^{2}+\left(t_{2}+t_{3}\right)^{2}-2\left(t_{1}+t_{2}\right)\left(t_{2}+t_{3}\right) \cdot \frac{t_{2}^{2}-r^{2}}{t_{2}^{2}+r^{2}}\right]}{\left(t_{1}+t_{3}\right)^{2}} \tag{2.47}
\end{gather*}
$$

Now, we shall show that holds (2.46), that is

$$
\begin{equation*}
\frac{\left[\left(t_{1}+t_{2}\right)^{2}+\left(t_{2}+t_{3}\right)^{2}-2\left(t_{1}+t_{2}\right)\left(t_{2}+t_{3}\right) \cdot \frac{t_{2}^{2}-r^{2}}{t_{2}^{2}+r^{2}}\right]}{\left(t_{1}+t_{3}\right)^{2}}=\left(\frac{4 t^{2} R r}{r^{4}-t^{4}}\right)^{2} \tag{2.48}
\end{equation*}
$$

So, using the expressions for t_{3} and t_{2} given by (2.22) and (2.29), after rationalization we get

$$
\begin{equation*}
\phi_{6} \cdot\left(\phi_{6}+16 r^{2}\left[(R+d)^{2}-r^{2}\right]\left[(R-d)^{2}-r^{2}\right]\left[R^{2}-d^{2}+r^{2}\right]\right)=0 \tag{2.49}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi_{6}=3\left(R^{2}-d^{2}\right)^{4}-4 r^{2}\left(R^{2}+d^{2}\right)\left(R^{2}-d^{2}\right)^{2}-16 R^{2} r^{4} d^{2} \tag{2.50}
\end{equation*}
$$

But $\phi_{6}=0$ is Fuss' relation for bicentric Hexagons given by (1.1). This proves theorem since all others factors in (2.49) are different from zero. Namely,

$$
\begin{gather*}
(R+d)^{2}-r^{2}=t_{M}^{2}>0, \quad(R-d)^{2}-r^{2}=t_{m}^{2}>0 \tag{2.51}\\
\text { and } R^{2}-d^{2}+r^{2}>0 \text { because } R>d
\end{gather*}
$$

In the same way it can be shown that for each $i=2,3,4,5,6$ analogously holds

$$
\begin{equation*}
\frac{\left|A_{i} A_{i+2}\right|^{2}}{\left(t_{i}+t_{i+2}\right)^{2}}=\frac{4 t^{2} R r}{r^{4}-t^{4}}, \quad i=2, \ldots, 6 \tag{2.52}
\end{equation*}
$$

REmARK 2. It may be interesting that Theorem 5 can also be proved in the following way. For short we shall prove that $2 \hat{\beta}_{1}=2 \bar{\beta}_{1}$, where

$$
2 \hat{\beta}_{1}=\text { measure of } \measuredangle B A C, \quad 2 \bar{\beta}_{1}=\text { measure of } \measuredangle A_{3} A_{1} A_{5} .
$$

In the proof we shall use relation $t_{4}=\frac{t^{2}}{t_{1}}$ given by (2.29) and relation $r_{T}=\frac{t^{2}}{r}$ given by (2.18). (See Figure 4.)

Let $\beta_{i}=$ measure of $\measuredangle I A_{i} A_{i+1}, \quad i=1, \ldots, 6$. First we can write

$$
\begin{align*}
\cos 2 \hat{\beta}_{1} & =\frac{1-\tan ^{2} \hat{\beta}_{1}}{1+\tan ^{2} \hat{\beta}_{1}}=\frac{1-\left(\frac{r_{T}}{t_{1}}\right)^{2}}{1+\left(\frac{r_{T}}{t_{1}}\right)^{2}}=\frac{t_{1}^{2}-r_{T}^{2}}{t_{1}^{2}+r_{T}^{2}} \\
& =\frac{t_{1}^{2}-\left(\frac{t^{2}}{r}\right)^{2}}{t_{1}^{2}-\left(\frac{t^{2}}{r}\right)^{2}}=\frac{r^{2} t_{1}^{2}-t^{4}}{r^{2} t_{1}^{2}+t^{4}} . \tag{2.53}
\end{align*}
$$

Since $A_{1} A_{3} A_{4} A_{5}$ is a chordal quadrilateral (see Figure 2.3), it holds

$$
\begin{gather*}
2 \bar{\beta}_{1}+2 \beta_{4}=180^{\circ} \\
\cos 2 \bar{\beta}_{1}=-\cos 2 \beta_{4} \tag{2.54}
\end{gather*}
$$

Also we have

$$
\cos 2 \beta_{4}=\frac{t_{4}^{2}-r^{2}}{t_{4}^{2}+r^{2}}
$$

or, since $t_{4}=\frac{t^{2}}{t_{1}}$,

$$
\begin{equation*}
\cos 2 \beta_{4}=\frac{t^{4}-r^{2} t_{1}^{2}}{t^{4}+r^{2} t_{1}^{2}} \tag{2.55}
\end{equation*}
$$

Figure 2.3
From (2.53) and (2.55) we see that $\cos 2 \hat{\beta}_{1}=-\cos 2 \beta_{4}$. Since holds (2.54), it follows that $2 \hat{\beta}_{1}=2 \bar{\beta}_{1}$.

In the same way it can be proved for other pairs of corresponding angles.

Corollary 5.1. It holds

$$
\frac{\left|A_{1} A_{3}\right|}{t_{1}+t_{3}}=\frac{\left|A_{3} A_{5}\right|}{t_{3}+t_{5}}=\frac{\left|A_{5} A_{1}\right|}{t_{5}+t_{1}}=\frac{\left|A_{2} A_{4}\right|}{t_{2}+t_{4}}=\frac{\left|A_{4} A_{6}\right|}{t_{4}+t_{6}}=\frac{\left|A_{6} A_{2}\right|}{t_{6}+t_{2}} .
$$

Proof. If instead of (2.46) we write

$$
\frac{\left|A_{i} A_{i+2}\right|}{t_{i}+t_{i+2}}=\frac{4 t^{2} R r}{r^{4}-t^{4}},
$$

all essential remains the same.

Corollary 5.2. Let ABC and PQR be triangles such that

$$
\begin{array}{llll}
|A B|=t_{1}+t_{3}, & |B C|=t_{3}+t_{5}, & & |C A|=t_{5}+t_{1} \\
|P Q|=t_{2}+t_{4}, & |Q R|=t_{4}+t_{6}, & & |R P|=t_{6}+t_{2}
\end{array}
$$

where

$$
t_{i}+t_{i+1}=\left|A_{i} A_{i+1}\right|, \quad i=1, \ldots, 6
$$

Then

$$
A_{1} A_{3} A_{5} \sim A B C, \quad A_{2} A_{4} A_{6} \sim P Q R .
$$

If Π is the plane which contain Figure 2.3, then there is a similarity $f: \Pi \rightarrow \Pi$ such that

$$
f\left(A_{1}\right)=A, f\left(A_{3}\right)=B, f\left(A_{5}\right)=C, f\left(A_{2}\right)=P, f\left(A_{4}\right)=Q, f\left(A_{6}\right)=R .
$$

The coefficient of similarity is $\frac{4 t^{2} R r}{r^{4}-t^{4}}$.
Corollary 5.3. It holds

$$
\begin{equation*}
\text { area of } A B C \cdot \text { area of } P Q R=t^{2} r^{2} . \tag{2.56}
\end{equation*}
$$

Proof. Since

$$
\begin{aligned}
& \text { area of } A B C=\left(t_{1}+t_{3}+t_{5}\right) \frac{t^{2}}{r} \\
& \text { area of } P Q R=\left(t_{2}+t_{4}+t_{6}\right) \frac{t^{2}}{r}
\end{aligned}
$$

and by Theorem 3 in [3] it holds

$$
\sum_{i=1}^{6} t_{i} t_{i+1}=\frac{r^{4}-3 t^{4}}{t^{2}}
$$

we can write

$$
\begin{gather*}
\left(t_{1}+t_{3}+t_{5}\right)\left(t_{2}+t_{4}+t_{6}\right)\left(\frac{t^{2}}{r}\right)^{2}=\left(\frac{r^{4}-3 t^{4}}{t^{2}}+3 t^{2}\right)\left(\frac{t^{2}}{r}\right)^{2}=t^{2} r^{2} \tag{2.57}\\
\text { area of } A_{1} A_{3} A_{5} \cdot \text { area of } A_{2} A_{4} A_{6}=\left(\frac{4 t^{2} R r}{r^{4}-t^{4}}\right)^{4} t^{2} r^{2} . \tag{2.58}
\end{gather*}
$$

Corollary 5.4. It holds

$$
\begin{equation*}
\text { perimeter of } A_{1} A_{3} A_{5} \cdot \text { perimeter of } A_{2} A_{4} A_{6}=\left(\frac{8 t^{2} R r}{r^{4}-t^{4}}\right)^{2} \frac{r^{4}}{t^{2}} . \tag{2.59}
\end{equation*}
$$

Proof. By Theorem 5 it holds

$$
\begin{aligned}
\left|A_{1} A_{3}\right|+\left|A_{3} A_{5}\right|+\left|A_{5} A_{1}\right| & =\frac{4 t^{2} R r}{r^{4}-t^{4}}\left[\left(t_{1}+t_{3}\right)+\left(t_{3}+t_{5}\right)+\left(t_{5}+t_{1}\right)\right] \\
& =\frac{8 t^{2} R r}{r^{4}-t^{4}}\left(t_{1}+t_{3}+t_{5}\right) \\
\left|A_{2} A_{4}\right|+\left|A_{4} A_{6}\right|+\left|A_{6} A_{2}\right| & =\frac{8 t^{2} R r}{r^{4}-t^{4}}\left(t_{2}+t_{4}+t_{6}\right)
\end{aligned}
$$

Thus

$$
\left(\left|A_{1} A_{3}\right|+\left|A_{3} A_{5}\right|+\left|A_{5} A_{1}\right|\right) \cdot\left(\left|A_{2} A_{4}\right|+\left|A_{4} A_{6}\right|+\left|A_{6} A_{2}\right|\right)=\left(\frac{8 t^{2} R r}{r^{4}-t^{4}}\right)^{2} \frac{r^{4}}{t^{2}}
$$

since from (2.57) we have $\left(t_{1}+t_{3}+t_{5}\right)\left(t_{2}+t_{4}+t_{6}\right)=\frac{r^{4}}{t^{2}}$.
COROLLARY 5.5. Let h_{1}, h_{2}, h_{3} be altitudes of the triangle $A_{1} A_{3} A_{5}$, and let \bar{h}_{1}, \bar{h}_{2}, \bar{h}_{3} be altitudes of the triangle $A_{2} A_{4} A_{6}$. Then

$$
\begin{equation*}
H\left(h_{1}, h_{2}, h_{3}\right) H\left(\bar{h}_{1}, \bar{h}_{2}, \bar{h}_{3}\right)=144\left(\frac{t^{4} R}{r^{4}-t^{4}}\right)^{2} \tag{2.60}
\end{equation*}
$$

where $H\left(x_{1}, x_{2}, x_{3}\right)$ denotes harmonic mean of x_{1}, x_{2}, x_{3}.
Proof. Let areas of triangles $A_{1} A_{3} A_{5}$ and $A_{2} A_{4} A_{6}$ be denoted respectively by J_{1} and J_{2}. From

$$
\begin{array}{lll}
\left|A_{1} A_{3}\right|=\frac{2 J_{1}}{h_{1}}, & \left|A_{3} A_{5}\right|=\frac{2 J_{1}}{h_{2}}, & \left|A_{5} A_{1}\right|=\frac{2 J_{1}}{h_{3}} \\
\left|A_{2} A_{4}\right|=\frac{2 J_{2}}{\bar{h}_{1}}, & \left|A_{4} A_{6}\right|=\frac{2 J_{2}}{\bar{h}_{2}}, & \left|A_{6} A_{2}\right|=\frac{2 J_{2}}{\bar{h}_{3}}
\end{array}
$$

it follows

$$
\begin{aligned}
& \frac{9 J_{1} J_{2}}{\left(\left|A_{1} A_{3}\right|+\left|A_{3} A_{5}\right|+\left|A_{5} A_{1}\right|\right) \cdot\left(\left|A_{2} A_{4}\right|+\left|A_{4} A_{6}\right|+\left|A_{6} A_{2}\right|\right)} \\
&=H\left(h_{1}, h_{2}, h_{3}\right) H\left(\bar{h}_{1}, \bar{h}_{2}, \bar{h}_{3}\right)
\end{aligned}
$$

which can be written as (2.60) since hold (2.58) and (2.59).
Corollary 5.6. It holds

$$
\begin{equation*}
\left|A_{1} A_{3}\right| \cdot\left|A_{2} A_{4}\right| \cdot\left|A_{3} A_{5}\right| \cdot\left|A_{4} A_{6}\right| \cdot\left|A_{5} A_{1}\right| \cdot\left|A_{6} A_{2}\right|=\left(\frac{4 t^{2} R r}{r^{4}-t^{4}}\right)^{6} 16 t^{2} R_{T}^{2} r^{2} \tag{2.61}
\end{equation*}
$$

In other words, the product of side-lengths of the triangles $A_{1} A_{3} A_{5}$ and $A_{2} A_{4} A_{6}$ is a constant.

Proof. Since

$$
\begin{gather*}
\left|A_{1} A_{3}\right|=\frac{4 t^{2} R r}{r^{4}-t^{4}}\left(t_{1}+t_{3}\right), \ldots,\left|A_{6} A_{2}\right|=\frac{4 t^{2} R r}{r^{4}-t^{4}}\left(t_{6}+t_{2}\right), \\
\frac{\left(t_{1}+t_{3}\right)\left(t_{3}+t_{5}\right)\left(t_{5}+t_{1}\right)}{4 R_{T}}=\left(t_{1}+t_{3}+t_{5}\right) \frac{t^{2}}{r}=\text { area of } A B C, \tag{2.62}\\
\frac{\left(t_{2}+t_{4}\right)\left(t_{4}+t_{6}\right)\left(t_{6}+t_{2}\right)}{4 R_{T}}=\left(t_{2}+t_{4}+t_{6}\right) \frac{t^{2}}{r}=\text { area of } P Q R,
\end{gather*}
$$

and holds (2.57), we get (2.61).
Theorem 6. Let $A B C$ and $P Q R$ be triangles as it is said in Theorem 2 and Theorem 3. Then there is bicentric hexagon $B_{1} \ldots B_{6}$ whose vertices are A, P, B, Q, C, R. Corresponding values R_{H}, r_{H}, d_{H} are given by

$$
\begin{align*}
R_{H} & =R_{T} \tag{2.63}\\
r_{H} & \left.=\frac{\left(4 R_{T} r_{T}+r_{T}^{2}\right)^{2}-\hat{t}^{4}}{2 \hat{t}^{2}\left(\sqrt{\left(R_{T}+d_{T}\right)^{2}+4 R_{T} r_{T}}+\sqrt{\left(R_{T}-d_{T}\right)^{2}+4 R_{T} r_{T}}\right.}\right) \tag{2.64}\\
d_{H} & \left.=\frac{\left[\left(4 R_{T} r_{T}+r_{T}\right)^{2}-\hat{t}^{4}\right]\left(\sqrt{\left(R_{T}+d_{T}\right)^{2}+4 R_{T} r_{T}}-\sqrt{\left(R_{T}-d_{T}\right)^{2}+4 R_{T} r_{T}}\right)}{4 \hat{t}^{2} \sqrt{4 R_{T} r_{T}+r_{T}}\left(\sqrt{\left(R_{T}+d_{T}\right)^{2}+4 R_{T} r_{T}}+\sqrt{\left(R_{T}-d_{T}\right)^{2}+4 R_{T} r_{T}}\right.}\right) \tag{2.65}
\end{align*}
$$

Proof. The above relations can be written as

$$
\begin{equation*}
R_{H}=k \cdot R, \quad r_{H}=k \cdot r, \quad d_{H}=k \cdot d \tag{2.66}
\end{equation*}
$$

where R, r, d are given by (2.7)-(2.9) and k is given by

$$
\begin{equation*}
k=\frac{r^{4}-\hat{t}^{4}}{4 R r \hat{t}^{2}} \tag{2.67}
\end{equation*}
$$

Thus, there is similarity with ratio k which maps hexagon $A_{1} \ldots A_{6}$ onto hexagon $B_{1} \ldots B_{6}$.

Of course, tangent lengths of bicentric hexagon $B_{1} \ldots B_{6}$ are given by

$$
k \cdot t_{i}, i=1, \ldots, 6
$$

where t_{1}, t_{3}, t_{5} and t_{2}, t_{4}, t_{6} are tangent lengths of triangles $A B C$ and $P Q R$ respectively.

In this connection let us remark that

$$
r_{H}^{2}=\left(k t_{1}\right)\left(k t_{3}\right)+\left(k t_{3}\right)\left(k t_{5}\right)+\left(k t_{5}\right)\left(k t_{1}\right)=k^{2}\left(t_{1} t_{3}+t_{3} t_{5}+t_{5} t_{1}\right)=k^{2} r^{2}
$$

from which follows $r_{H}=k r$.

Also let us remark that

$$
\begin{array}{ll}
\left|A_{1} A_{2}\right|=t_{1}+t_{2}, & |A P|=k t_{1}+k t_{2}=k\left(t_{1}+t_{2}\right) \\
\left|A_{2} A_{3}\right|=t_{2}+t_{3}, & |P B|=k t_{2}+k t_{3}=k\left(t_{2}+t_{3}\right)
\end{array}
$$

and so on. Thus

$$
\left|A_{1} A_{2}\right|:|A P|=\left|A_{2} A_{3}\right|:|P B|=\ldots=\left|A_{6} A_{1}\right|:|R A|=k
$$

(See Figure 2.5 and 2.6.)
Corollary 6.1. It holds

$$
\begin{equation*}
\frac{R_{T}}{R}=k \tag{2.68}
\end{equation*}
$$

Proof. Follows from (2.63) and (2.66), that is, from $R_{H}=R_{T}$ and $R_{H}=k R$.
Corollary 6.2. Let $A_{1} \ldots A_{6}$ be any given bicentric hexagon. Then

$$
\begin{equation*}
\frac{t_{1}+t_{3}}{\left|A_{1} A_{3}\right|}=\frac{t_{3}+t_{5}}{\left|A_{3} A_{5}\right|}=\frac{t_{5}+t_{1}}{\left|A_{5} A_{1}\right|}=\frac{t_{2}+t_{4}}{\left|A_{2} A_{4}\right|}=\frac{t_{4}+t_{6}}{\left|A_{4} A_{6}\right|}=\frac{t_{6}+t_{2}}{\left|A_{6} A_{2}\right|} \tag{2.69}
\end{equation*}
$$

where $t_{i}+t_{i+1}=\left|A_{i} A_{i+1}\right|, i=1, \ldots, 6$.
Proof. For every given bicentric hexagon $A_{1} \ldots A_{6}$ there is bicentric hexagon $A P B Q C R$ as it is described in given theorems. According to Theorem 6 it holds

$$
\begin{equation*}
\frac{t_{i}+t_{i+2}}{\left|A_{i} A_{i+2}\right|}=\frac{R_{T}}{R}, i=1, \ldots, 6 \tag{2.70}
\end{equation*}
$$

If similarity with ratio $\frac{r^{4}-t^{4}}{4 R r t^{2}}$ is denoted by s, then

$$
s\left(A_{1}\right)=A, \quad s\left(A_{3}\right)=B, \quad s\left(A_{2}\right)=P, \quad s\left(A_{4}\right)=Q \text { and so on. }
$$

Corollary 6.3. Triangles $A_{1} A_{2} A_{3}$ and $A_{2} A_{4} A_{6}$ have not only the same circumcircle but also the same incircle.

COROLLARY 6.4. If $\rho=$ radius of incircle of $A_{1} A_{3} A_{5}$, then $\rho=k r_{T}$.
Corollary 6.5. area of $A_{1} A_{3} A_{5}=\frac{1}{k^{2}} \cdot$ area of $A B C$.
Corollary 6.6. It holds

$$
\text { area of } A_{1} A_{3} A_{5} \cdot \text { area of } A_{2} A_{4} A_{6}=\frac{r^{2} t^{2}}{k^{4}}
$$

Corollary 6.7. If triangle $A B C$ is given, then triangle $P Q R$ such that APBQCR is a bicentric hexagon, can be constructed as shown in Figure 2.4. Point S can be constructed using Figure 2.4.a, where EFG and KLM are axial symmetric triangles.

Figure 2.4

As it is well-known, it holds: If $A_{1} \ldots A_{2 n}$ is bicentric $2 n$-gon then for each $i=$ $1,2, \ldots, n$, the chord $A_{i} A_{i+n}$ passes through S.

REMARK 3. It may be interesting that

$$
\begin{equation*}
R d=R_{T} d_{T} \tag{2.71}
\end{equation*}
$$

This follows from (2.4) and (2.5), that is, from $t_{m}^{2}-t_{M}^{2}=\hat{t}_{m}^{2}-\hat{t}_{M}^{2}$.
Example 1. Let \hat{C}_{1} and \hat{C}_{2} be given circles, one inside of the other, such that holds Euler's relation

$$
R_{T}^{2}-d_{T}^{2}=2 R_{T} r_{T},
$$

where $R_{T}=3.208333333, r_{T}=0.666666666, d_{T}=2.45267711$. Then

$$
\begin{equation*}
\hat{t}_{m}=0,355769427, \quad \hat{t}_{M}=5.6216185, \quad \hat{t}^{2}=2 \tag{2.72}
\end{equation*}
$$

Then there is a triangle $A B C$ whose incircle is \hat{C}_{1} and circumcircle \hat{C}_{2} such that

$$
t_{1}+t_{3}=|A B|, \quad t_{3}+t_{5}=|B C|, \quad t_{5}+t_{1}=|C A|
$$

where

$$
\begin{equation*}
t_{1}=5, \quad t_{3}=1.176380598, \quad t_{5}=0.504842108 \tag{2.73}
\end{equation*}
$$

The tangent lengths of triangle $P Q R$ which is connected with triangle $A B C$ as it is said in Theorem 3, are given by

$$
t_{2}=\frac{\hat{t}^{2}}{t_{5}}=3.961634659, \quad t_{4}=\frac{\hat{t}^{2}}{t_{1}}=0.4, \quad t_{6}=\frac{\hat{t}^{2}}{t_{3}}=1.700130047
$$

The lengths R_{H}, r_{H}, d_{H}, according to relations (2.66), are given by

$$
R_{H}=R_{T}, \quad r_{H}=2.049390153, \quad d_{H}=1.144582651
$$

Figure 2.5

The bicentric hexagon $A P B Q C R$ is sketched in Figure 2.5.
Concerning bicentric hexagon $A_{1} \ldots A_{6}$ for which hold relations (2.7), (2.8) and (2.9), we have

$$
R=4.696519101, \quad d=1.67549744, \quad r=3 .
$$

Corresponding bicentric hexagon is sketched in Figure 2.6.

Figure 2.6
Similarity between this hexagon and hexagon shown in Figure 2.5 is observable.

REFERENCES

[1] C.G.J. Jacobi, Über die Anwendung der elliptischen Transcendenten auf ein bekanntes Problem der Elementargeometrie, Journal für die reine und angewandte Mathematik (Crelle's Journal) 3 (1828), S. 376-389; auch in C.G.J. Jacobi’s Gesammelte Werke, Erster Band, Berlin: Verlag von G. Reimer, 1881, S. 277-293.
[2] M. Radić, Some relations concerning triangles and bicentric quadrilaterals in connection with Poncelet's closure theorem, Math. Maced. Vol. 1 (2003), 35-58.
[3] M. Radić, Some properties and relations concerning bicentric hexagons and octagons in connection with Poncelet's closure theorem, Math. Maced. Vol. 2 (2004) 27-50
[4] M. Radić, Extreme areas of triangles in Poncelet's closure theorem, Forum geometricorum, Vol. 4 (2004), 23-26.
[5] F.J. Richolet, Anwendung der elliptischen Transcendenten auf die sphärischen Polygone, welche zugleich einem kleinen Kreise der Kugel eingeschrieben und einem anderen umschrieben sind, Journal für dir reine und angewandte Mathematik (Crelle's Journal) 5 (1830), S. 250-267.

Mirko Radić, University of Rijeka, Faculty of Philosophy, Department of Mathematics, 51000 Rijeka, Omladinska 14, Croatia
Zoran Kaliman, Department of Physics, University of Rijeka, Rijeka, Croatia
e-mail: kaliman@phy.uniri.hr

[^0]: Mathematics subject classification (2000): 51M04.
 Keywords and phrases: bicentric polygon.
 (Accepted May 29, 2007)

