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On the Bartlett spectrum of randomized Hawkes processes
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Abstract. We study the Bartlett spectrum of the randomized Hawkes process and demon-
strate that it behaves very differently from the case of a classical Hawkes process. In par-
ticular, the Bartlett spectrum could have a singularity near the origin which indicates a
long-range dependence property.
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1. Introduction

In this note we introduce randomized Hawkes processes and study their Bartlett
spectra with a goal to provide an example of a point process with the singu-
lar Bartlett spectrum or long-range dependence. Long-range dependence or long-
memory phenomena in stochastic processes was discovered in various applied models,
see [3, 4, 20, 25, 29] for recent development. This is a rapidly developing subject in
probability and statistics; a summary is given by [6, 17] (see also references therein).
Book [17] contains an outstanding survey of the field, in particular, it discusses
different definitions of long-range dependence of stationary processes in terms of
the autocorrelation function (the integral of the correlation function diverges) or the
spectrum (the spectral density has a singularity at zero). In the point processes con-
text, the definition of long-range dependence has to be reconsidered by transforming
the spectrum into the Bartlett spectrum [5].

For point processes the long-range dependence phenomena from different view-
points were discussed in [2, 9, 12, 14, 15, 22, 28, 33, 34]. Here we present a new
version of point processes with the singular Bartlett spectrum originated from the
so-called Hawkes self-exciting processes (see [18, 19] and [13], p. 309) by ‘random-
izing’ a parameter of the exciting function (cf. [5] or [13], p. 303–312). We show
similarities and differences of the singular property of the Bartlett spectrum with
that of the Bochner-Khintchine spectrum (as indication of long-range dependence)
for stationary processes used in different models with randomization of parameters
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before (see [3, 4, 9, 23, 32] and the references therein).

2. The Hawkes self-exciting process

Hawkes [18] (see also [19] or [13], p. 309) introduced a class of point processes which
he called self-exciting processes (SEP). Nowadays, they are called linear SEP; gen-
eralized Hawkes processes with a non-linear rate function are studied in [9] and [11].
SEP are widely used in applications to seismology, cosmology, neurophysiology and
DNA modeling, epidemiology and reliability (see, e.g. [10, 11, 30, 31] and [13], p. 183
and p. 309).

We define an SEP as a cluster process with cluster centers P = (tn, n ∈ Z)
produced by a stationary Poisson process of rate λ > 0. Each center tn independently
generates a cluster Cn with the following branching structure: the center tn is said
to be of generation zero. Given generations 0, 1, . . . , k−1 in Cn each point τ ∈ Cn of
(k−1)th generation produces a finite Poisson process of offspring with a non-negative
exciting function h(.− τ) such that

0 < ν =

∫ ∞

0

h(u)du < 1 (1)

the union of these offspring families form the generation k. Consider the associated
point measure

T (C) =
∑
n∈Z

1C(τn), C ∈ B,

where B is the Borel σ−field of R, then the process

T (t) = T ((0, t])

is called a Hawkes self-exciting point process (SEP). So, T = (τn, n ∈ Z) is defined
as a cluster process with a stationary Poisson process P of rate λ > 0 for cluster
centers. The clusters form independent realizations of a finite branching process
with the age-dependent probability of birth h(.). Moreover, there exits a stationary
version of SEP [13] which is considered hereafter.

Equivalently, SEP T can be described in terms of shot noise or filtering point
processes, or in terms of point processes with a random intensity function of the
form

Λ(t) = Λ(t,Ft) = λ+
∑
i∈Z

h(t− τi)1τi<t = λ+

∫ t

−∞
h(t− s)dT (s), (2)

where Ft = σ(τn ∈ T : τn ≤ t) is the history of a point process T . The interpreta-
tion of Ft−stochastic intensity is as follows:

E[T (t, t+ dt) | Ft] = Λ(t)dt,

that is Λ(t) is the (random) rate of the point process at time t, given the observation
history Ft.
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If λ > 0 and ν < 1, there exists a unique stationary cluster process T with rate
λ̃ = λ/(1− ν) satisfying (2) (see [8, 19]), where

λ̃ =
E[T (t, t+ dt)]

dt
.

The Bartlett spectral measure Γ of a (general) stationary point process T = (τn, n ∈
Z) is defined, when it exists, by the relation

Var
(∫

R

ϕ(t)T (dt)
)
=

∫
R

| ϕ̃(ω) |2 Γ(dω) (3)

for any function ϕ ∈ L1 ∩ L2 = {ϕ :
∫
R
|ϕ(t)|dt < ∞,

∫
R
|ϕ(t)|2dt < ∞}, where

ϕ̃(ω) =

∫
R

eiωtϕ(t)dt

is the Fourier transform of ϕ.
Formally, the Bartlett spectrum of a (general) stationary point process T =

(τn, n ∈ Z) is the Bochner-Khintchine spectrum of a generalized process

T̃ (t) =
∑
n∈Z

δ(.− τn)1τn<t, (4)

where δ(.) is the Dirac (generalized) function. This fact establishes a connection
between the Bartlett spectrum Γ (see (3)) and the Bochner-Khintchine spectrum M
of a stationary process (4) via the following formula

Var
(∫

R

ϕ(t)T̃ (dt)
)
=

∫
R

| ϕ̃(ω) |2 M(dω). (5)

The Bartlett spectrum is well-defined if ET 2(C) < ∞ for all bounded Borel
C ∈ R. The Bartlett spectral density of the Hawkes process can be written as
follows (see [18] or [13], p. 309)

γ(ω) =
λ

2π(1− ν)

1

| 1− h̃(ω) |2
, ω ∈ R, ν ∈ (0, 1). (6)

Thus, the spectral density (6) tends to a finite constant as ω → 0+

γ(0) =
λ

2π(1− ν)3
.

This may be viewed as an indicator of short-range dependence. In this case, the
variance grows linearly as t → ∞ :

Var
(
T (t)

)
= 2πtγ(0)(1 + o(1)).

Moreover, under condition
∫∞
0

uh(u)du < ∞, the Central limit theorem holds:

[T (t)− λt/(1− ν)]

[λt/(1− ν)3]1/2
⇒D N(0, 1)

as t → ∞ (see [19]). Here ⇒D stands for convergence in distributions, and N(0, 1)
is the standard normal law.
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3. Randomized Hawkes processes

Here we propose a version of the Hawkes process with long-range dependence con-
structed via randomization of the exciting function, in contrast to [9], where the
existence of critical SEP with the long-range dependence property was established
under a heavy-tail condition on the exciting function, and investigate the Bartlett
spectrum of such randomized SEP.

A randomized self-exciting process (RSEP) is defined via a randomized exciting
function hζ depending on a random parameter ζ. The simplest example of an RSEP
Tζ = (τ ζn, n ∈ Z), or equivalently, Tζ(t) =

∑
n∈Z 1(0,t)(τ

ζ
n), with singular Bartlett

spectra is as follows. Let ζ be a random variable and conditional on {ζ = ν}, Tζ is
a classical Hawkes processes with the exciting function (9), i.e.

Λν(t) = λ+

∫ t

−∞
hν(t− s)dT (s) = λ+

∑
n∈Z

hν(t− τνn)1τν
n<t.

Alternatively, we can define the randomized Hawkes process Tζ by the following
expression for its generating functional

G[ϕ, Tζ ] = E
( ∏

τζ
i ∈Tζ

ϕ(τ ζi )
)
= E exp [

∫
log ϕ(t)dTζ(t)]

= Eζ exp [λ

∫
R

(Fζ(ϕ(t+ .))− 1)dt], ϕ ∈ S (7)

for a suitable space of functions S (see [13], p. 152–153). Here Fζ(ϕ(.)) is the gener-
ating functional of a cluster generated by a single particle at the origin depending
on the random parameter ζ, while ϕ(t+ .) is simply the translation of ϕ(.).

Note (see [19]) that Fν(ϕ(.)) for a fixed ζ = ν satisfies the functional equation

Fν(ϕ(.)) = ϕ(0) exp [

∫
R

(Fζ(ϕ(t+ .))− 1)µν(t)dt]. (8)

The behaviour of variance and the Bartlett spectrum of RSEP may differ dras-
tically from the classical case. The simplest example of RSEP with a singular spec-
trum is as follows. Let ζ be a random variable with support (0, 1) which has Beta
distribution (11). Suppose that, conditional on {ζ = ν}, Tζ has an exciting function

h(u) = hν(u) = ναe−αu, u > 0, α > 0, ν ∈ (0, 1) (9)

with a randomized parameter ζ = ν ∈ (0, 1). Note that

h̃ν(ω) =
να

α− iω
, | 1− h̃ν(ω) |−2=

α2 + ω2

α2(1− ν)2 + ω2
, ω ∈ R. (10)

Let us assume that ν has Beta B(a, b)- distribution of the form

f(u) =
1

B(a, b)
ua−1(1− u)b−1, 0 < u < 1, a > 0, b > 0. (11)
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Using the law of total variance Var[Y ] = E
(
Var[Y |X]

)
+Var[E(Y |X)], the ex-

pression for the Bartlett spectrum for the classical Hawkes process (6), and Parseval-
Plancherel isometry formula it is easy to see that for all functions ϕ ∈ L1 ∩ L2 we
have

Var
(∫

R

ϕ(t)Tζ(dt)
)
=

∫
R

dω | ϕ̃(ω) |2
∫ 1

0

γu(ω)f(u)du

+

(
λ

∫
R

ϕ(t)dt

)2

Var
[ 1

1− ν

]
, (12)

where

γu(ω) =
λ

2π(1− u)

α2 + ω2

α2(1− u)2 + ω2
, ω ∈ R. (13)

Theorem 1. Let Tν be a Hawkes process with the random coefficient ν, which follows
the Beta PDF as in (11). Then for a > 0, b > 2

(i) E[ 1
1−ν ]

2 < ∞.

(ii) The Bartlett spectral density of a process Tν is of the form

γν(ω) = Lν(ω) +Mδ(ω), ω ∈ R (14)

where δ(ω) is a unit mass at ω = 0,

Lν(ω) =
λ(α2 + ω2)

2πB(a, b)

∫ 1

0

ua−1(1− u)b−2 du

α2(1− u)2 + ω2
, ω ∈ R, (15)

and

M =
λ2

B(a, b)

[
B(a, b− 2)− B(a, b− 1)2

B(a, b)

]
. (16)

(iii) For a = 1, b ∈ (2, 3) the absolutely continuous component Lν(ω) of Bartlett
spectral density (14) has the following singular property as ω → 0+

Lν(ω) ≈
C0

ω3−b
, (17)

where

C0 = C0(λ, α, b) =
λα2

2πB(1, b)

∫ ∞

0

yb−2dy

(α2y2 + 1)
.

(iv) For a = 1, b ∈ (2, 3) the first two moments of the Hawkes process Tν have the
form

ETν(t) = tλ
B(1, b− 1)

B(1, b)
, (18)

Var[Tν(t)] = Ssg(t) + t2
λ2

B(1, b)

[
B(1, b− 2)− B(1, b− 1)2

B(1, b)

]
(19)
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and, in the limit t → ∞,

Ssg(t) ≈ t4−bC0(λ, α, b)
Γ(b− 2) sin

(π(3−b)
2

)
(3− b)(4− b)

. (20)

The proof of Theorem 1 is given in Section 4.

Remark 1. Similar results can be obtained for the Erlang fertility rate

h(u) = να2ue−αu,

for u > 0 and 0 < ν < 1, instead of exponential (9). Indeed, in this case 1− h̃ν(ω) =

1− να2

(α−iω)2 , and

γν(ω) = Lν(ω) +Mδ(ω), ω ∈ R

where the constant M is given by (16), while the first term

Lν(ω) =
λ

2πB(a, b)

∫ 1

0

ua−1(1− u)b−2 (α2 + ω2)2du

[α2(1− u)2 − ω2]2 + 4α2ω2
, ω ∈ R.

Thus for a = 1, 2 < b < 3 we have as ω → 0+

γν(ω) ≈
C1

ω3−b
,

where now

C1 = C1(λ, α, b) =
λα4

2πB(1, b)

∫ ∞

0

yb−2dy

α4y2 + 4α2
.

Remark 2. In this example Var[Tν(t)] increases asymptotically as t2, while the
first term Ssg(t) behaves as tβ , 1 < β = 4 − b < 2 and contains information about
the singularity parameter β. On the other hand, the singular property of the Bartlett
spectrum (17) indicates the long-range dependence property of RSEP. In contrast
to the singular property of the Bochner-Khintchine spectrum of ordinary stationary
processes (cf. [17] or [3, 4, 23, 32]), the singular property of the Bartlett spectrum
is more sophisticated and contains two terms (see (14)). Moreover, the variance
in (17) is represented as the sum of two terms and only Ssg(t) contains informa-
tion about the singularity parameter, which is important for statistical inference (see
again [6] or [17]). It is interesting that for the point processes we cannot use the
randomization procedure proposed by [23, 32], since in this case the limiting pro-
cess cannot be a point process in view of the Central limit theorem. On the other
hand, the approach of [3, 4] is also not applicable to point processes, since it is based
on the Lévy-Khintchine canonical representation of the characteristic function. For
these reasons, our approach is a natural way for introducing long-range dependence
in point processes, and is different from the existing in the literature (see again
[2, 9, 12, 14, 15, 22, 28, 33, 34] and the references therein).
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4. Proof of Theorem 3.1

(i) This follows from the special form of Beta distribution.

(ii) This follows from (12) and observation that the second term in (12) has the form

λ2 | ϕ̃(0) |2 Var
[ 1

1− ν

]
.

Again, due to the special form of Beta distribution one gets the constant M in (16).

(iii) So, we concentrate on the absolutely continuous term. It is easy to compute
µ̃ν(ω) =

να
α−iω ,

| 1− µ̃ν(ω) |−2=
α2 + ω2

α2(1− ν)2 + ω2
,

and the singular part of the Bartlett spectrum

Lν(ω) =
λ(α2 + ω2)

2π

∫ 1

0

fν(u)
1

(1− u)

du

(α2(1− u)2 + ω2)
. (21)

For the Beta-distribution with a = 1, (21) takes the form

Lν(ω) =
λ(α2 + ω2)

2πB(1, b)
I, I =

∫ 1

0

(1− u)b−2 du

α2(1− u)2 + ω2
.

Observe that for ω → 0+∫ 1

0

xb−2ω3−b

α2x2 + ω2
dx =

∫ 1/ω

0

yb−2

α2y2 + 1
dy →

∫ ∞

0

yb−2

α2y2 + 1
dy.

Hence,

I ≈ C1(α)

ω3−b
, C1(α) =

∫ ∞

0

yb−2dy

α2y2 + 1
.

(iv) To compute Var[Tν(t)] we consider the test function ϕ(s) = 1(0,t](s), and obtain

Var[Tν(t)] = Ssg(t) + t2
λ2

B(1, b)

[
B(1, b− 2)− B(1, b− 1)2

B(1, b)

]
.

Introduce the function g(ω) which is continuous in a neighbourhood of zero, bounded
on [0,∞):

g(ω) =
λ(α2 + ω2)

2πB(1, b)

∫ 1

0

xb−2ω3−b

α2x2 + ω2
dx,

and g(ω) → g(0) = C0(λ, α, b) as ω → 0 + . Then

Ssg(t) = t2
∫ ∞

0

sin2 ωt
2(

ωt
2

)2 ωb−3g(ω)dω.
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By using standard Abelian-like arguments we obtain for γ = b − 3 and K(z) =

sin2 z
2/

(
z
2

)2
S(t) =

∫ ∞

0

K(ωt)ωγg(ω)dω ≈ t−γ−1g(0)

∫ ∞

0

K(z)zγdz (22)

as t → ∞. In fact, (22) holds for γ such that∫ ∞

0

K(z) |z|γ dz < ∞. (23)

Indeed, we observe that

t−γ−1

∫ ∞

0

K(z)zγdz =

∫ ∞

0

K(tz)zγdz.

Choose n(t) → 0, tn(t) → ∞, as t → ∞, and note that

S(t) = t−γ−1[g(0)

∫ ∞

0

K(z)zγdz + F (t)],

where

F (t) = tγ+1

∫ ∞

0

K(ωt)ωγ [g(ω)− g(0)]dω.

Next, we use an estimate

|F (t)| ≤ tγ+1

∫ n(t)

0

|K(tω)| |g(ω)− g(0)|ωγdω + tγ+1

∫ ∞

n(t)

|K(tω)| |g(ω)− g(0)|ωγdω

≤ sup
0≤ω≤n(t)

|g(ω)− g(0)|
∫ ∞

0

K(z) |z|γ dz + 2 sup
0≤ω<∞

|g(ω)|
∫ ∞

tn(t)

K(z) |z|γ dz.

Due to continuity of g(ω) at ω = 0, F (t) = o(1) as t → ∞. Finally, we use the
following well-known integral identity (see, e.g. [1], formula (2.1))

J(s) =

∫
R

sin2 ωt
2(

ωt
2

)2 |ω|sdω =
4Γ(1 + s) sin

(
πs
2

)
s(1− s)

, −1 < s < 0. (24)

Note, that J(0) = 2π. Hence, (24) implies that as t → ∞

Ssg(t) ≈ t4−bg(0)
2Γ(b− 2) sin

(
π (3−b)

2

)
(3− b)(4− b)

.

5. Mittag-Leffler (ML) exciting function

Consider the random variable ξ with Mittag-Leffler distribution (MLD), see, i.e.,
[21]

F (x) = P(ξ ≤ x) = 1− Ep,1(−αxp), 0 < p ≤ 1, α > 0, x > 0, and

F (x) = 0, x ≤ 0, (25)
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which is infinitely divisible and has the density

f(x) =
d

dx
F (x) = αxp−1Ep,p(−αxp). (26)

It is defined in terms of two parameters Mittag-Leffler function:

Ep,q(z) =

∞∑
k=0

zk

Γ(q + pk)
, z ∈ C,Re(p) > 0,Re(q) > 0. (27)

The Mittag-Leffler distribution represents a completely skewed geometrical stable
distribution (see, e.g. [26, 27]). Note that for p = 1 MLD becomes an exponential
distribution.

It is known [21, 26] that for 0 < p < 1, q > 0 the following asymptotic expansion
is valid in a sector around the negative real axis as z → −∞:

Ep,q(z) = −
N∑

k=1

z−k

Γ(q − pk)
+O

(
|z|−N−1

)
. (28)

Thus, the density function of Mittag-Leffler distribution

f(x) ∼ C

xp+1
, x → ∞, (29)

where

C = − 1

αΓ(−p)
> 0

for 0 < p < 1. The characteristic function of the Mittag-Leffler distribution (see
[27], pp. 220–221) is given by

Eeiωξ =
1

1 + α−p|ω|p(1− isign(ω)tanπp
2 )

, ω ∈ R, 0 < p < 1. (30)

Consider now the Hawkes process with the exciting function

h(u) = hν(u) = ναup−1Ep,p(−αup), u > 0, 0 < p < 1 (31)

and the random parameter ζ = ν ∈ (0, 1). Note that this exiting function has a
power-law asymptotic, see (29). Then we obtain

1

|1− h̃ν(ω)|2
=

(
1 + α−p|ω|p

)2
+ α−2p|ω|2ptan2 πp

2(
1− ν + α−p|ω|p

)2
+ α−2p|ω|2ptan2 πp

2

. (32)

Assuming again that ν has Beta(a, b)-distribution with density function (11), we
obtain

Var
(∫

R

ϕ(t)Tζ(dt)
)
=

∫
R

dω | ϕ̃(ω) |2
∫ 1

0

γ̂u(ω)f(u)du

+

(
λ

∫
R

ϕ(t)dt

)2

Var
[ 1

1− ν

]
, (33)
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where now

γ̂u(ω) =
λ

2π(1− u)

(
1 + α−p|ω|p

)2
+ α−2p|ω|2ptan2 πp

2(
1− u+ α−p|ω|p

)2
+ α−2p|ω|2ptan2 πp

2

, ω ∈ R (34)

Theorem 2. Let Tν be a Hawkes process with the Mittag-Leffler exciting function
and the random coefficient ν, which follows the Beta PDF as in (11). Then for
a > 0, b > 2

(i) E[ 1
1−ν ]

2 < ∞.

(ii) The Bartlett spectral density of a process Tν is of the form

γν(ω) = Lν(ω) +Mδ(ω), ω ∈ R, (35)

where Mδ(ω) is defined in (16), and

Lν(ω) =
λ

2πB(a, b)

(
(1 + α−p|ω|p

)2
+α−2p|ω|2ptan2πp

2

)∫ 1

0

du · ua−1(1− u)b−2

×
[(
1− u+ α−p|ω|p

)2
+ α−2p|ω|2ptan2πp

2

]−1

, ω ∈ R. (36)

(iii) For a = 1, b ∈ (2, 3), 0 < p < 1, the absolutely continuous component Lν(ω) of
Bartlett spectral density (35) has the following singular property as ω → 0+

Lν(ω) ≈
C̄0

ωp(3−b)
, (37)

where

C̄0 = C̄0(λ, α, b, p) =
λ

2πB(1, b)

∫ ∞

0

yb−2dy

y2 + 2α−py + α−2p(1 + tan2 πp
2 )

.

(iv) For a = 1, b ∈ (2, 3) the first two moments of the Hawkes process Tν have the
form

ETν(t) = tλ
B(1, b− 1)

B(1, b)
, (38)

Var[Tν(t)] = Mt2 + t2
∫ ∞

0

sin2 ωt
2(

ωt
2

)2 Lν(ω)dω

= Ssg(t) + t2
λ2

B(1, b)

[
B(1, b− 2)− B(1, b− 1)2

B(1, b)

]
, (39)

and, t → ∞,

Ssg(t) ≈ t1−p(b−3)C̄0

Γ(b− 2) sin
(
π (3−b)

2

)
(3− b)(4− b)

. (40)
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The proof of Theorem 2 follows the main ideas of the proof of Theorem 1. So we
present the sketch of the proof only. For Beta distribution with a = 1, we have

Lν(ω) =
λ

2πB(1, b)

[(
1 + α−p|ω|p

)
+ α−2p|ω|2ptan2πp

2

]
I,

where

I =

∫ 1

0

xb−2dx
[(
x+ α−pωp

)2
+ α−2pω2ptan2

πp

2

]−1

= ωp(b−3)

∫ ω−p

0

yb−2dy
[
y2 + 2α−py + α−2p(1 + tan2

πp

2
)
]−1

.

When ω → 0+, 0 < p < 1

λ

2πB(1, b)

[(
1 + α−p|ω|p

)
+ α−2p|ω|2ptan2πp

2

]
×
∫ ω−p

0

yb−2dy
[
y2 + 2α−py + α−2p(1 + tan2

πp

2
)
]−1

→ C̄0.

Now

Ssg(t) = t2
∫ ∞

0

sin2(ωt/2)

(ωt/2)2
ωp(b−3)f̄(ω)dω,

where

f̄(ω) =
λ

2πB(1, b)

[(
1 + α−p|ω|p

)
+ α−2p|ω|2ptan2πp

2

]
×
∫ 1

0

xb−2dx
[(
x+ α−pωp

)2
+ α−2pω2ptan2

πp

2
)
]−1

→ f̄(0) =
λ

2πB(1, b)

∫ ∞

0

yb−2dy
[
y2 + 2α−py + α−2p(1 + tan2

πp

2
)
]−1

.

The Abelian-like arguments are similar to the proof of Theorem 1.

6. Appendix. An alternative derivation of the LDP rate func-
tion

The explicit form of the Large deviation (LD) rate function of linear Hawkes pro-
cesses was found in [7]. In papers [35] and [37], the rate function of a non-linear
Hawkes process is derived. The latter presents an alternative proof in the linear case
as well. Here we include one more alternative representation of the rate function
in terms of the Lambert function W (see below). Denote the (random) number of
points in a cluster generated by a single particle at 0 by S and its radius by L.
Define the set

DS = {θ ∈ R : EeθS < ∞}, (41)

and its interior part by D0
S . In [7], the following result is proved
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Theorem 3. Assume that the function θ → EeθS is essentially smooth (cf. [16]) and
0 ∈ D0

S. Moreover, we assume that E[LeθS ] < ∞ for all θ ∈ D0
S. Then T ((0, t])/t

satisfies a LDP on R with speed t and a good rate function

Λ∗(x) = sup
θ∈R

(θx− Λ(θ)), (42)

where Λ(θ) = λ(E[eθS ]− 1).

Remind that the rate function Λ∗(x) is good iff the sets {Λ∗(x) ≤ a} are compact.
In order to find an explicit representation for the rate function, we proceed as follows.
Consider the power series a(x), f(x) ∈ Q[[x]], the set of formal power series with
zero constant term

a(x) =
∑
n≥1

anx
n, f(x) =

∑
n≥1

fnx
n.

Suppose
f(a(x)) = x and a(f(x)) = x.

Then the Lagrange inversion formula gives a formula for the coefficients of a(x)

a(x)
∣∣∣
xn

=
1

n

(
x

f(x)

)n ∣∣∣
xn−1

. (43)

Now take f(x) = xe−x, then the defining property of a(x) becomes

a(x)e−a(x) = x.

Using Lagrange inversion, we get

an = a(x)
∣∣∣
xn

=
1

n

(
x

f(x)

)n ∣∣∣
xn−1

=
1

n
enx

∣∣∣
xn−1

=
1

n

nn−1

(n− 1)!
=

nn−1

n!
.

This implies the following identity

∞∑
k=1

kk−1

k!
xk = a(x), (44)

where a(x) is the solution of equation x = a(x)e−a(x) or a(x) = −W (−x), where W
is the Lambert function defined in (50).

As follows from [24], Theorem 2.1.12, for the Hawkes processes

P(S = k) =
(kν)k−1

k!
e−kν . (45)

In view of (44), this means

E
[
eθS

]
= ν−1a(νeθ−ν), (46)

i.e. E
[
eθS

]
= −ν−1W0(−νeθ−ν), here we select the principal branch W0(x). This

implies −e−1 ≤ −νeθ−ν ≤ 0 or θ ∈ Θ = (−∞, ν − ln ν − 1).
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Referring to (42), one obtains

Λ∗(x) = xθx + λ− λ

ν
a(νeθx−ν ],

where

a′(νeθx−ν)eθx−ν =
x

λ
. (47)

Differentiation in (47) with respect to θ immediately implies

a(νeθx−ν) =
νx

λ+ νx
. (48)

So, we obtain the Large Deviation rate function

Λ∗(x) = xθx + λ− νx

λ+ νx
, x > 0, (49)

where θx is the solution of (48). It is straightforward that this result agrees with
that of [35, 36, 37].

For convenience, we present below basic facts about the Lambert function. In
1758, Lambert introduced the function W (x) satisfying W (x)eW (x) = x. If x is real,
then for − 1

e ≤ x < 0 there are two possible real values of W (x), we use the principle
branch W0(x) which is uniquely specified by conditions W0

(
− 1

e

)
= −1,W0(0−) = 0.

In 1877, L. Euler considered a series expansion, while in 1959 E.M. Wright used
complex branches of W (z), z ∈ C. The principal branch of W is analytic at 0:

W0(z) =
∞∑

n=1

(−n)n−1

n!
zn. (50)

Clearly, W0

(
− 1

e

)
= −1 but its derivative has a singularity at z = −1

e . Thus the
radius of convergence cannot exceed 1

e and, in fact, it equals 1
e , as easily seen from

the ratio test. Let us compute the derivatives of W (x):

dnW (x)

dxn
=

e−nW (x)pn(W (x))

(1 +W (x))2n−1
, n ≥ 1, (51)

where p1(w) = 1 and

pn+1(w) = −(nw + 3n− 1)pn(w) + (1 + w)p′n(w), n ≥ 1.
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