# Grüss-Lupas type inequality and its applications for the estimation of $p$-moments of guessing mappings 

S. S. Dragomir* and G. L. Booth ${ }^{\dagger}$


#### Abstract

An inequality of Grüss-Lupas type in normed spaces is proved. Some applications in estimating the p-moments of guessing mapping which complement the recent results of Massey [1], Arikan [2], Boztas [3] and Dragomir-van der Hoek [5]-[7] are also given.


Key words: Grüss-Lupas type inequalities, guessing mapping, p-moments

AMS subject classifications: 26D15, 94Axx
Received November 29, 1999
Accepted April 15, 2000

## 1. Introduction

In 1935 , G. Grüss proved the following integral inequality which gives an approximation of the integral of the product in terms of the product of integrals as follows

$$
\begin{align*}
& \left|\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-\frac{1}{b-a} \int_{a}^{b} f(x) d x \cdot \frac{1}{b-a} \int_{a}^{b} g(x) d x\right| \\
\leq & \frac{1}{4}(\Phi-\varphi)(\Gamma-\gamma) \tag{1}
\end{align*}
$$

where $f, g:[a, b] \rightarrow \mathbb{R}$ are integrable on $[a, b]$ and satisfying the assumption

$$
\begin{equation*}
\varphi \leq f(x) \leq \Phi, \gamma \leq g(x) \leq \Gamma \tag{2}
\end{equation*}
$$

for each $x \in[a, b]$ where $\varphi, \Phi, \gamma, \Gamma$ are given real constants.
Moreover, the constant $\frac{1}{4}$ is sharp in the sense that it can not be replaced by a smaller one.

For a simple proof of (1) as well as for some other integral inequalities of Grüss' type see Chapter X of the recent book [4] by Mitrinović, Pečarić and Fink.

In 1950, M. Biernacki, H. Pidek and C. Ryll-Nardzewski established the following discrete version of Grüss' inequality [4, Chap. X]:
*School of Communications and Informatics, Victoria University of Technology, PO Box 14428, Melbourne City, MC 8001, Australia, e-mail: sever@matilda.vu.edu.au
${ }^{\dagger}$ Department of Mathematics, University of Port Elisabeth, South Africa

Theorem 1. Let $a=\left(a_{1}, \ldots, a_{n}\right), b=\left(b_{1}, \ldots, b_{n}\right)$ be two $n$-tuples of real numbers such that $r \leq a_{i} \leq R$ and $s \leq b_{i} \leq S$ for $i=1, \ldots, n$. Then one has

$$
\begin{equation*}
\left|\frac{1}{n} \sum_{i=1}^{n} a_{i} b_{i}-\frac{1}{n} \sum_{i=1}^{n} a_{i} \cdot \frac{1}{n} \sum_{i=1}^{n} b_{i}\right| \leq \frac{1}{n}\left[\frac{n}{2}\right]\left(1-\frac{1}{n}\left[\frac{n}{2}\right]\right)(R-r)(S-s) \tag{3}
\end{equation*}
$$

where $[x]$ is the integer part of $x, x \in \mathbb{R}$.
A weighted version of Grüss' discrete inequality was proved by J.E. Pec̆arić in 1979, [4, Chap. X]:

Theorem 2. Let $a, b$ be two monotonic n-tuples and $p$ a positive one. Then

$$
\begin{align*}
& \quad\left|\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} a_{i} b_{i}-\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} a_{i} \cdot \frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} b_{i}\right| \\
& \leq \quad\left|a_{n}-a_{1}\right|\left|b_{n}-b_{1}\right| \max _{1 \leq k \leq n-1}\left(\frac{P_{k} \bar{P}_{k+1}}{P_{n}^{2}}\right) \tag{4}
\end{align*}
$$

where $P_{n}:=\sum_{i=1}^{n} p_{i}, \bar{P}_{k+1}=P_{n}-P_{k+1}$.
In 1981, A. Lupas [4, Chap. X] proved some similar results for the first difference of $a$ as follows :

Theorem 3. Let $a, b$ two monotonic n-tuples in the same sense and $p$ a positive n-tuple. Then

$$
\begin{align*}
& \min _{1 \leq i \leq n-1}\left|a_{i+1}-a_{i}\right| \min _{1 \leq i \leq n-1}\left|b_{i+1}-b_{i}\right|\left[\frac{1}{P_{n}} \sum_{i=1}^{n} i^{2} p_{i}-\left(\frac{1}{P_{n}} \sum_{i=1}^{n} i p_{i}\right)^{2}\right] \\
\leq & \frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} a_{i} b_{i}-\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} a_{i} \cdot \frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} b_{i} \\
\leq & \max _{1 \leq i \leq n-1}\left|a_{i+1}-a_{i}\right| \max _{1 \leq i \leq n-1}\left|b_{i+1}-b_{i}\right|\left[\frac{1}{P_{n}} \sum_{i=1}^{n} i^{2} p_{i}-\left(\frac{1}{P_{n}} \sum_{i=1}^{n} i p_{i}\right)^{2}\right] \tag{5}
\end{align*}
$$

If there exist numbers $\bar{a}, \bar{a}_{1}, r, r_{1},\left(r r_{1}>0\right)$ such that $a_{k}=\bar{a}+k r$ and $b_{k}=\bar{a}_{1}+k r_{1}$, then in (5) the equality holds.

For some generalizations of Grüss' inequality for isotonic linear functionals defined on certain spaces of mappings see Chapter X of the book [4] where further references are given.

## 2. Some Grüss-Lupas type inequalities

The following inequality of Grüss-Lupas type in normed linear spaces holds:

Theorem 4. Let $(X,\|\cdot\|)$ be a normed linear space over $K=(\mathbb{R}, \mathbb{C}), x_{i} \in X$, $\alpha_{i} \in K$ and $p_{i} \geq 0(i=1, \ldots, n)$ such that $\sum_{i=1}^{n} p_{i}=1$. Then we have the inequality:

$$
\begin{align*}
& \left\|\sum_{i=1}^{n} p_{i} \alpha_{i} x_{i}-\sum_{i=1}^{n} p_{i} \alpha_{i} \cdot \sum_{i=1}^{n} p_{i} x_{i}\right\| \\
\leq & \max _{1 \leq j \leq n-1}\left|\alpha_{j+1}-\alpha_{j}\right| \max _{1 \leq j \leq n-1}\left\|x_{j+1}-x_{j}\right\|\left[\sum_{i=1}^{n} i^{2} p_{i}-\left(\sum_{i=1}^{n} i p_{i}\right)^{2}\right] . \tag{6}
\end{align*}
$$

Inequality (6) is sharp in the sense that the constant $C=1$ in the right membership cannot be replaced by a smaller one.

Proof. Let us start with the following identity which can be proved by direct computation:

$$
\begin{aligned}
\sum_{i=1}^{n} p_{i} \alpha_{i} x_{i}-\sum_{i=1}^{n} p_{i} \alpha_{i} \sum_{i=1}^{n} p_{i} x_{i} & =\frac{1}{2} \sum_{i, j=1}^{n} p_{i} p_{j}\left(\alpha_{j}-\alpha_{i}\right)\left(x_{j}-x_{i}\right) \\
& =\sum_{1 \leq i<j \leq n}^{n} p_{i} p_{j}\left(\alpha_{j}-\alpha_{i}\right)\left(x_{j}-x_{i}\right)
\end{aligned}
$$

As $i<j$, we can write that

$$
\alpha_{j}-\alpha_{i}=\sum_{k=i}^{j-1}\left(\alpha_{k+1}-\alpha_{k}\right)
$$

and

$$
x_{j}-x_{i}=\sum_{k=i}^{j-1}\left(x_{k+1}-x_{k}\right)
$$

Using the generalized triangle inequality we have successively:

$$
\begin{aligned}
\left\|\sum_{i=1}^{n} p_{i} \alpha_{i} x_{i}-\sum_{i=1}^{n} p_{i} \alpha_{i} \sum_{i=1}^{n} p_{i} x_{i}\right\| & =\left\|\sum_{1 \leq i<j \leq n}^{n} p_{i} p_{j} \sum_{k=i}^{j-1}\left(\alpha_{k+1}-\alpha_{k}\right) \sum_{k=i}^{j-1}\left(x_{k+1}-x_{k}\right)\right\| \\
& \leq \sum_{1 \leq i<j \leq n}^{n} p_{i} p_{j}\left|\sum_{k=i}^{j-1}\left(\alpha_{k+1}-\alpha_{k}\right)\right|\left\|\sum_{k=i}^{j-1}\left(x_{k+1}-x_{k}\right)\right\| \\
& \leq \sum_{1 \leq i<j \leq n}^{n} p_{i} p_{j} \sum_{k=i}^{j-1}\left|\alpha_{k+1}-\alpha_{k}\right| \sum_{k=i}^{j-1}\left\|x_{k+1}-x_{k}\right\|=: A .
\end{aligned}
$$

Note that

$$
\left|\alpha_{k+1}-\alpha_{k}\right| \leq \max _{1 \leq s \leq n-1}\left|\alpha_{s+1}-\alpha_{s}\right|
$$

and

$$
\left\|x_{k+1}-x_{k}\right\| \leq \max _{1 \leq s \leq n-1}\left\|x_{s+1}-x_{s}\right\|
$$

for all $k=i, \ldots, j-1$ and then by summation,

$$
\sum_{k=i}^{j-1}\left|\alpha_{k+1}-\alpha_{k}\right| \leq(j-i) \max _{1 \leq s \leq n-1}\left|\alpha_{s+1}-\alpha_{s}\right|
$$

and

$$
\sum_{k=i}^{j-1}\left\|x_{k+1}-x_{k}\right\| \leq(j-i) \max _{1 \leq s \leq n-1}\left\|x_{s+1}-x_{s}\right\|
$$

Taking into account the above estimations, we can write

$$
A \leq\left[\sum_{1 \leq i<j \leq n}^{n} p_{i} p_{j}(j-i)^{2}\right] \max _{1 \leq s \leq n-1}\left|\alpha_{s+1}-\alpha_{s}\right| \max _{1 \leq s \leq n-1}\left\|x_{s+1}-x_{s}\right\| .
$$

As a simple calculation shows that

$$
\sum_{1 \leq i<j \leq n}^{n} p_{i} p_{j}(j-i)^{2}=\sum_{i=1}^{n} i^{2} p_{i}-\left(\sum_{i=1}^{n} i p_{i}\right)^{2},
$$

inequality (6) is proved.
Assume that inequality (6) holds with a constant $c>0$, i.e.,

$$
\begin{align*}
& \left\|\sum_{i=1}^{n} p_{i} \alpha_{i} x_{i}-\sum_{i=1}^{n} p_{i} \alpha_{i} \sum_{i=1}^{n} p_{i} x_{i}\right\| \\
\leq & c_{1 \leq j \leq n-1} \max \left|\alpha_{j+1}-\alpha_{j}\right| \max _{1 \leq j \leq n-1}\left\|x_{j+1}-x_{j}\right\|\left[\sum_{i=1}^{n} i^{2} p_{i}-\left(\sum_{i=1}^{n} i p_{i}\right)^{2}\right] \tag{7}
\end{align*}
$$

Now, choose the sequences $\alpha_{k}=\alpha+k \beta(\beta \neq 0), x_{k}=x+k y(y \neq 0)(k=1, \ldots, n)$. We get

$$
\begin{aligned}
& \left\|\sum_{i=1}^{n} p_{i} \alpha_{i} x_{i}-\sum_{i=1}^{n} p_{i} \alpha_{i} \sum_{i=1}^{n} p_{i} x_{i}\right\| \\
= & \frac{1}{2}\left\|\sum_{i, j=1}^{n} p_{i} p_{j}(i-j)^{2} \beta y\right\|=|\beta|\|y\|\left[\sum_{i=1}^{n} i^{2} p_{i}-\left(\sum_{i=1}^{n} i p_{i}\right)^{2}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& \max _{1 \leq j \leq n-1}\left|\alpha_{j+1}-\alpha_{j}\right| \max _{1 \leq j \leq n-1}\left\|x_{j+1}-x_{j}\right\|\left[\sum_{i=1}^{n} i^{2} p_{i}-\left(\sum_{i=1}^{n} i p_{i}\right)^{2}\right] \\
= & |\beta|\|y\|\left[\sum_{i=1}^{n} i^{2} p_{i}-\left(\sum_{i=1}^{n} i p_{i}\right)^{2}\right]
\end{aligned}
$$

and then by (7) we get $c \geq 1$, which proves the sharpness of the constant $c=1$.

The following corollary holds:
Corollary 1. Under the above assumptions for $\alpha_{i}, x_{i}(i=1, \ldots, n)$ we have the inequality:

$$
\begin{align*}
& \left\|\frac{1}{n} \sum_{i=1}^{n} \alpha_{i} x_{i}-\frac{1}{n} \sum_{i=1}^{n} \alpha_{i} \cdot \frac{1}{n} \sum_{i=1}^{n} x_{i}\right\| \\
\leq & \frac{n^{2}-1}{12} \max _{1 \leq j \leq n-1}\left|\alpha_{j+1}-\alpha_{j}\right| \max _{1 \leq j \leq n-1}\left\|x_{j+1}-x_{j}\right\| . \tag{8}
\end{align*}
$$

The constant $\frac{1}{12}$ is sharp in the sense that it cannot be replaced by a smaller one.
The proof follows by the above theorem, putting $p_{i}=\frac{1}{n}$ and taking into account that:

$$
\sum_{i=1}^{n} i^{2} p_{i}-\left(\sum_{i=1}^{n} i p_{i}\right)^{2}=\frac{n^{2}-1}{12}
$$

## 3. Applications for the moments of guessing mappings

J. L. Massey in [1] considered the problem of guessing the value of realization of random variable $X$ by asking questions of the form: "Is $X$ equal to $x$ ?" until the answer is "Yes" .

Let $G(X)$ denote the number of guesses required by a particular guessing strategy when $X=x$.

Massey observed that $E(G(x))$, the average number of guesses, is minimized by a guessing strategy that guesses the possible values of $X$ in decreasing order of probability.

We begin by giving a formal and generalized statement of the above problem by following E. Arikan [2].

Let $(X, Y)$ be a pair of random variables with $X$ taking values in a finite set $\chi$ of size $n, Y$ taking values in a countable set $\mathcal{Y}$. Call a function $G(X)$ of the random variable $X$ a guessing function for $X$ if $G: \chi \rightarrow\{1, \ldots, n\}$ is one-to-one. Call a function $G(X \mid Y)$ a guessing function for $X$ given $Y$ if for any fixed value $Y=y, G(X \mid y)$ is a guessing function for $X . G(X \mid y)$ will be thought of as the number of guessing required to determine $X$ when the value of $Y$ is given.

The following inequalities on the moments of $G(X)$ and $G(X \mid Y)$ were proved by E. Arikan in the recent paper [2].

Theorem 5. For an arbitrary guessing function $G(X)$ and $G(X \mid Y)$ and any $p>0$, we have:

$$
\begin{equation*}
E\left(G(X)^{p}\right) \geq(1+\ln n)^{-p}\left[\sum_{x \in \chi} P_{X}(x)^{\frac{1}{1+p}}\right]^{1+p} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
E\left(G(X \mid Y)^{p}\right) \geq(1+\ln n)^{-p} \sum_{y \in \mathcal{Y}}\left[\sum_{x \in \chi} P_{X, Y}(x, y)^{\frac{1}{1+p}}\right]^{1+p} \tag{10}
\end{equation*}
$$

where $P_{X, Y}$ and $P_{X}$ are probability distributions of $(X, Y)$ and $X$, respectively.

Note that, for $p=1$, we get the following estimations on the average number of guesses:

$$
E(G(X)) \geq \frac{\left[\sum_{x \in \chi} P_{X}(x)^{\frac{1}{2}}\right]^{2}}{1+\ln n}
$$

and

$$
E(G(X)) \geq \frac{\sum_{y \in \mathcal{Y}}\left[\sum_{x \in \chi} P_{X, Y}(x, y)^{\frac{1}{2}}\right]^{2}}{1+\ln n}
$$

In paper [3], Boztas proved the following analytic inequality and applied it for the moments of guessing mappings:

Theorem 6. The relation

$$
\begin{equation*}
\left[\sum_{k=1}^{n} p_{k}{ }^{\frac{1}{r}}\right]^{r} \geq \sum_{k=1}^{n}\left(k^{r}-(k-1)^{r}\right) p_{k} \tag{11}
\end{equation*}
$$

where $r \geq 1$ holds for any positive integer $n$, provided that the weights $p_{1}, \ldots, p_{n}$ are nonnegative real numbers satisfying the condition:

$$
\begin{equation*}
p_{k+1}^{\frac{1}{r}} \leq \frac{1}{k}\left(p_{1}^{\frac{1}{r}}+\ldots+p_{k}^{\frac{1}{r}}\right), k=1,2, \ldots n-1 \tag{12}
\end{equation*}
$$

To simplify the notation further, we assume that the $x_{i}$ are numbered such that $x_{k}$ is always the $k^{t h}$ guess. This yields:

$$
E\left(G^{p}\right)=\sum_{k=1}^{n} k^{p} p_{k}, p \geq 0
$$

If we now consider the guessing problem, we note that (9) can be written (see for example [3]) as:

$$
\left[\sum_{k=1}^{n} p_{k}^{\frac{1}{1+p}}\right]^{1+p} \geq E\left(G^{1+p}\right)-E\left((G-1)^{1+p}\right)
$$

for guessing sequences obeying (12).
In particular, using the binomial expansion of $(G-1)^{1+p}$ we have the following corollary [3] :

Corollary 2. For guessing sequences obeying (12) with $r=1+m$, the $m^{\text {th }}$ guessing moment, when $m \geq 1$ is an integer satisfies:

$$
\begin{align*}
E\left(G^{m}\right) \leq & \frac{1}{1+m}\left[\sum_{k=1}^{n} p_{k}^{\frac{1}{1+m}}\right]^{1+m}  \tag{13}\\
& +\frac{1}{1+m}\left\{\binom{m+1}{2} E\left(G^{m-1}\right)-\binom{m+1}{3} E\left(G^{m-2}\right)+\ldots+(-1)^{m+1}\right\}
\end{align*}
$$

The following inequalities immediately follow from Corollary 2.:

$$
E(G) \leq \frac{1}{2}\left[\sum_{k=1}^{n} p_{k}^{\frac{1}{2}}\right]^{2}+\frac{1}{2}
$$

and

$$
E\left(G^{2}\right) \leq \frac{1}{3}\left[\sum_{k=1}^{n} p_{k}^{\frac{1}{3}}\right]^{3}+E(G)-\frac{1}{3}
$$

We are able now to point out some new results for the $p$-moment of guessing mapping as follows.

Using Pec̆arić's result (4), we can state the following inequality for the moments of a guessing mapping $G(X)$ :

Theorem 7. Let $p, q>0$. Then we have the inequality:

$$
\begin{align*}
0 & \leq E\left(G^{p+q}\right)-E\left(G^{p}\right) E\left(G^{q}\right) \\
& \leq\left(n^{p}-1\right)\left(n^{q}-1\right) \max _{1 \leq k \leq n-1}\left\{P_{k}\left(1-P_{k}\right)\right\} \tag{14}
\end{align*}
$$

where $P_{k}=\sum_{i=1}^{k} p_{i}$.
Proof. Define the sequences $a_{i}=i^{p}, b_{i}=i^{q}$ which are monotonous nondecreasing. Using both Cebys̆ev's and Pec̆arić's results we can state

$$
\begin{aligned}
0 & \leq \sum_{i=1}^{n} i^{p+q} p_{i}-\sum_{i=1}^{n} i^{p} p_{i} \sum_{i=1}^{n} i^{q} p_{i} \\
& \leq\left(n^{p}-1\right)\left(n^{q}-1\right) \max _{1 \leq k \leq n-1}\left\{P_{k}\left(1-P_{k}\right)\right\}
\end{aligned}
$$

which is exactly (14).
Now, let us define the mappings $m_{n}, M_{n}:(0, \infty) \longrightarrow(0, \infty)$ given by

$$
m_{n}(t):=\left\{\begin{aligned}
n^{t}-(n-1)^{t}, & \text { if } t \in(0,1) \\
2^{t}-1, & \text { if } t \in[1, \infty)
\end{aligned}\right.
$$

and

$$
M_{n}(t):=\left\{\begin{aligned}
2^{t}-1, & \text { if } t \in(0,1) \\
n^{t}-(n-1)^{t}, & \text { if } t \in[1, \infty)
\end{aligned}\right.
$$

Now, using Lupas' result (see Theorem 3.) we can state the following result:
Theorem 8. Let $p, q>0$. Then we have the inequality

$$
\begin{align*}
m_{n}(p) m_{n}(q)\left[E\left(G^{2}\right)-E^{2}(G)\right] & \leq E\left(G^{p+q}\right)-E\left(G^{p}\right) E\left(G^{q}\right) \\
& \leq M_{n}(p) M_{n}(q)\left[E\left(G^{2}\right)-E^{2}(G)\right] \tag{15}
\end{align*}
$$

Proof. Consider the sequences $a_{i}=i^{p}, b_{i}=i^{q}$ in Lupas' theorem (note that $a_{i}, b_{i}$ are monotonous nondecreasing) to get:

$$
\begin{align*}
& \min _{1 \leq i \leq n-1}\left[(i+1)^{p}-i^{p}\right] \min _{1 \leq i \leq n-1}\left[(i+1)^{q}-i^{q}\right]\left[E\left(G^{2}\right)-E^{2}(G)\right] \\
\leq & E\left(G^{p+q}\right)-E\left(G^{p}\right) E\left(G^{q}\right) \\
\leq & \max _{1 \leq i \leq n-1}\left[(i+1)^{p}-i^{p}\right] \min _{1 \leq i \leq n-1}\left[(i+1)^{q}-i^{q}\right]\left[E\left(G^{2}\right)-E^{2}(G)\right] . \tag{16}
\end{align*}
$$

Now, let us observe that if $p \in(0,1)$, then the sequence $\alpha_{i}=i^{p}$ is concave, i.e.,

$$
\alpha_{i+1}-\alpha_{i} \leq \alpha_{i}-\alpha_{i-1} \text { for all } i=2, \ldots, n-1
$$

and if $p \in[1, \infty)$ then $\alpha_{i}=i^{p}$ is convex, i.e.,

$$
\alpha_{i+1}-\alpha_{i} \geq \alpha_{i}-\alpha_{i-1} \text { for all } i=2, \ldots, n-1
$$

Consequently

$$
\min _{1 \leq j \leq n-1}\left[(j+1)^{p}-j^{p}\right]=m_{n}(p)
$$

and

$$
\max _{1 \leq j \leq n-1}\left[(j+1)^{p}-j^{p}\right]=M_{n}(p)
$$

Using (16) we get the desired inequality (15).
Now, for a given $p>0$, consider the sum

$$
S_{p}(n):=\sum_{i=1}^{n} i^{p}
$$

We know that

$$
\begin{gathered}
S_{1}(n)=\frac{n(n+1)}{2} \\
S_{2}(n)=\frac{n(n+1)(2 n+1)}{6}
\end{gathered}
$$

and

$$
S_{3}(n)=\left[\frac{n(n+1)}{2}\right]^{2}
$$

Using Biernaki-Pidek-Nardzewski's result (see Theorem 1.) we can state and prove the following approximation result concerning the $p$-moment of guessing mapping $G(X)$.

Theorem 9. Let $p>0$. Then we have the estimation

$$
\begin{equation*}
\left|E\left(G^{p}(X)\right)-\frac{1}{n} S_{p}(n)\right| \leq\left[\frac{n}{2}\right]\left(1-\frac{1}{n}\left[\frac{n}{2}\right]\right)\left(n^{p}-1\right)\left(p_{M}-p_{m}\right) \tag{17}
\end{equation*}
$$

where $p_{M}:=\max \left\{p_{i} \mid i=1, \ldots, n\right\}$ and $p_{m}:=\min \left\{p_{i} \mid i=1, \ldots, n\right\}$.

Proof. Let us choose in Theorem 1., $a_{i}=p_{i}, b_{i}=i^{p}$. Then $p_{m} \leq a_{i} \leq p_{M}$, $1 \leq b_{i} \leq n^{p}$ for all $i=1, \ldots, n$ and by (3) we get

$$
\left|\sum_{i=1}^{n} i^{p} p_{i}-\frac{1}{n} \sum_{i=1}^{n} i^{p} \sum_{i=1}^{n} p_{i}\right| \leq\left[\frac{n}{2}\right]\left(1-\frac{1}{n}\left[\frac{n}{2}\right]\right)\left(n^{p}-1\right)\left(p_{M}-p_{m}\right)
$$

which proves the theorem.
Remark 1. 1. If in (17) we put $p=1$, we get

$$
\begin{equation*}
\left|E(G(X))-\frac{n+1}{2}\right| \leq(n-1)\left[\frac{n}{2}\right]\left(1-\frac{1}{n}\left[\frac{n}{2}\right]\right)\left(p_{M}-p_{m}\right) \tag{18}
\end{equation*}
$$

which is an estimation of the average number of guesses in term of the size $n$ of $X$ and $p_{M}-p_{m}$.
2. Note that if $p=\left(p_{1}, \ldots, p_{n}\right)$ is close to the uniform distribution $\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)$, i.e.,

$$
\begin{equation*}
0 \leq p_{M}-p_{m} \leq \frac{\varepsilon}{(n-1)\left[\frac{n}{2}\right]\left(1-\frac{1}{n}\left[\frac{n}{2}\right]\right)}, \varepsilon>0 \tag{19}
\end{equation*}
$$

then the error of approximating $E(G(X))$ by $\frac{n+1}{2}$ is less than $\varepsilon>0$.
Now, using our new inequality in Corollary 1. we shall be able to prove another type of estimation for the $p$-moment of guessing mapping $G(X)$ as follows:

Theorem 10. Let $p>0$. Then we have the estimation:

$$
\begin{equation*}
\left|E\left(G^{p}(X)\right)-\frac{1}{n} S_{p}(n)\right| \leq \frac{\left(n^{2}-1\right) n}{12} M_{n}(p) \max _{1 \leq j \leq n-1}\left|p_{j+1}-p_{j}\right| \tag{20}
\end{equation*}
$$

Proof. Follows by Corollary 1., choosing $\alpha_{i}=i^{p}, x_{i}=p_{i}$ and $\|\cdot\|$ is the usual modulus $|\cdot|$ from the real number field $\mathbb{R}$.
Remark 2. 1. If in (20) we put $p=1$, we get

$$
\begin{equation*}
\left|E(G(X))-\frac{n+1}{2}\right| \leq \frac{n\left(n^{2}-1\right)}{12} \max _{1 \leq j \leq n-1}\left|p_{j+1}-p_{j}\right| \tag{21}
\end{equation*}
$$

which is another type of estimation for the average number of guesses in terms of the size of $X$ and of the "step size" of probabilities $p_{i}$.
2. Note that if we choose

$$
\max _{1 \leq j \leq n-1}\left|p_{j+1}-p_{j}\right|<\frac{12 \varepsilon}{n\left(n^{2}-1\right)}, \quad \varepsilon>0
$$

then

$$
\left|E\left(G^{p}(X)\right)-\frac{n+1}{2}\right|<\varepsilon
$$

Acknowledgement. The authors would like to thank the anonymous referee for some valuable suggestions in improving this paper.

## References

[1] J. L. Massey, Guessing and entropy, in: Proc. 1994, IEEE Int. Symp. on Information Theory, Trodheim, Norway, 1994, p. 204.
[2] E. Arikan, An inequality on guessing and its applications to sequential decoding, IEEE Transactions on Information Theory 42(1996), 99-105.
[3] S. Boztas, Comments on " An inequality on guessing and its applications to sequential decoding", IEEE Transactions on Information Theory, to appear
[4] D. S. Mitrinović, J. E. Pečarić, A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.
[5] S. S. Dragomir, J. van der Hoek, Some new inequalities for the average number of guesses, Kyungpook Math. Journal, to appear.
[6] S. S. Dragomir, J. van der Hoek, New inequalities for the moments of guessing mapping, East Asian Math. Journal 14(1998), 1-14.
[7] S. S. Dragomir, J. van der Hoek, Some new analytic inequalities and their applications in guessing theory, J. Math. Anal. Appl. 225(1998), 542-556.

