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Griuss-Lupas type inequality and its applications
for the estimation of p-moments of guessing
mappings

S.S. DrAGOMIR* AND G. L. Bootsa!

Abstract.  An inequality of Griss-Lupas type in normed spaces
is proved. Some applications in estimating the p-moments of quessing
mapping which complement the recent results of Massey [1], Arikan [2],
Boztas [3] and Dragomir-van der Hoek [5]-[7] are also given.
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1. Introduction

In 1935, G. Griiss proved the following integral inequality which gives an approxi-
mation of the integral of the product in terms of the product of integrals as follows

bia/abf(x)g(x)dx—ﬁ/abf(x)dx.ﬁ/abg(x)dx

< J@-9) -7 (1

where f, g : [a,b] — R are integrable on [a, b] and satisfying the assumption
o< f(z) <P, y<g(z)<T (2)

for each = € [a,b] where ¢, ®,v, T are given real constants.

Moreover, the constant % is sharp in the sense that it can not be replaced by a
smaller one.

For a simple proof of (1) as well as for some other integral inequalities of Griiss’
type see Chapter X of the recent book [4] by Mitrinovi¢, Pecari¢ and Fink.

In 1950, M. Biernacki, H. Pidek and C. Ryll-Nardzewski established the follow-
ing discrete version of Griiss’ inequality [4, Chap. X]:
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Theorem 1. Let a = (as,...,a,),b = (b1,...,b,) be two n-tuples of real numbers
such that r < a; < R and s <b; < S fori=1,...,n. Then one has

%iaibi—%iai Zb <_[_}<1—%[2D(R—m5—s) 3)
i=1 i=1

where [z] is the integer part of x,x € R.

A weighted version of Griiss’ discrete inequality was proved by J.E. Pecarié¢ in
1979, [4, Chap. X]:

Theorem 2. Let a,b be two monotonic n-tuples and p a positive one. Then
1\ 1\

P, Z pia;b; p Z pia; - p- Z

i=1 i=1

< lan, — a1 |bn — b1] max ’“P’““> (4)
1<k<n

where P, := Y p; , Poy1 = Py — Pry1.

i=1

In 1981, A. Lupas [4, Chap. X] proved some similar results for the first difference
of a as follows :

Theorem 3. Let a,b two monotonic n-tuples in the same sense and p a positive
n-tuple. Then

1 « ’
min a —a mln b E ) — E ip;
1<i<n | i+1 l| | i+1 — pz P, - - Di
i=

1 & 1 & 1 «
< B ;piaibi ey ;piai . P, ;pzbz
1 & ?
< lgrzngax |a1+1—al| Jnax. |b1+1 Zz Di — (P—nz;Zm) (5)

If there exist numbers a,ay,r,71, (rr1 > 0) such that ap = a+ kr and by, = a1 + kr1,
then in (5) the equality holds.

For some generalizations of Griiss’ inequality for isotonic linear functionals de-

fined on certain spaces of mappings see Chapter X of the book [4] where further
references are given.

2. Some Griiss-Lupas type inequalities

The following inequality of Griiss-Lupas type in normed linear spaces holds:
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Theorem 4. Let (X, ||-||) be a normed linear space over K = (R,C), z; € X,

a; € K andp; >0 (i =1,...,n) such that > p; = 1. Then we have the inequality:
i=1

n n n
Zpiaiwi - Zpiai : Zpiwi
i=1 i=1 i=1

n 2
< max. |aj+1 - aj| max ij+1 -z ZZ Dbi — (Z ipi) - (6)
1<j<n < e

i=1

Inequality (6) is sharp in the sense that the constant C = 1 in the right membership
cannot be replaced by a smaller one.

Proof. Let us start with the following identity which can be proved by direct
computation:

n n n n
Yopiqim — Y pici Yo piwe = 5y pipj (o — ai) (x5 — x;)
=1 =1 =1 1,0=1
n
= > pipjlay—ai)(z; — )
1<i<j<n

As i < j, we can write that

Jj—1
aj—a; =Y (ki1 — )

k=i

and
j—1

Tj—x; = Z(ka — ).

k=i
Using the generalized triangle inequality we have successively:

n n n n j—1 Jj—1
E DiC; Ty — E Pic; E piZi|| = Z PiDj Z (ak+1 - Olk) Z ($k+1 - xk)
i=1 i=1 i=1 1<i<j<n k=i k=i
-1
< Z DiDj Z (Oky1 — ) ”Z Thy1 — Tk)
1<1<j<n
< Z pip; E k41 — vl Z Zk+1 — 2kl = A
1<i<j<n k= =1
Note that
— < —
oner —ox < max g — o
and

e —anl < max flzags — 2

for all k =1, ...,j — 1 and then by summation,

j—1

_ < (i—3q _
; e — ] < (=) | max o —ay
=i
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and

I o
; loksr = anll < (G =) max flzess =
=3

Taking into account the above estimations, we can write
n

AL DiDj (4 —1) 1<r§1<a:f_l |1 — ol 1<rsn<a;<_1 2541 — x|
1<i<j<n =°= =°=

As a simple calculation shows that
n n 2
> pipy (1) Zz pi— (Z ipz) ,
1<i<j<n i=1

inequality (6) is proved.
Assume that inequality (6) holds with a constant ¢ > 0, i.e.,

n n
i QT4 — E bicy E Di%i
i=1 i=1

2
n
< clgr]nggfllam— ‘|1<m<ax j+1 — Zl Pi — (lepz> - (7
i

Now, choose the sequences a, = a+ kB (6 #0),zx =x+ky(y#0) (k=1,...,n).
We get

n n
i OG5 — Zpi@i Zpﬂi
i=1 i=1
n n n 2
. N2 . .
> iy 0= 3)° By|[ = 181 lyll |D_i%pi — (sz)
i=1 i=1

i,j=1

and

n n 2
) .
| Jnax lojp1 — oy e 2541 — 2| le pi — (;&)
1= 1=
n n 2
= 18Il D - (Z%)
i=1 =1

and then by (7) we get ¢ > 1, which proves the sharpness of the constant ¢ = 1. O
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The following corollary holds:

Corollary 1. Under the above assumptions for a;,z; (i =1,...,n) we have the in-
equality:

n n n
1 1 1
=3 i ==Y o=y
ni:l ni:l ni:l

n?—1

< T e oy =gl max g — ). ®

The constant % is sharp in the sense that it cannot be replaced by a smaller one.

The proof follows by the above theorem, putting p; = % and taking into account

that: )
n . n . n2 . 1
;Zzpi - (;m) = o

3. Applications for the moments of guessing mappings

J.L.Massey in [1] considered the problem of guessing the value of realization of
random variable X by asking questions of the form: ”Is X equal to 7 7 until the
answer is ” Yes” .

Let G (X) denote the number of guesses required by a particular guessing strat-
egy when X =z .

Massey observed that E (G (z)) , the average number of guesses, is minimized
by a guessing strategy that guesses the possible values of X in decreasing order of
probability.

We begin by giving a formal and generalized statement of the above problem by
following E. Arikan [2].

Let (X,Y) be a pair of random variables with X taking values in a finite set
x of size n,Y taking values in a countable set . Call a function G (X) of the
random variable X a guessing function for X if G : x — {1,...,n} is one-to-one.
Call a function G (X | Y) a guessing function for X given Y if for any fixed value
Y =y,G(X | y) is a guessing function for X . G (X | y) will be thought of as the
number of guessing required to determine X when the value of Y is given.

The following inequalities on the moments of G (X) and G (X|Y) were proved
by E. Arikan in the recent paper [2].

Theorem 5. For an arbitrary guessing function G (X) and G (X |Y) and any
p > 0, we have:

E(G(X)")> (1+1nn)”

1+p
71D Px () ] (9)

TEX

and

E(GX|Y))>1+hn) ">

yey

1+p
ZPXY {L‘ y ‘| (10)

reEX

where Pxy and Px are probability distributions of (X,Y) and X, respectively.
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Note that, for p = 1, we get the following estimations on the average number of
guesses:

[N

> Px (@) ]
BGX) = =

and

=

>

yey

g Pxy (z,y) ]

B(G (X)) 2 1+1Inn

In paper [3], Boztas proved the following analytic inequality and applied it for the
moments of guessing mappings:

Theorem 6. The relation

3

k=1

[Zpki] >3 - (k= 1)) p (1)
k=1

where r > 1 holds for any positive integer n, provided that the weights p1, ..., p, are
nonnegative real numbers satisfying the condition:

1 1 1 1
p,gHSE(p{—l—...—l—p,g),k:lﬂ,...n—l (12)

To simplify the notation further, we assume that the z; are numbered such that
x), is always the k" guess. This yields:

E(GP) = kapkap > 0.
k=1

If we now consider the guessing problem, we note that (9) can be written (see for
example [3]) as:

no, P
[Z pF] > B (G"7) - B ((G-1)'")
k=1

for guessing sequences obeying (12).
In particular, using the binomial expansion of (G — 1)
corollary [3] :

P we have the following

Corollary 2. For guessing sequences obeying (12) withr = 1+m , the m*" guessing
moment, when m > 1 is an integer satisfies:

n 1 1+m
BGm™) < L [z p,zﬂ
k=1 (13)

= { T E (G = (Y E (G2 o+ (1)
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The following inequalities immediately follow from Corollary 2.:

2

1|y~ ¢ 1
E(G><5[Zpk +3
k=1
and
[
2 - 3 _ =
E(G)Sg[;pk +E(G)

We are able now to point out some new results for the p-moment of guessing mapping
as follows.

Using Pecarié’s result (4), we can state the following inequality for the moments
of a guessing mapping G (X):

Theorem 7. Let p,q > 0. Then we have the inequality:

0 E(GPH1) — B (G?) E (GY)

(7 =) (" 1) max {P(1-P0) (14)

IAIA

k
where P, = 3 p;.
i=1

Proof. Define the sequences a; = ¥ , b; = i? which are monotonous nonde-
creasing. Using both CebysSev’s and Pecari¢’s results we can state

Z#’*q ZZ%ZZ pi

< P 1) (AL0- )

o
IN

which is exactly (14). O
Now, let us define the mappings m,,, M, : (0,00) — (0, 00) given by

[ nt=(m-1)", ifte(0,1
mn(t)—{ 2t —1, ifte(l,o0)

and

- 2t —1, ifte(0,1)
M, (t) ._{ o

n—1), ifte[l,00)

Now, using Lupas’ result (see Theorem 3.) we can state the following result:

Theorem 8. Let p,q > 0. Then we have the inequality
m (p)ma (9) [E (G%) = E*(G)] < E(G") - E(G") E(GY)

<
< M, (p) M (q) [E ( ?) - E*(G)]. (15)
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Proof. Consider the sequences a; = i , b; = 19 in Lupas’ theorem (note that
a;, b; are monotonous nondecreasing) to get:

| Juin [(i+1)F —d?] ,Juin [(i +1)7 — 9] [E (G?) — E*(G)]
E (Gr+1) — E(GP) E(GY)
max [(i+ 1)’ —i?] min [(i+1)? -9 [E(G?) — E*(G)]. (16)

1<i<n—1 1<i<n—1

IN A

Now, let us observe that if p € (0,1), then the sequence «; = P is concave, i.e.,
Qg1 — o <a;—auq foralli=2,...n—1
and if p € [1,00) then a; = 4P is convex, i.e.,

Qg1 —; > —ai—q foralli=2,...,n—1.

Consequently
i G+ 1 =37 = ma ()
and
(Jnax [+ 17 = 7= Mn (p).
Using (16) we get the desired inequality (15). O

Now, for a given p > 0, consider the sum

Sp(n) :=> P
i=1

‘We know that
nn+1
Sl (n): ( 2 )7
nn+1)(2n+1)

6

Sy (n) =

and
n(n+1)

s = [25 1]

Using Biernaki-Pidek-Nardzewski’s result (see Theorem 1.) we can state and prove
the following approximation result concerning the p -moment of guessing mapping
G (X).

Theorem 9. Let p > 0. Then we have the estimation

= [q <1 - PD (n” = 1) (prar — Pm) (17)

B (X)) -5, m)| < [5] (1- - [3

where pyy = max{p; | i =1,..,n} and pp, :=min{p; |i=1,....,n}.
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Proof. Let us choose in Theorem 1., a; = p;, b; = i?. Then p,, < a; < pur,
1<b; <nPforalli=1,..,nand by (3) we get

éiﬁpi— %iipipi < [g} (1— % [gD (P — 1) (Par — pim) s

=
which proves the theorem. O

Remark 1. 1. Ifin (17) we put p =1, we get

G- <o-n[5] (1= 5[5 or s a9

which is an estimation of the average number of guesses in term of the size n
of X and prr — pm.-
2. Note that if p = (p1,...,pn) is close to the uniform distribution (%, - %) , i.e.,
€

(n=1)[3] (=3 [5])

then the error of approximating E (G (X)) by "TH is less than € > 0.

0 <pum —pm < >0 (19)

Now, using our new inequality in Corollary 1. we shall be able to prove another
type of estimation for the p-moment of guessing mapping G (X) as follows:

Theorem 10. Let p > 0. Then we have the estimation:

1 (n*=1)n
i _ = <X I L —
Ber ) - 28,00 < C 00 0) e -l (@)
Proof. Follows by Corollary 1., choosing o; = i, z; = p; and ||| is the usual
modulus |-| from the real number field R . O

Remark 2. 1. If in (20) we put p =1, we get

n+1
2

n(n2 — 1)

< s —_ .
‘ N 12 18X Ipj+1 — pil (21)

£G)

which is another type of estimation for the average number of guesses in terms
of the size of X and of the "step size” of probabilities p;.

2. Note that if we choose

12¢

15111'?5{—1|pj+1_pj| < n(n?—1)’ e>0

then

B (v (x)) - 2
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