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CERTAIN RELATIONS BETWEEN

TRIANGLES AND BICENTRIC HEXAGONS

MIRKO RADIĆ AND ZORAN KALIMAN

Abstract. In this article we prove, using relatively very elementary mathematical facts, that every
triangle completely determines a bicentric hexagon. Obtained relations can be interesting.

1. Introduction

A polygon which is both chordal and tangential is called bicentric polygon. The
following notation will be used.

If A1 . . .An is a considered bicentric polygon, then
C1 is incircle of A1 . . .An ,
C2 is circumcircle of A1 . . .An ,
r is radius of C1 and R is radius of C2 ,
I is center of C1 and O is center of C2 , d = |IO| .
In the following we shall deal with bicentric hexagons and triangles. First let

us remark that German mathematician Nicolaus Fuss(1755-1826) has proved that a
tangential hexagon A1 . . .A6 will also be a chordal one iff holds relation

3(R2−d2)4−4r2(R2 +d2)(R2−d2)2 −16R2r4d2 = 0. (1.1)

Concerning triangle, holds Euler’s relation

R2−d2 = 2Rr. (1.2)

In the following will also be used Poncelet’s closure theorem. This theorem for
bicentric polygons can be stated as follows.

Let C1 and C2 be any given two circles in a plane such that one is completely
inside of the other. Then only one of the following two assertions is true:

(a) There is no bicentric n -gon whose incircle is C1 and circumcircle C2 .
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(b) There are infinitely many bicentric n -gons whose incircle is C1 and circumcircle
C2 . For every point A1 on C2 there is bicentric n -gon A1 . . .An whose incircle
is C1 and circumcircle C2 .

For example, if C1 and C2 are circles such that holds Euler’s relation (1.2), then
for any point A1 on C2 there is triangle whose incircle is C1 and circumcircle C2

(Figure 1.1).
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Although the Poncelet’s closure theorem date from nineteenth century, many math-
ematicians have been working on number of problems in connection with it. Here let
us remark that Richolet in [5], using some results given in [1], showed how some rela-
tions for bicentric 2n -gon can be obtained from relations for bicentric n -gon. For this
purpose elliptic functions are used.

Important role in the following will play tangent lengths tm and tM given by

tm =
√

(R−d)2− r2, tM =
√

(R+d)2− r2. (1.3)

By tm and tM are denoted, respectively, the lengths of the least and the largest tangent
that can be drawn from C2 to C1 (see Figure 1.2).

Instead of tmtM will be shorter written t2 .
In the following will also be used relation between two consecutive tangents of a

bicentric n -gon, see Figure 1.3. If t1 is given, then t2 can be calculated in the following
way. From rectangular triangles A1IT1 and A2IT1 it follows

t21 + r2 = (x1−d)2 + y2
1 = R2 +d2−2dx1, t22 + r2 = R2 +d2−2dx2 (1.4)

or

x1 =
−t21 +R2− r2 +d2

2d
, x2 =

−t22 +R2− r2 +d2

2d
. (1.5)

Since for area of triangle A1A2I it holds

(t1 + t2)2r2 = [x1(y2−0)+ x2(0− y1)+d(y1− y2)]
2 , (1.6)
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Figure 1.3

we can write

(t1 + t2)2r2 = [y1(d− x2)− y2(d− x1)]
2 ,

[y1y2(d− x1)(d− x2)]
2 =

[

y2
1(d− x2)2 + y2

2(d− x1)2 − (t1 + t2)2r2]2 ,

(t1 + t2)4−4R2(t1 + t2)2 +4x1x2(t1 + t2)2 +4R2(x1− x2)2 = 0,

(t1 + t2)4 −4R2(t1 + t2)2 +4x1x2(t1 + t2)2 +4R2 (t1 − t2)2(t1 + t2)2

4d2 = 0,

(1.7)

from which we get the following equation for t2

(r2 + t21)t
2
2 −2t1t2(R2−d2)−4R2d2 + r2t21 +(R2 +d2− r2)2 = 0. (1.8)

Thus, we have

(t2)1,2 =
t1(R2−d2)±√

D

r2 + t21
(1.9a)

where

D = t21 (R2−d2)2 +(r2 + t21)
[

4R2d2− r2t21 − (R2 +d2− r2)2] . (1.9b)

(The length (t2)1 in Figure 1.3 is denoted by t2 .)

2. Certain relations between triangles and bicentric hexagons

First about notation which will be used in the following theorem.
Let ABC be any given triangle and let the following notation be used:

Ĉ1 is incircle of ABC, Ĉ2 is circumcircle of ABC

I is center of Ĉ1, O is center of Ĉ2, dT = |IO|
rT is radius of Ĉ1, RT is radius of Ĉ2
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t1 + t3 = |AB|, t3 + t5 = |BC|, t5 + t1 = |CA| (2.1)

t̂m =
√

(RT −dT )2− r2
T , t̂M =

√

(RT +dT )2− r2
T (2.2)

t̂2 = t̂mt̂M. (2.3)

THEOREM 1. There are lengths (in fact positive numbers) R, d , r such that holds

(R−d)2− r2 = (RT −dT )2 − r2
T , (2.4)

(R+d)2− r2 = (RT +dT )2 − r2
T , (2.5)

r2 = 4RTrT +d2
T . (2.6)

Proof. It is easy to see that above relations are satisfied if

R =
1
2

(√

(RT +dT )2 +4RTrT +
√

(RT −dT )2 +4RTrT

)

, (2.7)

d =
1
2

(√

(RT +dT )2 +4RTrT −
√

(RT −dT )2 +4RTrT

)

, (2.8)

r =
√

4RTrT + r2
T . (2.9)

So, using relation (2.6), the relations (2.4) and (2.5) can be written as

(R−d)2 = (RT −dT )2 +4RTrT , (R+d)2 = (RT +dT )2 +4RTrT .

In connection with relation (2.6) let us remark that, according to Theorem 2.1 in
[2], for triangle ABC holds relation

4RT rT + r2
T = t1t3 + t3t5 + t5t1.

From the following theorem it will be clear that there is a bicentric hexagon whose
incircle has radius r and it holds

r2 = t1t3 + t3t5 + t5t1.

THEOREM 2. There is a bicentric hexagon A1 . . .A6 such that

ti + ti+1 = |AiAi+1|, i = 1, . . . ,6 (2.10)

where t1 , t3 , t5 are given by (2.1) and

t2 =
t̂2

t5
, t4 =

t̂2

t1
, t6 =

t̂2

t3
. (2.11)

The corresponding values R, d , r for bicentric hexagon A1 . . .A6 are given by (2.7),
(2.8) and (2.9).
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Proof. First, using computer it is easy to check that R , d , r given by (2.7)-(2.9)
satisfy Fuss’ relation (1.1) for bicentric hexagon. Namely, it can be found that (1.1) can
be written as

64(R2
T −d2

T −2RTrT )rT R2
T (rT +RT )(rT +4RT ) = 0, (2.12)

where only second factor is zero since holds Euler’s relation

R2
T −d2

T = 2RTrT . (2.13)

From relations (2.4) and (2.5) we see that

tm = t̂m, tM = t̂M (2.14)

where

tm =
√

(R−d)2− r2, tM =
√

(R+d)2− r2. (2.15)

Thus, it holds
t2 = t̂2, (2.16)

where
t2 = tmtM. (2.17)

It is easy to prove that

rT =
t2

r
, (2.18)

RT =
r4− t4

4rt2
. (2.19)

So, using relations (2.9) and (2.16), the proof that holds (2.18) can be written as

r2r2
T − t4 = (4RT rT + r2

T )r2
T − t̂4

= 4RT r3
T − (R2

T −d2
T )2 +2r2

T (R2
T +d2

T )
= 4RT r3

T − (2RTrT )2 +2R2
T r2

T +2r2
Td2

T

= 2r2
T (−R2

T +d2
T +2RTrT ) = 0, since holds (2.13)

Using relations (2.9) and (2.18), the proof that holds (2.19) can be written as

RT =
r2 − r2

T

4rT
=

r2− t4

r2

4 t2
r

=
r4 − t4

4rt2
.

Now, let t1 , t3 , t5 be given by (2.1). The tangent lengths t3 and t5 , according to
Theorem 2.2 in [2], can be expressed as

t3 =
2RT rT t1 +

√
D

r2
T + t21

, t5 =
2RTrT t1−

√
D

r2
T + t21

(2.20)

where
D = 4R2

T r2
T t21 − r2

T (r2
T + t21)(4RT rT + r2

T + t21). (2.21)
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Using relations for RT and rT given by (2.18) and (2.19), the tangent lengths t3 and t5
given by (2.20) can be expressed as

t3 =
(r4 − t4)t1 +2r2√D1

2(t4 + r2t21 )
, t5 =

(r4 − t4)t1 −2r2√D1

2(t4 + r2t21 )
(2.22)

where

D1 =
(r4− t4)2t21 −4t4(t4 + r2t21)(r2 + t21)

4r4 . (2.23)

Now, using expression (1.9) it is not difficult to show that t2 given by (2.11) can be
written as t2 given by (1.9a), that is

t2

t5
=

t1(R2−d2)+
√

D
r2 + t1

, (2.24)

where D is given by (1.9b). Namely, starting from the above relation and using com-
puter, we find that

t2

t5
− t1(R2−d2)+

√
D

r2 + t1
= 0 ⇔ [

(R−d)2− r2][(R+d)2− r2]φ6 = 0, (2.25)

where φ6 is Fuss’ relation given by (1.1) and (R−d)2− r2 = t2m , (R+d)2− r2 = t2M .
In the same way can be found that t3 , t4 , t5 and t6 are also tangent lengths of

bicentric hexagon whose Fuss’ relation φ6 = 0 is given by (1.1).
In this connection let us remark that it is easy to check that

t1t3 + t3t5 + t5t1 = t2t4 + t4t6 + t6t2 = r2. (2.26)

Also let us remark that from

t̂m � t1 � t̂M (2.27)

and from (2.14) it follows that
tm � t1 � tM (2.28)

Since holds (2.16), the relations (2.11) can be rewritten as

t2 =
t2

t5
, t4 =

t2

t1
, t6 =

t2

t3
. (2.29)

Thus, there is bicentric hexagon A1 . . .A6 such that holds (2.10), where t1 , t3 , t5
are given by (2.1) and t2 , t4 , t6 are given by (2.29).

This completes the proof of Theorem 2.

COROLLARY 2.1. It holds

t2 = r

√
t1t3t5

t1 + t3 + t5
. (2.30)
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Mirko Radić and Zoran Kaliman Certain relations between triangles and bicentric hexagons

Proof. The above relation follows from t2t4 + t4t6 + t6t2 = r2 , using relations
(2.11)

COROLLARY 2.2. It holds

t2 = r

√
t2t4t6

t2 + t4 + t6
. (2.31)

THEOREM 3. There is triangle PQR whose incircle and circumcircle are the
same as of the triangle ABC considered in Theorem 2 and it holds

t2 + t4 = |PQ|, t4 + t6 = |QR|, t6 + t2 = |RP| (2.32)

where t2 , t4 , t6 are given by (2.11).

Proof. First we shall prove that there is triangle PQR such that holds (2.32) and
that incircle and circumcircle of PQR are congruent to the incircle and circumcircle of
the triangle ABC , namely, we shall prove that

(t2 + t4 + t6)r2
T = t2t4t6, (2.33)

t2t4 + t4t6 + t6t2 = 4RTrT + r2
T . (2.34)

The proof that holds (2.33), using relations (2.11), (2.16) and (2.18), can be written as

(t2 + t4 + t6)r2
T =

(
t2

t5
+

t2

t1
+

t2

t3

)

r2
T

=
t2(t1t3 + t3t5 + t5t1)r2

T

t1t3t5

=
t2r2r2

T

t1t3t5
=

t6
t1t3t5

,

t2t4t6 =
t2

t5
· t

2

t1
· t

2

t3
=

t6

t1t3t5
.

Now, using relations (2.29) and (2.18), the proof that holds (2.34), can be written as

t2t4 + t4t6 + t6t2 =
t4(t1 + t3 + t5)

t1t3t5
=

t4

r2
T

= r2 = 4RT rT + r2
T ,

since from (2.33) it follows
t1 + t3 + t5

t1t3t5
=

1

r2
T

.

Now we shall prove that triangle PQR has property that holds

area of ABC · area of PQR = r2t2, (2.35)
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that is
(t1 + t3 + t5)(t2 + t4 + t6)r2

T = (4RTrT + r2
T )t̂2

since by Theorem 2 it holds

r2 = 4RTrT + r2
T = t1t3 + t3t5 + t5t1, t2 = t̂2.

The proof, using relations (2.11), can be written as

(t1 + t3 + t5)(t2 + t4 + t6) = (t1 + t3 + t5)
t̂2(t1t3 + t3t5 + t5t1)r2

T

t1t3t5
= r2t̂2.

Besides we have to prove the following two lemmas.

LEMMA 1. Let EFG and KLM be axial symmetric triangles whose incircle and
circumcircle are the same as of the triangle ABC. Then

area of EFG ·area of KLM = r2t2. (2.36)

(See Figure 2.1 For easy reference we have drawn two figures.)

Proof. Let

u1 +u3 = |EF|, u3 +u5 = |FG|, u5 +u1 = |GE|
u2 +u4 = |KL|, u4 +u6 = |LM|, u6 +u2 = |MK|.

O I IO
E

rT

RT

F

G

u3

u5

u1

u2

u4

u6

rT

RT

u3

u2

L

M

K

Figure 2.1

From Figure 2.1 can be seen that

u2
1 = (RT −dT )2 − r2

T , u2
3 = R2

T − (rT −dT )2, u5 = u3 (2.37)

u2
2 = R2

T − (rT +dT )2, u2
4 = (RT +dT )2− r2

T , u6 = u2. (2.38)
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In this connection let us remark that t̂m = u1 , t̂M = u4 .
It is easy to check that holds

t̂2

u5
= u2,

t̂2

u1
= u4,

t̂2

u3
= u6.

So, for example, the check that t̂2
u5

= u2 or t̂4 = u2
2u

2
5 can be written as

t̂2mt̂2M −u2
2u

2
5 =

[

(R2
T −d2

T )2−2r2
T (R2

T +d2
T + r2

T )
]− [R4

T −2R2
T (r2

T +d2
T )+ (r2

T −d2
T )
]

= 0.

LEMMA 2. For given triangle ABC there is triangle PQR whose incircle and
circumcircle are the same as of the triangle ABC and it holds

area of ABC ·area of PQR = r2t2.

Proof. Between all triangles whose incircle is Ĉ1 and circumcircle Ĉ2 , the triangle
EFG(shown in Figure 2.1a) has minimal area and triangle KLM (shown in Figure 2.1b)
has maximal area.(See [4, Theorem 1].) Since

area of ABC � area of KLM,

it is clear that there is triangle PQR whose incircle and circumcircle are the same as of
the triangle ABC and it holds

area of ABC · area of PQR = area of EFG · area of KLM.

This completes the proof of Theorem 3.

REMARK 1. Triangles ABC and PQR can be called conjugate triangles in rela-
tion to bicentric hexagon A1 . . .A6 .

In connection with important of Lemma 2 in Theorem 3 we shall prove the fol-
lowing theorem.

THEOREM 4. Let NPQ and RST be any given two triangles whose incircle and
circumcircle are the same as of the triangle ABC considered in Theorem 2 and let it
hold

(v1 + v3 + v5)(v2 + v4 + v6)r2
T = r2t2, (2.39)

where

v1 + v3 = |NP|, v3 + v5 = |PQ|, v5 + v1 = |QN|
v2 + v4 = |RS|, v4 + v6 = |ST |, v6 + v2 = |TR|.

Then

{v2,v4,v6} =
{

t2

v1
,
t2

v3
,
t2

v5

}

. (2.40)
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Proof. According to Theorem 2.2 in [2], the equality (2.39) can be written as
(

v1 +
4RTrT v1

r2
T + v2

1

)(

v2 +
4RT rT v2

r2
T + v2

2

)

r2
T = r2t2

or
v3
2− kv2

2 +(4RTrT + r2
T )v2− kr2

T = 0, (2.41)

where

k =
r2t2(r2

T + v2
1)

v1r2
T (v2

1 +4RTrT + r2
T )

. (2.42)

Since

v2 + v4 + v6 = v2 +
4RTrT v2

r2
T + v2

2

= v4 +
4RTrT v4

r2
T + v2

4

= v6 +
4RTrT v6

r2
T + v2

6

,

it is clear that equation (2.41) has roots v2 , v4 , v6 , that is

{(v2)1,(v2)2,(v2)3} = {v2,v4,v6}.
Thus, we have to prove that holds (2.40), that is

v2 + v4 + v6 =
r2t2

v1v3v5
,

v2v4 + v4v6 + v6v2 =
t4(v1 + v3 + v5)

v1v3v5
=

t4

r2
T

= r2 = 4RTrT + r2
T ,

v2v4v6 =
t6

v1v3v5
.

Using expressions

v3 =
2RT rT v1 +

√
D

r2
T + v2

1

, v5 =
2RTrT v1−

√
D

r2
T + v2

1

(2.43)

D = 4R2
T r2

T v2
1− r2

T (r2
T + v2

1)(4RT rT + r2
T + v2

1),

we find that
1

v1v3v5
=

r2
T + v2

1

r2
T (r2 + v2

1)v1
. (2.44)

It is easy to see that holds

r2t2

v1v3v5
= k,

t6
v1v3v5

= kr2
T

where k is given by (2.42).
Of course, the same can be proved if instead of relations (2.43) we use relations

v3 =
(r4 − t4)v1 +2r2√D1

2(t4 + r2v2
1)

, v5 =
(r4 − t4)v1 −2r2√D1

2(t4 + r2v2
1)

(2.45)
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D1 =
(r4 − t4)2v2

1−4t4(t4 + r2v2
1)(r

2 + v2
1)

4r4

where v3 and v5 are expressed as tangent lengths of a bicentric hexagon. In this case
instead of (2.44) we have

1
v1v3v5

=
t4 + r2v2

1

v1t4(r2 + v2
1)

.

It is easy to see that
t4 + r2v2

1

v1t4(r2 + v2
1)

=
r2
T + v2

1

r2
T (r2 + v2

1)v1
,

since holds relation (2.18).
This completes the proof of Theorem 4.
Of course, proving this theorem we have proved(according to Theorem 2) that

there is a bicentric hexagon whose tangent lengths are v1, . . . ,v6 .

THEOREM 5. Let A1 . . .A6 be any given bicentric hexagon whose incircle is C1

and circumcircle C2 . Then
|A1A3|
t1 + t3

=
4t2Rr
r4− t4

. (2.46)

Proof. First we see (Figure 2.2) that

|A1A3|2 = (t1 + t2)2 +(t2 + t3)2−2(t1 + t2)(t2 + t3)cos2β2,

where β2 = measure of �IA2A3.

Figure 2.2

Since

cos2β2 = cos2β2− sin2β2 = 2cos2 β2−1

=
2

1+ tan2β2
−1 =

1− tan2β2

1+ tan2β2
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and tanβ2 = r
t2

, we have

cos2β2 =
t22 − r2

t22 + r2
,

|A1A3|2
(t1 + t3)2 =

[

(t1 + t2)2 +(t2 + t3)2 −2(t1 + t2)(t2 + t3) · t22−r2

t22+r2

]

(t1 + t3)2 . (2.47)

Now, we shall show that holds (2.46), that is
[

(t1 + t2)2 +(t2 + t3)2 −2(t1 + t2)(t2 + t3) · t22−r2

t22+r2

]

(t1 + t3)2 =
(

4t2Rr
r4 − t4

)2

. (2.48)

So, using the expressions for t3 and t2 given by (2.22) and (2.29), after rationalization
we get

φ6 ·
(

φ6 +16r2 [(R+d)2− r2][(R−d)2− r2] [R2−d2 + r2]
)

= 0 (2.49)

where
φ6 = 3(R2−d2)4−4r2(R2 +d2)(R2 −d2)2 −16R2r4d2. (2.50)

But φ6 = 0 is Fuss’ relation for bicentric Hexagons given by (1.1). This proves theorem
since all others factors in (2.49) are different from zero. Namely,

(R+d)2− r2 = t2M > 0, (R−d)2− r2 = t2m > 0

and R2−d2 + r2 > 0 because R > d.
(2.51)

In the same way it can be shown that for each i = 2,3,4,5,6 analogously holds

|AiAi+2|2
(ti + ti+2)2 =

4t2Rr
r4 − t4

, i = 2, . . . ,6. (2.52)

REMARK 2. It may be interesting that Theorem 5 can also be proved in the fol-
lowing way. For short we shall prove that 2β̂1 = 2β 1 , where

2β̂1 = measure of �BAC, 2β 1 = measure of �A3A1A5.

In the proof we shall use relation t4 = t2
t1

given by (2.29) and relation rT = t2
r

given by (2.18). (See Figure 4.)
Let βi = measure of �IAiAi+1, i = 1, . . . ,6. First we can write

cos2β̂1 =
1− tan2 β̂1

1+ tan2 β̂1
=

1−
(

rT
t1

)2

1+
(

rT
t1

)2 =
t21 − r2

T

t21 + r2
T

=
t21 −

(
t2
r

)2

t21 −
(

t2
r

)2 =
r2t21 − t4

r2t21 + t4
.

(2.53)
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Since A1A3A4A5 is a chordal quadrilateral (see Figure 2.3), it holds

2β 1 +2β4 = 180◦,

cos2β 1 = −cos2β4. (2.54)

Also we have

cos2β4 =
t24 − r2

t24 + r2

or, since t4 = t2
t1

,

cos2β4 =
t4− r2t21
t4 + r2t21

. (2.55)

(a) (b)
Figure 2.3

From (2.53) and (2.55) we see that cos2β̂1 = −cos2β4 . Since holds (2.54), it
follows that 2β̂1 = 2β 1 .

In the same way it can be proved for other pairs of corresponding angles.

COROLLARY 5.1. It holds

|A1A3|
t1 + t3

=
|A3A5|
t3 + t5

=
|A5A1|
t5 + t1

=
|A2A4|
t2 + t4

=
|A4A6|
t4 + t6

=
|A6A2|
t6 + t2

.

Proof. If instead of (2.46) we write

|AiAi+2|
ti + ti+2

=
4t2Rr
r4 − t4

,

all essential remains the same.
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COROLLARY 5.2. Let ABC and PQR be triangles such that

|AB| = t1 + t3, |BC| = t3 + t5, |CA| = t5 + t1
|PQ| = t2 + t4, |QR| = t4 + t6, |RP| = t6 + t2

where
ti + ti+1 = |AiAi+1| , i = 1, . . . ,6.

Then
A1A3A5 ∼ ABC, A2A4A6 ∼ PQR.

If Π is the plane which contain Figure 2.3, then there is a similarity f : Π→ Π such
that

f (A1) = A, f (A3) = B, f (A5) = C, f (A2) = P, f (A4) = Q, f (A6) = R.

The coefficient of similarity is 4t2Rr
r4−t4

.

COROLLARY 5.3. It holds

area of ABC ·area of PQR = t2r2. (2.56)

Proof. Since

area of ABC = (t1 + t3 + t5)
t2

r
,

area of PQR = (t2 + t4 + t6)
t2

r
,

and by Theorem 3 in [3] it holds

6

∑
i=1

titi+1 =
r4 −3t4

t2
,

we can write

(t1 + t3 + t5)(t2 + t4 + t6)
(

t2

r

)2

=
(

r4 −3t4

t2
+3t2

)(
t2

r

)2

= t2r2. (2.57)

area of A1A3A5 · area of A2A4A6 =
(

4t2Rr
r4− t4

)4

t2r2. (2.58)

COROLLARY 5.4. It holds

perimeter of A1A3A5 · perimeter of A2A4A6 =
(

8t2Rr
r4− t4

)2
r4

t2
. (2.59)
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Proof. By Theorem 5 it holds

|A1A3|+ |A3A5|+ |A5A1| = 4t2Rr
r4 − t4

[(t1 + t3)+ (t3 + t5)+ (t5 + t1)]

=
8t2Rr
r4 − t4

(t1 + t3 + t5),

|A2A4|+ |A4A6|+ |A6A2| = 8t2Rr
r4 − t4

(t2 + t4 + t6).

Thus

(|A1A3|+ |A3A5|+ |A5A1|) · (|A2A4|+ |A4A6|+ |A6A2|) =
(

8t2Rr
r4− t4

)2
r4

t2
,

since from (2.57) we have (t1 + t3 + t5) (t2 + t4 + t6) = r4

t2
.

COROLLARY 5.5. Let h1 , h2 , h3 be altitudes of the triangle A1A3A5 , and let h1 ,
h2 , h3 be altitudes of the triangle A2A4A6 . Then

H(h1,h2,h3)H(h1, h2, h3) = 144

(
t4R

r4 − t4

)2

. (2.60)

where H(x1,x2,x3) denotes harmonic mean of x1 , x2 , x3 .

Proof. Let areas of trianglesA1A3A5 and A2A4A6 be denoted respectively by J1

and J2 . From

|A1A3| = 2J1

h1
, |A3A5| = 2J1

h2
, |A5A1| = 2J1

h3

|A2A4| = 2J2

h1

, |A4A6| = 2J2

h2

, |A6A2| = 2J2

h3

it follows

9J1J2

(|A1A3|+ |A3A5|+ |A5A1|) · (|A2A4|+ |A4A6|+ |A6A2|)
= H(h1,h2,h3)H(h1, h2, h3),

which can be written as (2.60) since hold (2.58) and (2.59).

COROLLARY 5.6. It holds

|A1A3| · |A2A4| · |A3A5| · |A4A6| · |A5A1| · |A6A2| =
(

4t2Rr
r4 − t4

)6

16t2R2
T r2. (2.61)

In other words, the product of side-lengths of the triangles A1A3A5 and A2A4A6 is a
constant.
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Proof. Since

|A1A3| = 4t2Rr
r4 − t4

(t1 + t3), . . . , |A6A2| = 4t2Rr
r4− t4

(t6 + t2),

(t1 + t3)(t3 + t5)(t5 + t1)
4RT

= (t1 + t3 + t5)
t2

r
= area of ABC,

(t2 + t4)(t4 + t6)(t6 + t2)
4RT

= (t2 + t4 + t6)
t2

r
= area of PQR,

(2.62)

and holds (2.57), we get (2.61).

THEOREM 6. Let ABC and PQR be triangles as it is said in Theorem 2 and
Theorem 3. Then there is bicentric hexagon B1 . . .B6 whose vertices are A, P, B, Q,
C, R. Corresponding values RH , rH , dH are given by

RH = RT (2.63)

rH =
(4RTrT + r2

T )2− t̂4

2t̂2
(√

(RT +dT )2 +4RTrT +
√

(RT −dT )2 +4RTrT

) , (2.64)

dH =

[

(4RTrT + rT )2− t̂4
](√

(RT +dT )2 +4RTrT −
√

(RT −dT )2 +4RTrT

)

4t̂2
√

4RTrT + rT

(√

(RT +dT )2 +4RTrT +
√

(RT −dT )2 +4RTrT

) .

(2.65)

Proof. The above relations can be written as

RH = k ·R, rH = k · r, dH = k ·d, (2.66)

where R , r , d are given by (2.7)-(2.9) and k is given by

k =
r4− t̂4

4Rrt̂2
(2.67)

Thus, there is similarity with ratio k which maps hexagon A1 . . .A6 onto hexagon
B1 . . .B6 .

Of course, tangent lengths of bicentric hexagon B1 . . .B6 are given by

k · ti, i = 1, . . . ,6

where t1 , t3 , t5 and t2 , t4 , t6 are tangent lengths of triangles ABC and PQR respec-
tively.

In this connection let us remark that

r2
H = (kt1)(kt3)+ (kt3)(kt5)+ (kt5)(kt1) = k2(t1t3 + t3t5 + t5t1) = k2r2,

from which follows rH = kr .
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Also let us remark that

|A1A2| = t1 + t2, |AP| = kt1 + kt2 = k(t1 + t2)
|A2A3| = t2 + t3, |PB| = kt2 + kt3 = k(t2 + t3)

and so on. Thus

|A1A2| : |AP| = |A2A3| : |PB| = . . . = |A6A1| : |RA| = k.

(See Figure 2.5 and 2.6.)

COROLLARY 6.1. It holds
RT

R
= k. (2.68)

Proof. Follows from (2.63) and (2.66), that is, from RH = RT and RH = kR .

COROLLARY 6.2. Let A1 . . .A6 be any given bicentric hexagon. Then

t1 + t3
|A1A3| =

t3 + t5
|A3A5| =

t5 + t1
|A5A1| =

t2 + t4
|A2A4| =

t4 + t6
|A4A6| =

t6 + t2
|A6A2| (2.69)

where ti + ti+1 = |AiAi+1| , i = 1, . . . ,6 .

Proof. For every given bicentric hexagon A1 . . .A6 there is bicentric hexagon
APBQCR as it is described in given theorems. According to Theorem 6 it holds

ti + ti+2

|AiAi+2| =
RT

R
, i = 1, . . . ,6. (2.70)

If similarity with ratio r4−t4

4Rrt2
is denoted by s , then

s(A1) = A, s(A3) = B, s(A2) = P, s(A4) = Q and so on.

COROLLARY 6.3. Triangles A1A2A3 and A2A4A6 have not only the same cir-
cumcircle but also the same incircle.

COROLLARY 6.4. If ρ = radius of incircle of A1A3A5 , then ρ = krT .

COROLLARY 6.5. area of A1A3A5 = 1
k2 · area of ABC.

COROLLARY 6.6. It holds

area of A1A3A5 ·area of A2A4A6 =
r2t2

k4 .

COROLLARY 6.7. If triangle ABC is given, then triangle PQR such that APBQCR
is a bicentric hexagon, can be constructed as shown in Figure 2.4. Point S can be con-
structed using Figure 2.4.a, where EFG and KLM are axial symmetric triangles.
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K

L

M

E

F

G

O I
rT

RT

dT

S

R

P

Q

C

A

B

O
rT

RT

dT

SI

Figure 2.4

As it is well-known, it holds: If A1 . . .A2n is bicentric 2n -gon then for each i =
1,2, . . . ,n , the chord AiAi+n passes through S .

REMARK 3. It may be interesting that

Rd = RT dT . (2.71)

This follows from (2.4) and (2.5), that is, from t2m − t2M = t̂2m − t̂2M .

EXAMPLE 1. Let Ĉ1 and Ĉ2 be given circles, one inside of the other, such that
holds Euler’s relation

R2
T −d2

T = 2RTrT ,

where RT = 3.208333333, rT = 0.666666666, dT = 2.45267711. Then

t̂m = 0,355769427, t̂M = 5.6216185, t̂2 = 2. (2.72)

Then there is a triangle ABC whose incircle is Ĉ1 and circumcircle Ĉ2 such that

t1 + t3 = |AB|, t3 + t5 = |BC|, t5 + t1 = |CA|,
where

t1 = 5, t3 = 1.176380598, t5 = 0.504842108. (2.73)

The tangent lengths of triangle PQR which is connected with triangle ABC as it is said
in Theorem 3, are given by

t2 =
t̂2

t5
= 3.961634659, t4 =

t̂2

t1
= 0.4, t6 =

t̂2

t3
= 1.700130047.

The lengths RH , rH , dH , according to relations (2.66), are given by

RH = RT , rH = 2.049390153, dH = 1.144582651.
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R

P

Q

C

A

B

O

rH

RH
dH I rT

C2

C1

Figure 2.5

The bicentric hexagon APBQCR is sketched in Figure 2.5.
Concerning bicentric hexagon A1 . . .A6 for which hold relations (2.7), (2.8) and

(2.9), we have

R = 4.696519101, d = 1.67549744, r = 3.

Corresponding bicentric hexagon is sketched in Figure 2.6.

A1

A2

A3

A4

A5

A6

R

O I

r

d

Figure 2.6

Similarity between this hexagon and hexagon shown in Figure 2.5 is observable.
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