Some inequalities for polynomials and transcendental entire functions of exponential type

Qazi M. Tariq^{1,*}

¹ Department of Mathematics and Computer Science, Virginia State University, Petersburg, VA 23 806, U.S.A.

Received January 18, 2013; accepted October 7, 2013

Abstract. Let p be a polynomial of degree n such that $|p(z)| \leq M$ (|z| = 1). The Bernstein's inequality for polynomials states that $|p'(z)| \leq Mn$ (|z| = 1). A polynomial p of degree n that satisfies the condition $p(z) \equiv z^n p(1/z)$ is called a self-reciprocal polynomial. If p is a self-reciprocal polynomial, then $f(z) = p(e^{iz})$ is an entire function of exponential type n such that $f(z) = e^{inz}f(-z)$. Thus the class of entire functions of exponential type τ whose elements satisfy the condition $f(z) = e^{i\tau z}f(-z)$ is a natural generalization of the class of self-reciprocal polynomials. In this paper we present some Bernstein's type inequalities for self-reciprocal polynomials and related entire functions of exponential type under certain restrictions on the location of their zeros.

AMS subject classifications: Primary 41A17; Secondary 30A10, 30D15, 41A10, 41A17, 42A05, 42A16, 42A75

Key words: polynomials, Bernstein's inequality, entire functions of exponential type, L^p inequality

1. Introduction and statement of results

1.1. Bernstein's inequality for polynomials

Let \mathcal{P}_n denote the class of all polynomials of degree at most n and let $f \in \mathcal{P}_n$. An inequality for polynomials in \mathcal{P}_n , known as Bernstein's inequality, gives an estimate for |f'(z)| on the unit circle in terms of the maximum of |f(z)| on the same circle. It states (see [15], p. 508) that

$$\max_{|z|=1} |f'(z)| \le n \max_{|z|=1} |f(z)|, \qquad f \in \mathcal{P}_n,$$
(1)

where the equality holds for polynomials of the form $cz^n, c \neq 0$.

It is known [13] that if f is as above and $f^*(z) := z^n \overline{f(1/\overline{z})}$, then on |z| = 1

$$|f'(z)| + |f^{*'}(z)| \le n \max_{|z|=1} |f(z)|, \qquad f \in \mathcal{P}_n.$$
(2)

http://www.mathos.hr/mc

©2013 Department of Mathematics, University of Osijek

^{*}Corresponding author. Email address: tqazi@vsu.edu (Q. M. Tariq)

Let \mathcal{P}_n^{\sim} be the subclass of \mathcal{P}_n consisting of all polynomials f which satisfy the condition $f(z) \equiv f^*(z)$. It follows from (2) that

$$\max_{|z|=1} |f'(z)| \le \frac{n}{2} \max_{|z|=1} |f(z)|, \qquad f \in \mathcal{P}_n^{\sim}.$$
(3)

Let $f \in \mathcal{P}_n$ and z_0 a point on the unit circle such that $|f(z_0)| = \max_{|z|=1} |f(z)|$. Clearly, $|f^{*'}(z_0)| = |nf(z_0) - z_0f'(z_0)| \ge n|f(z_0)| - |f'(z_0)|$. Hence, if $f \in \mathcal{P}_n^{\sim}$, then

$$\max_{|z|=1} |f'(z)| \ge \frac{n}{2} |f'(z_0)| = \frac{n}{2} \max_{|z|=1} |f(z)|$$

and so, in (3), the inequality sign " \leq " may be replaced by "=". Thus, we have

$$\max_{|z|=1} |f'(z)| = \frac{n}{2} \max_{|z|=1} |f(z)|, \qquad f \in \mathcal{P}_n^{\sim}.$$
(4)

The subclass \mathcal{P}_n^{\sim} of \mathcal{P}_n is of considerable importance. There is another subclass of \mathcal{P}_n which has proved itself to be equally significant, if not more. It consists of those polynomials f in \mathcal{P}_n which satisfy the condition $f(z) \equiv z^n f(1/z)$. Let us denote it by \mathcal{P}_n^{\vee} . The condition defining the subclass \mathcal{P}_n^{\vee} looks very similar to the one defining \mathcal{P}_n^{\sim} . As regards the distribution of their zeros, polynomials in \mathcal{P}_n^{\sim} and those in \mathcal{P}_n^{\vee} , they all have at least half of their zeros outside the open unit disk (here it is understood that a polynomial f belonging to \mathcal{P}_n but of degree m < n has n - mof its zeros at ∞).

Frappier, Rahman and Ruscheweyh ([6], p. 97) showed that for the polynomial $f(z) := \{(1 - iz)^2 + z^{n-2}(z - i)^2\}/4$, which clearly belongs to \mathcal{P}_n^{\vee} , we have

$$\max_{|z|=1} |f(z)| = 1 = |f(\mathbf{i})| \text{ whereas } |f'(-\mathbf{i})| = n - 1,$$

thus exhibiting a polynomial f in \mathcal{P}_n^{\vee} for which

$$\max_{|z|=1} |f'(z)| \ge (n-1) \max_{|z|=1} |f(z)|.$$
(5)

Later Frappier, Rahman and Ruscheweyh ([7, Theorem 2]) proved that for polynomials $f(z) := \sum_{\nu=0}^{n} a_{\nu} z^{\nu}$, whose constant term a_0 is equal to a_n (the coefficient of the leading term $a_n z^n$), we have

$$\max_{|z|=1} |f'(z)| \le \left(n - \frac{1}{2} + \frac{1}{2(n+1)}\right) \max_{|z|=1} |f(z)|.$$
(6)

Since f belongs to \mathcal{P}_n^{\vee} if and only if $a_k = a_{n-k}$ for each $k \ (k = 0 \dots n)$, the above inequality certainly holds for polynomials in \mathcal{P}_n^{\vee} . Inequalities (5) and (6) show that by restricting ourselves to the subclass \mathcal{P}_n^{\vee} , we do not obtain a meaningful improvement on the Bernstein's inequality (1). This is quite surprising since the two classes \mathcal{P}_n^{\sim} and \mathcal{P}_n^{\vee} look similar; for \mathcal{P}_n^{\sim} holds formula (4) by which |f'(z)| at a point of the unit circle cannot be larger than n/2 times $M := \max_{|z|=1} |f(z)|$ if $f \in \mathcal{P}_n^{\sim}$ while it can be as large as n-1 times M if f belongs to \mathcal{P}_n^{\vee} , as (5) says.

However, under some additional restrictions, either on the location of the zeros or on the coefficients of polynomials in \mathcal{P}_n^{\vee} , the bound in (6) can be improved. For example, Rahman and Tariq [16] (see also [11]) proved that for a polynomial $f(z) := \sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ in \mathcal{P}_n^{\vee} , whose coefficients lie in a sector of opening $0 \leq \gamma < \pi$ with the vertex at the origin, we have

$$\max_{|z|=1} |f'(z)| \le \frac{n}{2\cos(\gamma/2)} |f(1)|.$$
(7)

In the case when n is an even integer, the equality holds in (7) for the polynomial $f(z) = z^n + 2e^{i\gamma}z^{n/2} + 1$.

On the other hand, if we assume that all the zeros of f are in the left half plane or in the right half plane [9], then

$$\max_{|z|=1} |f'(z)| \le \frac{n}{\sqrt{2}} \max_{|z|=1} |f(z)|.$$
(8)

Very few sharp results are known about the class \mathcal{P}_n^{\vee} although many papers have been written on the subject since 1976 (see for example, [9, 11, 16]). In fact, the sharp inequality analogous to (1) is still unknown even for n = 3.

The Bernstein's inequality has been generalized in many ways. For example, if f is a polynomial in \mathcal{P}_n , then by Zygmund [19] for any $p \ge 1$, we have

$$\int_{-\pi}^{\pi} |f'(e^{i\theta})|^p \ d\theta \le n^p \int_{-\pi}^{\pi} |f(e^{i\theta})|^p \ d\theta, \qquad f \in \mathcal{P}_n.$$
(9)

If we assume that f belongs to \mathcal{P}_n^{\sim} , the above inequality can be improved. In this case Dewan and Govil [5] proved the following result

$$\int_{-\pi}^{\pi} |f'(e^{i\theta})|^p \ d\theta \le n^p \ C_p \int_{-\pi}^{\pi} |f(e^{i\theta})|^p \ d\theta, \qquad f \in \mathcal{P}_n^{\sim}, \tag{10}$$

where

$$C_p = \frac{2\pi}{\int_{-\pi}^{\pi} |1 + e^{i\alpha}|^p d\alpha} = 2^{-p} \frac{\sqrt{\pi} \Gamma(p/2 + 1)}{\Gamma(p/2 + 1/2)}.$$
(11)

In this paper, we present a property of polynomials in \mathcal{P}_n^{\vee} which have all their zeros in the left half plane. More precisely, we have the following

Theorem 1. Let f be a polynomial in \mathcal{P}_n^{\vee} having all its zeros in the left half plane. Suppose in addition that its zeros which lie in the second quadrant are of modulus at most 1. Then

$$|f'(\mathbf{e}^{-\mathbf{i}\theta})| \le |f'(\mathbf{e}^{\mathbf{i}\theta})|, \qquad 0 \le \theta \le \pi.$$
(12)

As the first application of Theorem 1, we will prove the following L^p inequality for the subclass \mathcal{P}_n^{\vee} . We do not know if it is sharp.

Corollary 1. Let f, which has all its zeros in the left half plane, belong to \mathcal{P}_n^{\vee} . Furthermore, the zeros in the second quadrant are in the unit disk $\{z : |z| \leq 1\}$. Then, for $p \geq 1$

$$\int_{-\pi}^{0} |f'(\mathbf{e}^{\mathbf{i}\theta})|^p \ d\theta \le n^p \ C_p \ \int_{-\pi}^{0} |f(\mathbf{e}^{\mathbf{i}\theta})|^p \ d\theta, \tag{13}$$

where C_p is as given in (11).

As the next application we state the following corollary.

Corollary 2. Let f, which has all its zeros in the left half plane, belong to \mathcal{P}_n^{\vee} . Furthermore, the zeros in the second quadrant are in the unit disk $\{z : |z| \leq 1\}$. Suppose that $|f(e^{-i\theta})| \leq M$ for $0 \leq \theta \leq \pi$. Then

$$|f'(\mathbf{e}^{-\mathbf{i}\theta})| \le M\frac{n}{2}, \qquad 0 \le \theta \le \pi.$$
(14)

The example $f(z) = (z^2 + 1)^{\frac{n}{2}}$ shows that the estimate is sharp when n is even. For odd n, the equality holds for $f(z) = (z + 1)^n$.

1.2. Transcendental entire functions of exponential type

For an entire function f and a real number r > 0, let $M(r) = M_f(r) := \max_{|z|=r} |f(z)|$. Unless f is a constant of modulus less than or equal to 1, its order, which is denoted by ρ , is defined to be $\limsup_{r\to\infty} (\log r)^{-1} \log \log M(r)$. Constants of modulus less than or equal to 1 are of order 0 by convention.

If f is of finite positive order ρ , then $T := \limsup_{r \to \infty} r^{-\rho} \log M(r)$ is called its type.

An entire function f is said to be of exponential type τ if for any $\varepsilon > 0$ there exists a constant $k(\varepsilon)$ such that $|f(z)| \leq k(\varepsilon)e^{(\tau+\varepsilon)|z|}$ for all $z \in \mathbb{C}$. Any entire function of order less than 1 is of exponential type τ , where τ can be taken to be any number greater than or equal to 0. Functions of order 1 type $T \leq \tau$ are also of exponential type τ .

If f is an entire function of exponential type, then its indicator function $h_f(\theta)$ is defined by $h_f(\theta) := \limsup_{r\to\infty} r^{-1} \log |f(re^{i\theta})|$. It describes the growth of f along the ray $\{z | \arg z = \theta\}$. $h_f(\theta)$ is either finite or $-\infty$ and is a continuous function of θ unless it is identically $-\infty$.

For a detailed discussion on entire functions of exponential type, we refer the reader to Boas [4].

Bernstein [2], (see also [3], p. 102) extended inequality (1) to arbitrary entire functions of exponential type bounded on the real line.

Theorem 2. Let f be an entire function of exponential type $\tau > 0$ such that $|f(x)| \leq M$ on the real axis. Then

$$\sup_{\tau \ll < x < \infty} |f'(x)| \le M\tau.$$
(15)

The equality in (15) holds if and only if $f(z) \equiv ae^{i\tau z} + be^{-i\tau z}$, where $a, b \in \mathbb{C}$.

If $f \in \mathcal{P}_n^{\vee}$, then $g(z) := f(e^{iz})$ is an entire function of exponential type which satisfies the condition $g(z) \equiv e^{inz}g(-z)$. Moreover, its type is *n*. This suggests that the class of entire functions of exponential type that generalizes \mathcal{P}_n^{\vee} consists of entire functions of exponential type *f* such that $f(z) \equiv e^{i\tau z}f(-z)$. Let us denote this class by $\mathcal{F}_{\tau}^{\vee}$ which has been studied by Govil [8], Rahman and Tariq [17, 18].

Rahman and Tariq ([17, Theorem 2]) proved the following Theorem which is akin to (5), a result proved by Frappier, Rahman and Ruscheweyh [7] for polynomials.

Theorem 3. For a given positive number ε , as small as we please, there exists an entire function $f_{\varepsilon} \in \mathcal{F}_{\tau}^{\vee}$ such that

$$\sup_{-\infty < x < \infty} |f_{\varepsilon}'(x)| \ge (\tau - \varepsilon) \sup_{-\infty < x < \infty} |f_{\varepsilon}(x)|.$$
(16)

Like polynomials, improved inequalities for $\mathcal{F}_{\tau}^{\vee}$ can be obtained if we impose some additional restriction on it. For example, Rahman and Tariq ([17, Theorem 1]) proved the following theorem for functions in $\mathcal{F}_{\tau}^{\vee}$ which are uniformly almost periodic on the real line. It is clearly an extension of (7) for entire functions of exponential type.

Theorem 4. Let $f \in \mathcal{F}_{\tau}^{\vee}$ be uniformly almost periodic on the real line. Furthermore, suppose that the coefficients A_1, A_2, \ldots of the Fourier series $\sum_{n=1}^{\infty} A_n e^{i\Lambda_n x}$ of f lie in a sector of opening $0 \leq \gamma < \pi$ with the vertex at the origin. Then

$$\sup_{t \to \infty < x < \infty} |f'(x)| \le \frac{\tau}{2\cos(\gamma/2)} |f(0)|.$$
(17)

The result is best possible as the equality holds for $f(z) = e^{i\tau z} + 2e^{i\gamma}e^{i\tau z/2} + 1$.

Let p > 0 be a real number. We say that a function f belongs to L^p on the real line if, $\int_{-\infty}^{\infty} |f(x)|^p dx < \infty$. Inequalities (9) and (10) have been generalized for entire functions of exponential type as well. For example, as a generalization of (9) we have

Theorem 5. Let f be an entire function of exponential type τ that belongs to L^p on the real line, where p > 0 is a real number. Then

$$\int_{-\infty}^{\infty} |f'(x)|^p \, dx \le \tau^p \int_{-\infty}^{\infty} |f(x)|^p \, dx. \tag{18}$$

For various refinement and detailed information we refer the reader to the paper of Rahman and Schemeisser [14].

For functions f in $\mathcal{F}_{\tau}^{\vee}$ that belong to L^2 on the real line, Rahman and Tariq ([18, Theorem 3]) proved that

$$\int_{-\infty}^{\infty} |f'(x)|^2 \, dx \le \frac{\tau^2}{2} \int_{-\infty}^{\infty} |f(x)|^2 \, dx,\tag{19}$$

where the coefficient $\tau^2/2$ of $\int_{-\infty}^{\infty} |f(x)|^2 dx$ cannot be replaced by a smaller number.

In this paper, we present the following theorem for functions in $\mathcal{F}_{\tau}^{\vee}$ that have all their zeros in the first and the third quadrants. It is clearly an extension of Theorem 1 for entire functions of exponential type.

Theorem 6. Let f, which has all its zeros in the first and the third quadrants, belong to $\mathcal{F}_{\tau}^{\vee}$. Then

$$|f'(-x)| \le |f'(x)|, \qquad x > 0.$$
 (20)

As applications of Theorem 6, we state the following inequality about functions in $\mathcal{F}_{\tau}^{\vee}$. We do not know if it is sharp.

Corollary 3. Let f, which has all its zeros in the first and the third quadrants, belong to $\mathcal{F}_{\tau}^{\vee}$. Further suppose that $f \in L^p$ on $(-\infty, 0)$. Then, for $p \geq 1$

$$\int_{-\infty}^{0} |f'(x)|^p \, dx \le \tau^p \, C_p \, \int_{-\infty}^{0} |f(x)|^p \, dx, \tag{21}$$

where C_p is as given in (11).

Corollary 4. Let f, which has all its zeros in the first and the third quadrants, belong to $\mathcal{F}_{\tau}^{\vee}$. Further assume that $|f(x)| \leq M$ on $(-\infty, 0)$. Then

$$|f'(x)| \le \frac{M\tau}{2}, \qquad x \le 0.$$
(22)

The estimate is sharp as the example $M(1 + e^{i\tau z})/2$ shows.

Corollary 5. Let f, which has all its zeros in the first and the third quadrants, belong to $\mathcal{F}_{\tau}^{\vee}$. Further assume that $|f(x)| \leq M$ on $(-\infty, 0)$. Then

$$|f'(x+iy)| \le \frac{M\tau}{2} e^{-\tau y}, \qquad x < 0, y < 0.$$
 (23)

The estimate is sharp as the example $M(1 + e^{i\tau z})/2$ shows.

1.3. Mean value of entire functions of exponential type

Let p > 0 be a real number. For a function f, the mean of order p on the real line is defined by

$$M^{p}f(x) = \limsup_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |f(x)|^{p} dx.$$
 (24)

We say that f has a bounded mean of order p, if $M^p f(x) < \infty$. It can be easily seen that a function bounded on the real axis will always have a bounded mean. However, there are functions which have a bounded mean but not bounded on the real line. Harvey [12] considered the problems of the mean value of entire functions of exponential type. Here is one of his results.

Theorem 7. If f is an entire function of exponential type τ , then

$$M^{p}f'(x) \leq \frac{(p+2)2^{p+2}}{\pi\tau p} \,\delta^{p+1} (\mathrm{e}^{\tau\delta p} - 1)M^{p}f(x), \qquad p > 0, \tag{25}$$

where δ is an arbitrary positive number.

However, when p is greater than one, the constant in the above theorem can be replaced by τ^p . More precisely, Harvey [12] proved that

Theorem 8. If f is an entire function of exponential type τ , then

$$M^{p}f'(x) \le \tau^{p}M^{p}f(x), \qquad p > 1.$$
 (26)

As to the mean value of functions in $\mathcal{F}_{\tau}^{\vee}$, Rahman and Tariq [18] considered the case when p = 2 and obtained the following inequality.

Theorem 9. If f, which is a uniformly almost periodic function on the real line, belongs to $\mathcal{F}_{\tau}^{\vee}$, then

$$\limsup_{T \to \infty} \frac{1}{T} \int_{-T}^{0} |f'(x)|^2 \, dx \le \frac{\tau^2}{2} \, \limsup_{T \to \infty} \frac{1}{T} \int_{-T}^{0} |f(x)|^2 \, dx. \tag{27}$$

Inequality (27) is sharp as the example $f(z) = (1 + e^{i\tau z})/2$ shows.

Here, we will prove the following inequality about the mean value theorem for functions in $\mathcal{F}_{\tau}^{\vee}$. We do not know if it is sharp.

Theorem 10. Let f, which has all its zeros in the first and the third quadrants, belong to $\mathcal{F}_{\tau}^{\vee}$. Assume further that f has a bounded mean of order p where $p \geq 1$. Then

$$\limsup_{T \to \infty} \frac{1}{T} \int_{-T}^{0} |f'(x)|^p \, dx \le \tau^p \, C_p \, \limsup_{T \to \infty} \frac{1}{T} \int_{-T}^{0} |f(x)|^p \, dx, \tag{28}$$

where C_p is as given in (11).

The rest of the paper is organized as follows. In Section 2, we list all the lemmas needed in our proofs. Section 3 deals with the proofs of Theorem 1, Theorem 6 and Theorem 10 and their corollaries discussed above.

2. Lemmas

The first two Lemmas have been proved by Rahman and Tariq [18].

Lemma 1. Let f belong to $\mathcal{F}_{\tau}^{\vee}$ such that |f(x)| is bounded on the real line. Then, for any real γ and $s = -\gamma/\tau$, we have

$$-\mathrm{i}\left\{\mathrm{e}^{\mathrm{i}\gamma}f'(x) + \mathrm{e}^{\mathrm{i}\tau x}f'(-x)\right\} = \sum_{n=-\infty}^{\infty} c_n f\left(x - s + \frac{n\pi}{\tau}\right), \qquad x \in \mathbb{R}, \qquad (29)$$

where

$$c_n = \frac{1}{(s\tau - n\pi)^2} \left\{ 1 + (-1)^n \right\} \left\{ 1 - (-1)^n \cos \gamma \right\} \tau, \qquad n = 0, \pm 1, \pm 2, \dots$$

and $\sum_{n=-\infty}^{\infty} |c_n| = \tau$.

Lemma 2. Let f belong to $\mathcal{F}_{\tau}^{\vee}$ such that $|f(x)| \leq M$ on the real line. Then

$$|f'(x)| + |f'(-x)| \le M\tau, \qquad x \in \mathbb{R}.$$
(30)

We will make use of the following interpolation formula due to Aziz and Mohammad [1].

Lemma 3. Let f belong to \mathcal{P}_n and let $\xi_1, \xi_2, \dots, \xi_n$ be the zeros of $z^n + a$, where $a \neq -1$ is an arbitrary complex number. Then for any complex number z we have

$$zf'(z) = \frac{n}{1+a}f(z) + \frac{1+a}{na}\sum_{\nu=1}^{n}c_{\nu}(a)f(z\xi_{\nu}),$$
(31)

where

$$\sum_{\nu=1}^{n} c_{\nu}(a) = \sum_{\nu=1}^{n} \frac{\xi_{\nu}}{(\xi_{\nu} - 1)^2} = -\frac{n^2 a}{(1+a)^2}.$$

The next inequality, that can be found in Malik [13] (also see, Govil and Rahman ([10], Inequality (3.2)) where this inequality is given for any order derivatives) is well-known and widely used in the study of polynomials.

Lemma 4. Let f belong to \mathcal{P}_n . Define $g(z) \equiv z^n \overline{f(1/\overline{z})}$, a polynomial in \mathcal{P}_n . Then

$$|f'(z)| + |g'(z)| \le n \max_{|z|=1} |f(z)|, \qquad |z| = 1.$$
(32)

Lemma 5. Let us denote $\omega_{\nu} = z_{\nu} + 1/z_{\nu}$ and $\omega_{\mu} = z_{\mu} + 1/z_{\mu}$, where z_{ν} , z_{μ} are complex numbers such that $\pi/2 \leq \arg z_{\nu}$, $\arg z_{\mu} \leq \pi$ and $|z_{\nu}| \leq 1$, $|z_{\mu}| \leq 1$. Define

$$F(x; \ \omega_{\nu}, \ \omega_{\mu}) = -4x^2 \Im(\omega_{\nu} - \bar{\omega}_{\mu}) + 4x \Im(\omega_{\nu}\omega_{\mu}) - (|\omega_{\mu}|^2 \Im\omega_{\nu} + |\omega_{\nu}|^2 \Im\omega_{\mu}),$$

$$G(x; \ \omega_{\nu}) = -2(x+1)\Im\omega_{\nu}.$$

Then for $-1 \leq x \leq 1$,

$$F(x; \ \omega_{\nu}, \ \omega_{\mu}) \ge 0,$$
$$G(x; \ \omega_{\nu}) \ge 0.$$

Proof. First, we note that ω_{ν} may be written as $\omega_{\nu} := x_{\nu}R_{\nu} + iy_{\nu}L_{\nu}$, where

$$R_{\nu} = \left(1 + \frac{1}{x_{\nu}^2 + y_{\nu}^2}\right) \ge 0, \quad L_{\nu} = \left(1 - \frac{1}{x_{\nu}^2 + y_{\nu}^2}\right) \le 0,$$

 $x_{\nu} = \Re z_{\nu}$ and $y_{\nu} = \Im z_{\nu}$. Since $argz_{\nu}$ lies in $[\pi/2, \pi]$, it implies that $\Re \omega_{\nu} \leq 0$ and $\Im \omega_{\nu} \leq 0$. Similarly, $\omega_{\mu} := x_{\mu}R_{\mu} + iy_{\mu}L_{\mu}$, where $R_{\mu} \geq 0, L_{\mu} \leq 0, \Re \omega_{\mu} \leq 0$ and $\Im \omega_{\mu} \leq 0$.

 $F(x; \omega_{\nu}, \omega_{\mu})$ is a quadratic function of the form $ax^2 + bx + c$, where $a = -4\Im(\omega_{\nu} - \bar{\omega}_{\mu}) \ge 0, b = 4\Im(\omega_{\nu}\omega_{\mu}) \ge 0$, and $c = -(|\omega_{\mu}|^2\Im\omega_{\nu} + |\omega_{\nu}|^2\Im\omega_{\mu}) \ge 0$. Its vertex is $(-b/2a, F(-b/2a; \omega_{\nu}, \omega_{\mu}))$, where $-b/2a = \Im(\omega_{\nu}\omega_{\mu})/2\Im(\omega_{\nu} - \bar{\omega}_{\mu})$ and

$$F(-b/2a; \ \omega_{\nu}, \ \omega_{\mu}) = \frac{\left(\Im(\omega_{\nu}\omega_{\mu})\right)^{2}}{\Im(\omega_{\nu} - \overline{\omega}_{\mu})} - \left(|\omega_{\mu}|^{2}\Im\omega_{\nu} + |\omega_{\nu}|^{2}\Im\omega_{\mu}\right)$$
$$= \frac{\left(\Im(\omega_{\nu}\omega_{\mu})\right)^{2} - \left(|\omega_{\mu}|^{2}\Im\omega_{\nu} + |\omega_{\nu}|^{2}\Im\omega_{\mu})\Im(\omega_{\nu} - \overline{\omega}_{\mu}\right)}{\Im(\omega_{\nu} - \overline{\omega}_{\mu})}$$

The numerator $(\Im(\omega_{\nu}\omega_{\mu}))^2 - (|\omega_{\mu}|^2\Im\omega_{\nu} + |\omega_{\nu}|^2\Im\omega_{\mu})\Im(\omega_{\nu} - \overline{\omega}_{\mu})$ of the above expression is equal to

$$(x_{\mu}R_{\mu}y_{\nu}L_{\nu}+x_{\nu}R_{\nu}y_{\mu}L_{\mu})^{2}-\{y_{\nu}L_{\nu}(x_{\mu}^{2}R_{\mu}^{2}+y_{\mu}^{2}L_{\mu}^{2})+y_{\mu}L_{\mu}(x_{\nu}^{2}R_{\nu}^{2}+y_{\nu}^{2}L_{\nu})\}(y_{\nu}L_{\nu}+y_{\mu}L_{\mu})$$

$$=-[y_{\mu}L_{\mu}y_{\nu}L_{\nu}\{(x_{\mu}R_{\mu}-x_{\nu}R_{\nu})^{2}+(y_{\mu}^{2}L_{\mu}^{2}+y_{\nu}^{2}L_{\nu})^{2}\}+2y_{\nu}^{2}L_{\nu}^{2}y_{\mu}^{2}L_{\mu}^{2}]$$

$$\leq 0.$$
(33)

Since $\Im(\omega_{\nu} - \overline{\omega}_{\mu}) \leq 0$, we have $a \geq 0$ and $F(-b/2a; \omega_{\nu}, \omega_{\mu}) \geq 0$. Also, $F(x; \omega_{\nu}, \omega_{\mu})$ will attain the minimum value at the vertex. Thus, for any real number x we have $F(x; \omega_{\nu}, \omega_{\mu}) \geq F(-b/2a; \omega_{\nu}, \omega_{\mu}) \geq 0$ and hence in particular for $-1 \leq x \leq 1$.

As far as the function G is concerned, we just have to note that $\Im \omega_{\nu} \leq 0$, which shows that $G(x; \omega_{\nu}) = -2(x+1)\Im \omega_{\nu} \geq 0$ for $-1 \leq x \leq 1$.

3. Proofs of Theorem 1, Theorem 6 and Theorem 10

3.1. Proof of Theorem 1 and its corollaries

Case 1. f has all its zeros on the unit circle

Let us assume that $z_{\nu} := e^{i\theta_{\nu}}$, where $\pi/2 \leq \theta_{\nu} \leq \pi$ ($\nu = 1, 2, ..., l$) are l zeros of f. Since f belongs to \mathcal{P}_{n}^{\vee} , for every $\nu, 1/z_{\nu} = e^{-i\theta_{\nu}}$ is also a zeros of f. Assume further that f has a zero of multiplicity m at -1, where $m \geq 0$. Thus f may be written as

$$f(z) = (z+1)^m \prod_{\nu=1}^l (z - e^{i\theta_\nu})(z - e^{-i\theta_\nu}),$$

where n = 2l + m. Let θ be a number in $[0, \pi]$ such that $\theta \neq \theta_{\nu}, (\nu = 1, 2, ..., l)$. Then

$$\frac{f'(\mathbf{e}^{\mathrm{i}\theta})}{f(\mathbf{e}^{\mathrm{i}\theta})} = \Re \frac{f'(\mathbf{e}^{\mathrm{i}\theta})}{f(\mathbf{e}^{\mathrm{i}\theta})} + \mathrm{i}\Im \frac{f'(\mathbf{e}^{\mathrm{i}\theta})}{f(\mathbf{e}^{\mathrm{i}\theta})}$$

where

$$\Re \frac{f'(\mathbf{e}^{\mathrm{i}\theta})}{f(\mathbf{e}^{\mathrm{i}\theta})} = \frac{m(\cos\theta+1)}{|1+\mathbf{e}^{\mathrm{i}\theta}|^2} + \sum_{\nu=1}^{l} \frac{\cos\theta-\cos\theta_{\nu}}{|\mathbf{e}^{\mathrm{i}\theta}-\mathbf{e}^{\mathrm{i}\theta_{\nu}}|^2} + \frac{\cos\theta-\cos\theta_{\nu}}{|\mathbf{e}^{\mathrm{i}\theta}-\mathbf{e}^{-\mathrm{i}\theta_{\nu}}|^2}$$

and

$$\Im \frac{f'(\mathrm{e}^{\mathrm{i}\theta})}{f(\mathrm{e}^{\mathrm{i}\theta})} = -\frac{m\sin\theta}{|1+\mathrm{e}^{\mathrm{i}\theta}|^2} + \sum_{\nu=1}^{l} \frac{\sin\theta_{\nu} - \sin\theta}{|\mathrm{e}^{\mathrm{i}\theta} - \mathrm{e}^{\mathrm{i}\theta_{\nu}}|^2} - \frac{\sin\theta_{\nu} + \sin\theta}{|\mathrm{e}^{\mathrm{i}\theta} - \mathrm{e}^{-\mathrm{i}\theta_{\nu}}|^2}.$$

Note that $\Re \left(f'(\mathbf{e}^{\mathrm{i}\theta})/f(\mathbf{e}^{\mathrm{i}\theta}) \right)$ is an even function of θ and $\Im \left(f'(\mathbf{e}^{\mathrm{i}\theta})/f(\mathbf{e}^{\mathrm{i}\theta}) \right)$ is an odd function of θ . So $|f'(\mathbf{e}^{\mathrm{i}\theta})|/|f(\mathbf{e}^{\mathrm{i}\theta})|$ is equal to

$$\sqrt{\left(\Re\frac{f'(\mathrm{e}^{\mathrm{i}\theta})}{f(\mathrm{e}^{\mathrm{i}\theta})}\right)^{2} + \left(\Im\frac{f'(\mathrm{e}^{\mathrm{i}\theta})}{f(\mathrm{e}^{\mathrm{i}\theta})}\right)^{2}} = \sqrt{\left(\Re\frac{f'(\mathrm{e}^{-\mathrm{i}\theta})}{f(\mathrm{e}^{-\mathrm{i}\theta})}\right)^{2} + \left(-\Im\frac{f'(\mathrm{e}^{-\mathrm{i}\theta})}{f(\mathrm{e}^{-\mathrm{i}\theta})}\right)^{2}} = \left|\frac{f'(\mathrm{e}^{-\mathrm{i}\theta})}{f(\mathrm{e}^{-\mathrm{i}\theta})}\right|.$$
(34)

For $f \in \mathcal{P}_n^{\vee}$ and $\theta \in [0, \pi]$, we have $|f(e^{-i\theta})| = |f(e^{i\theta})|$. So we conclude, from (34)

$$|f'(\mathbf{e}^{-\mathrm{i}\theta})| \le |f'(\mathbf{e}^{\mathrm{i}\theta})|, \qquad 0 \le \theta \le \pi, f(\mathbf{e}^{\mathrm{i}\theta}) \ne 0.$$

By continuity, the same must hold for those θ for which $f(e^{i\theta}) = 0$. Case 2. f is a second degree polynomial

Let z_{ν} be the zero of f such that $\pi/2 \leq \arg z_{\nu} \leq \pi$ and $|z_{\nu}| \leq 1$. The polynomial f and its derivative f' may be written as $f(z) = (z-z_{\nu})(z-1/z_{\nu})$ and $f'(z) = 2z-\omega_{\nu}$, respectively, where $\omega_{\nu} := z_{\nu} + 1/z_{\nu} = x_{\nu}R_{\nu} + iy_{\nu}L_{\nu}, -1 \leq x_{\nu} = \Re z_{\nu} \leq 0$,

$$R_{\nu} = \left(1 + \frac{1}{x_{\nu}^2 + y_{\nu}^2}\right) > 0, 0 \le y_{\nu} = \Im z_{\nu} \le 1 \text{ and } L_{\nu} = \left(1 - \frac{1}{x_{\nu}^2 + y_{\nu}^2}\right) < 0.$$

The conditions on $R_{\nu}, L_{\nu}, x_{\nu}, y_{\nu}$ ensure that ω_{ν} lies in the third quadrant. Thus, we have

$$|f'(\mathbf{e}^{-\mathrm{i}\theta})| = |2\mathbf{e}^{-\mathrm{i}\theta} - \omega_{\nu}| \le |2\mathbf{e}^{\mathrm{i}\theta} - \omega_{\nu}| = |f'(\mathbf{e}^{\mathrm{i}\theta})|, \qquad 0 \le \theta \le \pi.$$

This proves the theorem when f is a polynomial of degree 2. We also note that for $0 \le \theta \le \pi$, $|f(e^{-i\theta})| = |f(e^{i\theta})|$. Thus, for any f in \mathcal{P}_2^{\vee} we have

$$\left|\frac{f'(\mathbf{e}^{-\mathrm{i}\theta})}{f(\mathbf{e}^{-\mathrm{i}\theta})}\right| \le \left|\frac{f'(\mathbf{e}^{\mathrm{i}\theta})}{f(\mathbf{e}^{\mathrm{i}\theta})}\right|, \qquad 0 \le \theta \le \pi.$$
(35)

Case 3. Not all the zeros of f are on the unit circle

Let z_{ν} ($\nu = 1, 2, \dots, l$) be the zeros f such that $\pi/2 \leq \arg z_{\nu} \leq \pi$ and $|z_{\nu}| \leq 1$. Also suppose that f has a zero of multiplicity m at -1 where $m \geq 0$. Then f can be represented as

$$f(z) = (z+1)^m \prod_{\nu=1}^{l} g_{\nu}(z),$$

where $g_{\nu}(z) = (z - z_{\nu})(z - 1/z_{\nu})$ is a second degree polynomial in \mathcal{P}_{2}^{\vee} for each ν . For any z on the unit circle such that $f(z) \neq 0$ we have

$$\frac{f'(z)}{f(z)} = \frac{m}{z+1} + \sum_{\nu=1}^{l} \frac{g'_{\nu}(z)}{g_{\nu}(z)}.$$

A straightforward calculation gives us

$$\left|\frac{f'(z)}{f(z)}\right|^{2} = \left|\frac{m}{z+1}\right|^{2}$$

$$+ \sum_{\nu=1}^{l} \left(\left|\frac{g'_{\nu}(z)}{g_{\nu}(z)}\right|^{2} + 2\Re\left(\frac{m}{(z+1)}\frac{g'_{\nu}(z)}{g_{\nu}(z)}\right) + 2\sum_{\mu=\nu+1}^{l} \Re\left(\frac{g'_{\nu}(z)}{g_{\nu}(z)}\frac{\overline{g'_{\mu}(z)}}{\overline{g_{\mu}(z)}}\right)\right).$$
(36)

There are four parts in the above equation. We will compare the value of each part at $e^{-i\theta}$ and $e^{i\theta}$, respectively.

The first part $|m/(z+1)|^2$ gives us

$$\left|\frac{m}{\mathrm{e}^{-\mathrm{i}\theta}+1}\right|^2 = \left|\frac{m}{\mathrm{e}^{\mathrm{i}\theta}+1}\right|^2, \qquad 0 \le \theta \le \pi.$$
(37)

Since $g_{\nu}(z)$ belongs to \mathcal{P}_2^{\vee} for each ν , from (35) the second part $|g'_{\nu}(z)/g_{\nu}(z)|^2$ gives us

$$\left|\frac{g_{\nu}'(\mathrm{e}^{-\mathrm{i}\theta})}{g_{\nu}(\mathrm{e}^{-\mathrm{i}\theta})}\right|^{2} \leq \left|\frac{g_{\nu}'(\mathrm{e}^{\mathrm{i}\theta})}{g_{\nu}(\mathrm{e}^{\mathrm{i}\theta})}\right|^{2}, \qquad 0 \leq \theta \leq \pi.$$
(38)

Let $z=x+\mathrm{i}y$ be a point on the unit circle. From Case 2 again, it is easy to verify that

$$\frac{m}{(z+1)} \frac{g_{\nu}'(z)}{g_{\nu}(z)} = \frac{m}{(z+1)} \frac{2z - \omega_{\nu}}{z^2 - \omega_{\nu} z + 1} \\
= \frac{m}{|z+1|^2} \frac{2z - \omega_{\nu}}{|z^2 - \omega_{\nu} z + 1|^2} (z+1)(\overline{z}^2 - \overline{\omega_{\nu} z} + 1) \\
= \frac{m}{|z+1|^2} \frac{(Q_1(x;\omega_{\nu}) + y S_1(x;\omega_{\nu})) + i(Q_2(x;\omega_{\nu}) + y S_2(x;\omega_{\nu}))}{|z^2 - \omega_{\nu} z + 1|^2}, \quad (39)$$

where

$$Q_{1}(x;\omega_{\nu}) = (x+1) \left(4x - 2(x+1)\Re\omega_{\nu} + |\omega_{\nu}|^{2}\right);$$

$$S_{1}(x;\omega_{\nu}) = -2(x+1)\Im\omega_{\nu};$$

$$Q_{2}(x;\omega_{\nu}) = 2(1-x^{2})\Im\omega_{\nu};$$

$$S_{2}(x;\omega_{\nu}) = \left(4x + 2(x-1)\Re\omega_{\nu} - |\omega_{\nu}|^{2}\right).$$

(40)

Thus from Lemma 5, (39) and the fact that

$$|e^{-2i\theta} - e^{-i\theta}\omega_{\nu} + 1|^2 = |e^{-2i\theta}||e^{2i\theta} - e^{i\theta}\omega_{\nu} + 1|^2 = |e^{2i\theta} - e^{i\theta}\omega_{\nu} + 1|^2,$$

the third part $\Re\left(mg'_{\nu}(z)/\overline{(z+1)}g_{\nu}(z)\right)$ gives us

$$\Re\left(\frac{m}{(\mathrm{e}^{-\mathrm{i}\theta}+1)}\frac{g_{\nu}'(\mathrm{e}^{-\mathrm{i}\theta})}{g_{\nu}(\mathrm{e}^{-\mathrm{i}\theta})}\right) = m\frac{Q_{1}(\cos(-\theta);\omega_{\nu}) + \sin(-\theta) S_{1}(\cos(-\theta);\omega_{\nu})}{|\mathrm{e}^{-\mathrm{i}\theta}+1|^{2} |\mathrm{e}^{-2\mathrm{i}\theta}-\mathrm{e}^{-\mathrm{i}\theta}\omega_{\nu}+1|^{2}}$$
$$= m\frac{Q_{1}(\cos\theta;\omega_{\nu}) - \sin\theta S_{1}(\cos\theta;\omega_{\nu})}{|\mathrm{e}^{\mathrm{i}\theta}+1|^{2} |\mathrm{e}^{2\mathrm{i}\theta}-\mathrm{e}^{\mathrm{i}\theta}\omega_{\nu}+1|^{2}}$$
$$\leq m\frac{Q_{1}(\cos\theta;\omega_{\nu}) + \sin\theta S_{1}(\cos\theta;\omega_{\nu})}{|\mathrm{e}^{\mathrm{i}\theta}+1|^{2} |\mathrm{e}^{2\mathrm{i}\theta}-\mathrm{e}^{\mathrm{i}\theta}\omega_{\nu}+1|^{2}}$$
$$= \Re\left(\frac{m}{(\mathrm{e}^{\mathrm{i}\theta}+1)}\frac{g_{\nu}'(\mathrm{e}^{\mathrm{i}\theta})}{g_{\nu}(\mathrm{e}^{\mathrm{i}\theta})}\right), \qquad 0 \le \theta \le \pi.$$

Let us turn to the fourth part. As in the third part, let z = x + iy be a point on

the unit circle. Then for any μ and ν , it can be verified that

$$\frac{g_{\nu}'(z)}{g_{\nu}(z)}\frac{g_{\mu}'(z)}{g_{\mu}(z)} = \frac{2z - \omega_{\nu}}{z^2 - z\,\omega_{\nu} + 1}\frac{\overline{2z - \omega_{\mu}}}{\overline{z^2 - z\,\omega_{\mu} + 1}} = \frac{4 - 2z\overline{\omega}_{\mu} - 2\overline{z}\omega_{\nu} + \omega_{\nu}\overline{\omega}_{\mu}}{4x^2 - 2x(\overline{\omega}_{\mu} + \omega_{\nu}) + \omega_{\nu}\overline{\omega}_{\mu}}$$
(42)
$$= \frac{(Q_3(x;\omega_{\nu},\omega_{\mu}) + y\,S_3(x;\omega_{\nu},\omega_{\mu})) + \mathrm{i}\,(Q_4(x;\omega_{\nu},\omega_{\mu}) + y\,S_4(x;\omega_{\nu},\omega_{\mu}))}{|4x^2 - 2x(\omega_{\nu} + \overline{\omega}_{\mu}) + \omega_{\nu}\overline{\omega}_{\mu}|^2},$$

where

$$Q_{3}(x;\omega_{\nu},\omega_{\mu}) = 16x^{2} - 16x\Re(\overline{\omega}_{\nu} + \omega_{\mu}) + 8xy^{2}\Re(\overline{\omega}_{\mu} + \omega_{\nu}) + 8\Re(\overline{\omega}_{\nu}\omega_{\mu}) -4y^{2}\Re(\overline{\omega}_{\mu}\omega_{\nu}) + 4x^{2}|\overline{\omega}_{\mu} + \omega_{\mu}|^{2} + |\omega_{\mu}\omega_{\nu}|^{2} - 4x\Re(\overline{\omega}_{\mu}|\omega_{\nu}|^{2} + \omega_{\nu}|\omega_{\mu}|^{2});$$

$$S_{3}(x;\omega_{\nu},\omega_{\mu}) = -8x^{2}\Im(\omega_{\nu} - \overline{\omega}_{\mu}) + 8x\Im(\omega_{\nu}\omega_{\mu}) + 2\Im\overline{\omega}_{\nu}|\omega_{\mu}|^{2} - 2\Im\omega_{\mu}|\omega_{\nu}|^{2};$$

$$Q_{4}(x;\omega_{\nu},\omega_{\mu}) = 8xy^{2}\Im(\overline{\omega}_{\mu} + \omega_{\nu}) - 4y^{2}\Im(\overline{\omega}_{\mu}\omega_{\nu});$$

$$S_{4}(x;\omega_{\nu},\omega_{\mu}) = 8x^{2}\Re(\omega_{\nu} - \overline{\omega}_{\mu}) - 4x(|\omega_{\nu}|^{2} - |\omega_{\mu}|^{2}) + 2|\omega_{\nu}|^{2}\Re\overline{\omega}_{\mu} - 2|\omega_{\mu}|^{2}\Re\overline{\omega}_{\nu}.$$

(43)

Thus from Lemma 5 and (42), the fourth part $\sum_{\mu=\nu+1}^{l} \Re\left(g'_{\nu}(z)\overline{g'_{\mu}(z)}/g_{\nu}(z)\overline{g_{\mu}(z)}\right)$ gives us

$$\sum_{\mu=\nu+1}^{l} \Re\left(\frac{g_{\nu}'(\mathrm{e}^{-\mathrm{i}\theta})}{g_{\nu}(\mathrm{e}^{-\mathrm{i}\theta})} \frac{\overline{g_{\mu}'(\mathrm{e}^{-\mathrm{i}\theta})}}{g_{\mu}(\mathrm{e}^{-\mathrm{i}\theta})}\right)$$

$$= \sum_{\mu=\nu+1}^{l} \left(\frac{Q_{3}(\cos(-\theta);\omega_{\nu}) + \sin(-\theta) \ S_{3}(\cos(-\theta);\omega_{\nu})}{|4\cos(-\theta)^{2} - 2(\omega_{\nu} + \bar{\omega}_{\mu})\cos(-\theta) + \omega_{\nu}\bar{\omega}_{\mu}|^{2}}\right)$$

$$= \sum_{\mu=\nu+1}^{l} \left(\frac{Q_{3}(\cos\theta;\omega_{\nu}) - \sin\theta \ S_{3}(\cos\theta;\omega_{\nu})}{|4\cos\theta^{2} - 2(\omega_{\nu} + \bar{\omega}_{\mu})\cos\theta + \omega_{\nu}\bar{\omega}_{\mu}|^{2}}\right)$$

$$\leq \sum_{\mu=\nu+1}^{l} \left(\frac{Q_{3}(\cos\theta;\omega_{\nu}) + \sin\theta \ S_{3}(\cos\theta;\omega_{\nu})}{|4\cos\theta^{2} - 2(\omega_{\nu} + \bar{\omega}_{\mu})\cos\theta + \omega_{\nu}\bar{\omega}_{\mu}|^{2}}\right)$$

$$= \sum_{\mu=\nu+1}^{l} \Re\left(\frac{g_{\nu}'(\mathrm{e}^{\mathrm{i}\theta})}{g_{\nu}(\mathrm{e}^{\mathrm{i}\theta})} \frac{\overline{g_{\mu}'(\mathrm{e}^{\mathrm{i}\theta})}}{g_{\mu}(\mathrm{e}^{\mathrm{i}\theta})}\right), \quad 0 \le \theta \le \pi.$$

Using (37), (38), (41) and (44) in (36), we conclude that

$$\left|\frac{f'(\mathrm{e}^{-\mathrm{i}\theta})}{f(\mathrm{e}^{-\mathrm{i}\theta})}\right|^2 \le \left|\frac{f'(\mathrm{e}^{\mathrm{i}\theta})}{f(\mathrm{e}^{\mathrm{i}\theta})}\right|^2, \qquad 0 \le \theta \le \pi.$$
(45)

Since for any θ , $|f(e^{-i\theta})| = |f(e^{i\theta})|$, we get from (45)

$$|f'(\mathbf{e}^{-\mathrm{i}\theta})| \le |f'(\mathbf{e}^{\mathrm{i}\theta})|, \qquad 0 \le \theta \le \pi, f(\mathbf{e}^{\mathrm{i}\theta}) \ne 0.$$

By continuity, the same must hold for those θ for which $f(e^{i\theta}) = 0$. This completes the proof of Theorem 1.

Proof of Corollary 1. For polynomials f in \mathcal{P}_n^{\vee} , we have

$$z^{n-1} f'(\frac{1}{z}) + z f'(z) = n f(z).$$

From the interpolation formula (31) of Aziz and Mohammad given in Lemma 3, with $a = e^{i\alpha}$, where $\alpha \in \mathbb{R}$ and $z = e^{i\theta}$ is a complex number on the unit circle, we get

$$e^{i(\theta+\alpha)} f'(e^{i\theta}) - e^{i(n-1)\theta} f'(e^{-i\theta}) = \frac{(1+e^{i\alpha})^2}{n e^{i\alpha}} \sum_{\nu=1}^n c_{\nu}(a) f(e^{i\theta}\xi_{\nu}),$$

which can be written as

$$e^{i(\theta+\alpha)} f'(e^{i\theta}) - e^{i(n-1)\theta} f'(e^{-i\theta}) = n \sum_{\nu=1}^n d_\nu(e^{i\alpha}) f(e^{i\theta}\xi_\nu),$$

where

$$\sum_{\nu=0}^{n} |d_{\nu}(e^{i\alpha})| = \sum_{\nu=0}^{n} \left| \frac{c_{\nu}(e^{i\alpha})}{n^2 e^{i\alpha}/(1+e^{i\alpha})^2} \right| = 1.$$

For $p \geq 1$, we have

$$\left| e^{\mathbf{i}(\theta+\alpha)} f'(\mathbf{e}^{\mathbf{i}\theta}) - e^{\mathbf{i}(n-1)\theta} f'(\mathbf{e}^{-\mathbf{i}\theta}) \right|^p \le n^p \sum_{\nu=1}^n d_\nu(\mathbf{e}^{\mathbf{i}\alpha}) \left| f(\mathbf{e}^{\mathbf{i}\theta}\xi_\nu) \right|^p.$$

Integrating both sides with respect to θ from $-\pi$ to π , we get

$$\int_{-\pi}^{\pi} \left| e^{i(\theta+\alpha)} f'(e^{i\theta}) - e^{i(n-1)\theta} f'(e^{-i\theta}) \right|^p d\theta \le n^p \int_{-\pi}^{\pi} \left| f(e^{i\theta}) \right|^p d\theta.$$

Since the above inequality is true for every α in $[0, 2\pi]$, integrating both sides with respect to α and changing the order of integration, we get

$$\int_{-\pi}^{\pi} \int_{0}^{2\pi} \left| e^{i(\theta+\alpha)} f'(e^{i\theta}) - e^{i(n-1)\theta} f'(e^{-i\theta}) \right|^{p} d\alpha d\theta \leq 2\pi n^{p} \int_{-\pi}^{\pi} \left| f(e^{i\theta}) \right|^{p} d\theta.$$
(46)

The left-hand side of the inequality (46) is

$$\int_{-\pi}^{\pi} \int_{0}^{2\pi} \left| e^{i(\theta+\alpha)} f'(e^{i\theta}) - e^{i(n-1)\theta} f'(e^{-i\theta}) \right|^{p} d\alpha d\theta$$

$$= \int_{-\pi}^{0} \int_{0}^{2\pi} \left| f'(e^{i\theta}) \right|^{p} \left| 1 - e^{i(n-2)\theta-i\alpha} \frac{f'(e^{-i\theta})}{f'(e^{i\theta})} \right|^{p} d\alpha d\theta$$

$$+ \int_{0}^{\pi} \int_{0}^{2\pi} \left| f'(e^{-i\theta}) \right|^{p} \left| 1 - e^{i(2-n)\theta+i\alpha} \frac{f'(e^{i\theta})}{f'(e^{-i\theta})} \right|^{p} d\alpha d\theta$$

$$\geq 2 \int_{-\pi}^{0} \left| f'(e^{i\theta}) \right|^{p} d\theta \int_{0}^{2\pi} \left| 1 + e^{i\alpha} \right|^{p} d\alpha.$$
(47)

Inequality (47) follows from the fact that

$$\begin{aligned} \left| f'(\mathbf{e}^{-\mathrm{i}\theta}) / f'(\mathbf{e}^{\mathrm{i}\theta}) \right| &\geq 1 \text{ for } -\pi \leq \theta \leq 0, \\ \left| f'(\mathbf{e}^{\mathrm{i}\theta}) / f'(\mathbf{e}^{-\mathrm{i}\theta}) \right| &\geq 1 \text{ for } 0 \leq \theta \leq \pi, \end{aligned}$$

and

$$\int_0^{2\pi} |1 + r \mathrm{e}^{\mathrm{i}\gamma}|^p d\gamma \ge \int_0^{2\pi} |1 + \mathrm{e}^{\mathrm{i}\gamma}|^p d\gamma \text{ for every } |r| \ge 1 \text{ and } p \ge 1.$$

Also, for $f \in \mathcal{P}_n^{\vee}$, $|f(e^{-i\theta})| = |f(e^{i\theta})|$ for $0 \le \theta \le \pi$. From (46) and (47) we conclude that

$$\int_{-\pi}^{0} |f'(\mathbf{e}^{\mathbf{i}\theta})|^p \ d\theta \le n^p \ C_p \ \int_{-\pi}^{0} |f(\mathbf{e}^{\mathbf{i}\theta})|^p \ d\theta,$$

where C_p is as given in (11).

Proof of Corollary 2. Let f be a polynomial in \mathcal{P}_n^{\vee} such that $|f(e^{-i\theta})| \leq M$ for $0 \leq \theta \leq \pi$. Since $|f(e^{-i\theta})| = |f(e^{i\theta})|$ for every \underline{f} in \mathcal{P}_n^{\vee} , it implies that $|f(e^{i\theta})| \leq M$ for $-\pi \leq \theta \leq \pi$. We also observe that $g(z) \equiv z^n \overline{f(1/\overline{z})} = \overline{f(\overline{z})}$. Then from inequality (32) in Lemma 4, for $z = e^{i\theta}$

$$|f'(e^{i\theta})| + |g'(e^{i\theta})| = |f'(e^{-i\theta})| + |f'(e^{i\theta})| \le nM, \qquad -\pi \le \theta \le \pi.$$
(48)

From Theorem 1, $|f'(e^{-i\theta})| \le |f'(e^{i\theta})|$ for $0 \le \theta \le \pi$. So, from (48) we get

$$2|f'(\mathrm{e}^{-\mathrm{i}\theta})| \le |f'(\mathrm{e}^{-\mathrm{i}\theta})| + |f'(\mathrm{e}^{\mathrm{i}\theta})| \le nM, \qquad 0 \le \theta \le \pi.$$

$$\tag{49}$$

The result follows from (49). It is easy to verify that the equality holds for $f(z) = (z^2 + 1)^{\frac{n}{2}}$, when n is even and $f(z) = (z + 1)^n$, when n is odd.

3.2. Proof of Theorem 6 and its corollaries

Let $\{z_{\nu}\}, \nu = 1, 2, \ldots$ be the zeros of f other than 0 in $\{z \in \mathbb{C} : \Re z \ge 0, \Im z \ge 0\}$. The number of such zeros can be finite or infinite. Besides, to each zero z_{ν} there corresponds a zero $-z_{\nu}$. A zero of f at the origin, if there is any, must be of even multiplicity, say 2k. For these reasons, the Hadamard factorization of f takes the form

$$f(z) = cz^{2k} e^{i\tau z/2} \prod_{\nu} \left(1 - \frac{z^2}{z_{\nu}^2}\right),$$

where c is a constant and k is a non-negative integer. Now, let us write

$$x_{\nu} = \Re z_{\nu}$$
 and $y_{\nu} = \Im z_{\nu}$

so that $x_{\nu} \ge 0$ and $y_{\nu} \ge 0$.

Case 1. f has only real zeros

In this case, for any real x different from 0 that is not a zero of f, we have

$$\frac{f'(x)}{f(x)} = \frac{2k}{x} + \sum_{\nu} \left(\frac{1}{x_{\nu} + x} - \frac{1}{x_{\nu} - x}\right) + i\frac{\tau}{2}$$

The real part of f'(x)/f(x) is clearly an odd function of x and so

$$\frac{f'(-x)}{f(-x)} = -\left(\frac{2k}{x} + \sum_{\nu} \left(\frac{1}{x_{\nu} + x} - \frac{1}{x_{\nu} - x}\right)\right) + i\frac{\tau}{2}.$$

From the definition of the class $\mathcal{F}_{\tau}^{\vee}$ it is clear that |f(-x)| = |f(x)| for any real x. Hence |f'(-x)| = |f'(x)|. Since it holds for any x such that $f(x) \neq 0$, by continuity it also holds for those values for x for which f(x) = 0.

Case 2. The zeros of f are not all real

In this case, for any real x different from 0 that is not a zero of f, we have

$$\frac{f'(x)}{f(x)} = A_f(x) + i\left(\frac{\tau}{2} + B_f(x)\right)$$

where

$$A_f(x) := \frac{2k}{x} + \sum_{\nu} \left(\frac{x_{\nu} + x}{(x_{\nu} + x)^2 + y_{\nu}^2} - \frac{x_{\nu} - x}{(x_{\nu} - x)^2 + y_{\nu}^2} \right)$$

and

$$B_f(x) := 4x \sum_{\nu} \left(\frac{x_{\nu} y_{\nu}}{((x_{\nu} + x)^2 + y_{\nu}^2)((x_{\nu} - x)^2 + y_{\nu}^2)} \right)$$

Consequently, for any real $x \neq 0$ such that $f(x) \neq 0$ we have

$$\left|\frac{f'(x)}{f(x)}\right| = \sqrt{(A_f(x))^2 + \left(B_f(x) + \frac{\tau}{2}\right)^2}.$$

Now note that $B_f(x)$ is an odd function that is positive for x > 0. Hence

$$\left| B_f(-x) + \frac{\tau}{2} \right| < \left| B_f(x) + \frac{\tau}{2} \right|, \qquad x > 0, f(x) \neq 0.$$

Since |f(-x)| = |f(x)|, we find that $|f'(-x)| \le |f'(x)|$ for any positive x if $f(x) \ne 0$. However, by continuity, the same must also hold for those values of x for which f(x) = 0. The proof of Theorem 6 is thus complete.

Proof of Corollary 3. Let $p \ge 1$ be any real number. From the interpolation formula (29) given in Lemma 1, we get

$$\frac{\mathrm{e}^{\mathrm{i}\gamma}f'(x) + \mathrm{e}^{\mathrm{i}\tau x}f'(-x)}{\tau}\Big|^p \le \sum_{n=-\infty}^{\infty} \frac{c_n}{\tau} \left| f\left(x - s + \frac{n\pi}{\tau}\right) \right|^p.$$

If we integrate both sides of the above inequality with respect to x on the real line, we have

$$\int_{-\infty}^{\infty} |\mathrm{e}^{\mathrm{i}\gamma} f'(x) + \mathrm{e}^{\mathrm{i}\tau x} f'(-x)|^p dx \le \tau^p \int_{-\infty}^{\infty} |f(x)|^p dx.$$

The above integral is true for any $0 \le \gamma \le 2\pi$, therefore by integrating both sides with respect to γ on the interval $[0, 2\pi]$ we get

$$\int_{0}^{2\pi} \int_{-\infty}^{\infty} |e^{i\gamma} f'(x) + e^{i\tau x} f'(-x)|^{p} dx d\gamma \le 2\pi \ \tau^{p} \int_{-\infty}^{\infty} |f(x)|^{p} dx.$$
(50)

The integral on the left-hand side of (50) may be written as

$$\int_{0}^{2\pi} \int_{-\infty}^{0} |\mathrm{e}^{\mathrm{i}\gamma} f'(x) + \mathrm{e}^{\mathrm{i}\tau x} f'(-x)|^{p} dx \, d\gamma + \int_{0}^{2\pi} \int_{0}^{\infty} |\mathrm{e}^{\mathrm{i}\gamma} f'(x) + \mathrm{e}^{\mathrm{i}\tau x} f'(-x)|^{p} dx \, d\gamma.$$
(51)

The first integral $\int_0^{2\pi} \int_{-\infty}^0 |e^{i\gamma} f'(x) + e^{i\tau x} f'(-x)|^p dx d\gamma$ in (51), after the change of order of integration can be written as

$$\int_{-\infty}^{0} \int_{0}^{2\pi} |e^{i\gamma} f'(x) + e^{i\tau x} f'(-x)|^{p} dx d\gamma$$

=
$$\int_{-\infty}^{0} |f'(x)|^{p} dx \int_{0}^{2\pi} \left| 1 + e^{i\tau x - i\gamma} \frac{f'(-x)}{f'(x)} \right|^{p} d\gamma$$

$$\geq \int_{-\infty}^{0} |f'(x)|^{p} dx \int_{0}^{2\pi} |1 + e^{i\gamma}|^{p} d\gamma.$$
 (52)

Inequality (52) follows because for $x \leq 0$, $|f'(-x)/f'(x)| \geq 1$ from Theorem 6 and $\int_{0}^{2\pi} |1 + r e^{i\gamma}|^{p} d\gamma \ge \int_{0}^{2\pi} |1 + e^{i\gamma}|^{p} d\gamma \text{ for every } |r| \ge 1 \text{ and } p \ge 1.$ Similar reasoning applied to the second integral $\int_{0}^{2\pi} \int_{0}^{\infty} |e^{i\gamma} f'(x) + e^{i\tau x} f'(-x)|^{p} dx d\gamma$

in (51) gives

$$\int_{0}^{2\pi} \int_{0}^{\infty} |\mathrm{e}^{\mathrm{i}\gamma} f'(x) + \mathrm{e}^{\mathrm{i}\tau x} f'(-x)|^{p} dx d\gamma \ge \int_{0}^{\infty} |f'(-x)|^{p} dx \int_{0}^{2\pi} |1 + \mathrm{e}^{\mathrm{i}\gamma}|^{p} d\gamma, \quad (53)$$

as once again from Theorem 6 we have $|f'(x)/f'(-x)| \ge 1$ when $x \ge 0$. Thus from (50), (52) and (53) we get

$$\int_{0}^{2\pi} |1 + e^{i\gamma}|^{p} d\gamma \left(\int_{-\infty}^{0} |f'(x)|^{p} dx + \int_{0}^{\infty} |f'(-x)|^{p} dx \right) \le 2\pi\tau^{p} \int_{-\infty}^{\infty} |f(x)|^{p} dx.$$
(54)

Note that

$$\int_{-\infty}^{0} |f'(x)|^p \, dx + \int_{0}^{\infty} |f'(-x)|^p \, dx = 2 \int_{-\infty}^{0} |f'(x)|^p \, dx.$$
(55)

Also, for $f \in \mathcal{F}_{\tau}^{\vee}$, we have |f(x)| = |f(-x)|, and so

$$\int_{-\infty}^{\infty} |f(x)|^p dx = 2 \int_{-\infty}^{0} |f(x)|^p dx.$$
 (56)

From (54), (55), and (56) we get

$$\int_{-\infty}^0 |f'(x)|^p dx \le \tau^p \ C_p \int_{-\infty}^0 |f(x)|^p dx,$$

where C_p is as given in (11).

	_

Proof of Corollary 4. Let $f \in \mathcal{F}_{\tau}^{\vee}$ such that $|f(x)| \leq M$ for $x \leq 0$. Since $f \in \mathcal{F}_{\tau}^{\vee}$, we have |f(x)| = |f(-x)| for $x \in \mathbb{R}$ and hence $|f(x)| \leq M$ for $-\infty < x < \infty$. So from inequality (30) in Lemma 2 we have

$$|f'(x)| + |f'(-x)| \le M\tau, \qquad x \in \mathbb{R}.$$
(57)

Also, from Theorem 6, $|f'(-x)| \ge |f'(x)|$ for $x \le 0$, and (57) then gives us

$$|f'(x)| \le \frac{M\tau}{2}, \qquad x \le 0$$

It is easy to verify that the equality holds in (22) for $f(x) = M(1 + e^{i\tau z})/2$.

Proof of Corollary 5. Let f satisfy the conditions given in Corollary 5. Then according to Corollary 4, for $x \leq 0, |f'(x)| \leq M\tau/2$. From Rahman and Tariq ([18, Lemma 3]), $h_f(\pi/2) \leq 0$. Thus we have $h_{f'}(\pi/2) \leq h_f(\pi/2) \leq 0$ as well. Consider the function $g(z) = e^{i\tau z} \overline{f(\overline{z})}$. Then g(z) is an entire function of exponential type τ and g(z) = f(-z). From Corollary 4, $|g'(x)| \leq M\tau/2$ for $x \geq 0$. Also, $h_{g'}(\pi/2) = h_{f'}(-\pi/2) = \tau$. Then according to Theorem 6.2.3 ([4], page 82), for $x \geq 0, y \geq 0$,

$$|g'(x+\mathrm{i}y)| \le \frac{M\tau}{2} \,\mathrm{e}^{\tau y}.$$

Since g(z) = f(-z), we have for $x \le 0, y \le 0$,

$$|f'(x + \mathrm{i}y)| \le \frac{M\tau}{2} \,\mathrm{e}^{-\tau y}.$$

It is easy to see that the equality holds for the function $M(1 + e^{i\tau z})/2$.

3.3. Proof of Theorem 10

Let f, whose zeros lie in the first and the third quadrants, belong to $\mathcal{F}_{\tau}^{\vee}$. Let $\varepsilon > 0$ be an arbitrary real number. Define the function g_{ε} as follows

$$g_{\varepsilon}(z) = e^{i\frac{\varepsilon}{2}z} \frac{\sin\frac{\varepsilon}{2}z}{\frac{\varepsilon}{2}z} f(z).$$
(58)

It is obvious that $g_{\varepsilon}(z)$ is an entire function of exponential type $\tau + \varepsilon$. Also,

$$e^{i(\tau+\varepsilon)z}g_{\varepsilon}(-z) = e^{i\frac{\varepsilon}{2}z}\frac{\sin\frac{\varepsilon}{2}z}{\frac{\varepsilon}{2}z}e^{i\tau z}f(-z) = e^{i\frac{\varepsilon}{2}z}\frac{\sin\frac{\varepsilon}{2}z}{\frac{\varepsilon}{2}z}f(z) = g_{\varepsilon}(z).$$

Thus, $g_{\varepsilon}(z)$ belongs to $\mathcal{F}_{\tau+\varepsilon}^{\vee}$.

Note that the zeros of $g_{\varepsilon}(z)$ are the zeros of $\sin \frac{\varepsilon}{2}z$ or the zeros of f(z). Since the zeros of $\sin z$ are all real, the zeros of $g_{\varepsilon}(z)$ also lie in the first and third quadrants. Hence, according to Theorem 6,

$$|g_{\varepsilon}'(-x)| \le |g_{\varepsilon}'(x)|, \qquad x \ge 0.$$
(59)

Next, we will show that g_{ε} is bounded on the real line. The assumption that $M^p(f) < \infty$ gives us ([12, Theorem 1]), $f(x) = O(|x|^{\frac{1}{p}})$ as $|x| \to \infty$. It means there exist a positive real number $x_0 \in \mathbb{R}$ and a real number $N_1 \in \mathbb{R}$ such that $|f(x)| \leq N_1 |x|^{\frac{1}{p}}$ for $|x| \geq x_0$. Thus for $|x| \geq x_0$,

$$|g_{\varepsilon}(x)| = \left| \mathrm{e}^{\mathrm{i}\frac{\varepsilon}{2}x} \frac{\sin\frac{\varepsilon}{2}x}{\frac{\varepsilon}{2}x} f(x) \right| \le N_1 \left| \frac{\sin\frac{\varepsilon}{2}x}{\frac{\varepsilon}{2}x} \right| |x|^{\frac{1}{p}} \le N_1 \frac{2}{\varepsilon |x|^{1-\frac{1}{p}}} \le N_1 \frac{2}{\varepsilon |x_0|^{1-\frac{1}{p}}}.$$

On the interval $[-x_0, x_0]$, g_{ε} is continuous and hence bounded. So there exists a real number N_2 such that $|g_{\varepsilon}(x)| \leq N_2$ for $x \in [-x_0, x_0]$. Let $K = \max(2N_1/\varepsilon|x_0|^{1-\frac{1}{p}}, N_2)$. Then $|g_{\varepsilon}(x)| \leq K$ for $x \in \mathbb{R}$. Thus g_{ε} is bounded on the real line and belongs to $\mathcal{F}_{\tau+\varepsilon}^{\vee}$. Hence Lemma 1 (with τ replaced by $\tau + \varepsilon$), when applied to the function $g_{\varepsilon}(z)$, gives us for $x \in \mathbb{R}$

$$-\mathrm{i}\left\{\mathrm{e}^{\mathrm{i}\gamma}g_{\varepsilon}'(x) + \mathrm{e}^{\mathrm{i}(\tau+\varepsilon)x}g_{\varepsilon}'(-x)\right\} = \sum_{n=-\infty}^{\infty} c_n g_{\varepsilon}\left(x-s+\frac{n\pi}{\tau+\varepsilon}\right)$$

where

$$c_n = \frac{1}{(s(\tau + \varepsilon) - n\pi)^2} \left\{ 1 + (-1)^n \right\} \left\{ 1 - (-1)^n \cos \gamma \right\} (\tau + \varepsilon), \qquad n = 0, \pm 1, \pm 2, \dots,$$

 γ is any real number, $s = -\gamma/(\tau + \varepsilon)$, and $\sum_{n=\infty}^{\infty} |c_n| = \tau + \varepsilon$. From the above interpolation formula we have

$$\frac{-\mathrm{i}\left\{\mathrm{e}^{\mathrm{i}\gamma}g_{\varepsilon}'(x) + \mathrm{e}^{\mathrm{i}(\tau+\varepsilon)x}g_{\varepsilon}'(-x)\right\}}{\tau+\varepsilon} = \sum_{n=-\infty}^{\infty} d_n g_{\varepsilon}\left(x-s+\frac{n\pi}{\tau+\varepsilon}\right),\tag{60}$$

where $d_n = c_n/(\tau + \varepsilon)$ and $\sum_{n=-\infty}^{\infty} |d_n| = 1$. Thus right-hand side of (60) is a convex combination of $\{g_{\varepsilon} (x - s + n\pi/\tau + \varepsilon)\}_{n=-\infty}^{\infty}$. So for $p \ge 1$ we get

$$\frac{-\mathrm{i}\left\{\mathrm{e}^{\mathrm{i}\gamma}g_{\varepsilon}'(x)+\mathrm{e}^{\mathrm{i}(\tau+\varepsilon)x}g_{\varepsilon}'(-x)\right\}}{\tau+\varepsilon}\bigg|^{p}\leq\sum_{n=-\infty}^{\infty}\left|d_{n}\right|\left|g_{\varepsilon}\left(x-s+\frac{n\pi}{\tau+\varepsilon}\right)\right|^{p},$$

which gives us

$$\left| \mathrm{e}^{\mathrm{i}\gamma} g_{\varepsilon}'(x) + \mathrm{e}^{\mathrm{i}(\tau+\varepsilon)x} g_{\varepsilon}'(-x) \right|^{p} \leq (\tau+\varepsilon)^{p} \sum_{n=-\infty}^{\infty} |d_{n}| \left| g_{\varepsilon} \left(x - s + \frac{n\pi}{\tau+\varepsilon} \right) \right|^{p}.$$
(61)

Let T > 0 be an arbitrary real number. Then, integrating both sides of (61) with respect to x we get

$$\frac{1}{2T} \int_{-T}^{T} \left| \mathrm{e}^{\mathrm{i}\gamma} g_{\varepsilon}'(x) + \mathrm{e}^{\mathrm{i}(\tau+\varepsilon)x} g_{\varepsilon}'(-x) \right|^{p} dx$$

$$\leq (\tau+\varepsilon)^{p} \frac{1}{2T} \int_{-T}^{T} \sum_{n=-\infty}^{\infty} |d_{n}| \left| g_{\varepsilon} \left(x - s + \frac{n\pi}{\tau+\varepsilon} \right) \right|^{p} dx$$

$$= (\tau+\varepsilon)^{p} \sum_{n=-\infty}^{\infty} |d_{n}| \frac{1}{2T} \int_{-T}^{T} \left| g_{\varepsilon} \left(x - s + \frac{n\pi}{\tau+\varepsilon} \right) \right|^{p} dx.$$

We can change the order of integration in the last inequality because the series on right-hand side of (61) is absolutely convergent and hence uniformly convergent. Applying Lemma 4 followed by Lemma 1 given in [12] we get

$$\begin{split} \limsup_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \left| \mathrm{e}^{\mathrm{i}\gamma} g_{\varepsilon}'(x) + \mathrm{e}^{\mathrm{i}(\tau+\varepsilon)x} g_{\varepsilon}'(-x) \right|^{p} dx \\ &\leq (\tau+\varepsilon)^{p} \sum_{n=-\infty}^{\infty} |d_{n}| \limsup_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \left| g_{\varepsilon} \left(x - s + \frac{n\pi}{\tau+\varepsilon} \right) \right|^{p} dx \\ &= (\tau+\varepsilon)^{p} \sum_{n=-\infty}^{\infty} |d_{n}| \limsup_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |g_{\varepsilon} \left(x \right)|^{p} dx = (\tau+\varepsilon)^{p} M^{p} g_{\varepsilon}(x). \end{split}$$

Thus $M^p \{ e^{i\gamma} g'_{\varepsilon}(x) + e^{i(\tau+\varepsilon)x} g'_{\varepsilon}(-x) \}$, the mean value of $\{ e^{i\gamma} g'_{\varepsilon}(x) + e^{i(\tau+\varepsilon)x} g'_{\varepsilon}(-x) \}$, exists for each real number γ and $\varepsilon > 0$. From the definition of limit superior, for every $\delta > 0$ there exists a positive $T_0 \in \mathbb{R}$ such that

$$\frac{1}{2T} \int_{-T}^{T} \left| \mathrm{e}^{\mathrm{i}\gamma} g_{\varepsilon}'(x) + \mathrm{e}^{\mathrm{i}(\tau+\varepsilon)x} g_{\varepsilon}'(-x) \right|^{p} dx < M^{p} \{ \mathrm{e}^{\mathrm{i}\gamma} g_{\varepsilon}'(x) + \mathrm{e}^{\mathrm{i}(\tau+\varepsilon)x} g_{\varepsilon}'(-x) \} + \delta \\ \leq (\tau+\varepsilon)^{p} M^{p} g_{\varepsilon}(x) + \delta \tag{62}$$

for all $T \ge T_0 > 0, \ \gamma \in \mathbb{R}$, and $\varepsilon > 0$.

Since (62) is true for each γ , integrating both sides with respect to γ from 0 to 2π and changing the order of integration which is justified by Fubini's Theorem as the function $\left|\mathrm{e}^{\mathrm{i}\gamma}g_{\varepsilon}'(x) + \mathrm{e}^{\mathrm{i}(\tau+\varepsilon)x}g_{\varepsilon}'(-x)\right|^{p}$ is continuous, we get

$$\frac{1}{2T} \int_{-T}^{T} \int_{0}^{2\pi} \left| \mathrm{e}^{\mathrm{i}\gamma} g_{\varepsilon}'(x) + \mathrm{e}^{\mathrm{i}(\tau+\varepsilon)x} g_{\varepsilon}'(-x) \right|^{p} d\gamma dx < 2\pi \{ (\tau+\varepsilon)^{p} M^{p} g_{\varepsilon}(x) + \delta \}.$$
(63)

By considering the iterated integral on the left-hand side of (63), we get

$$\begin{split} \int_{-T}^{T} \int_{0}^{2\pi} \left| \mathrm{e}^{\mathrm{i}\gamma} g_{\varepsilon}'(x) + \mathrm{e}^{\mathrm{i}(\tau+\varepsilon)x} g_{\varepsilon}'(-x) \right|^{p} d\gamma dx \\ &= \int_{-T}^{0} \int_{0}^{2\pi} |g_{\varepsilon}'(x)|^{p} \left| 1 + \mathrm{e}^{-\mathrm{i}\gamma+\mathrm{i}(\tau+\varepsilon)x} \frac{g_{\varepsilon}'(-x)}{g_{\varepsilon}'(x)} \right|^{p} d\gamma dx \\ &+ \int_{0}^{T} \int_{0}^{2\pi} |g_{\varepsilon}'(-x)|^{p} \left| 1 + \mathrm{e}^{\mathrm{i}\gamma-\mathrm{i}(\tau+\varepsilon)x} \frac{g_{\varepsilon}'(x)}{g_{\varepsilon}'(-x)} \right|^{p} d\gamma dx \\ &\geq \int_{0}^{2\pi} \left| 1 + \mathrm{e}^{\mathrm{i}\gamma} \right|^{p} d\gamma \left(\int_{-T}^{0} |g_{\varepsilon}'(x)|^{p} dx + \int_{0}^{T} |g_{\varepsilon}'(-x)|^{p} dx \right) \\ &= 2 \int_{0}^{2\pi} \left| 1 + \mathrm{e}^{\mathrm{i}\gamma} \right|^{p} d\gamma \left(\int_{-T}^{0} |g_{\varepsilon}'(x)|^{p} dx \right). \end{split}$$

Then multiplying both sides by 1/2T, from (63) we get

$$\frac{2}{2T} \int_{0}^{2\pi} \left| 1 + e^{i\gamma} \right|^{p} d\gamma \left(\int_{-T}^{0} |g_{\varepsilon}'(x)|^{p} dx \right) \\
\leq \frac{1}{2T} \int_{-T}^{T} \int_{0}^{2\pi} \left| e^{i\gamma} g_{\varepsilon}'(x) + e^{i(\tau+\varepsilon)x} g_{\varepsilon}'(-x) \right|^{p} d\gamma dx \\
\leq 2\pi \{ (\tau+\varepsilon)^{p} M^{p} g_{\varepsilon}(x) + \delta \}.$$
(64)

Inequality (64) is true for all $T \ge T_0$, so taking limit superior when $T \to \infty$, we get

$$\limsup_{T \to \infty} \frac{1}{T} \int_0^{2\pi} \left| 1 + \mathrm{e}^{\mathrm{i}\gamma} \right|^p d\gamma \left(\int_{-T}^0 |g_{\varepsilon}'(x)|^p dx \right) \le 2\pi \{ (\tau + \varepsilon)^p M^p g_{\varepsilon}(x) + \delta \}.$$
(65)

Since, δ is an arbitrary positive real number, letting $\delta \to 0$ we get

$$\limsup_{T \to \infty} \frac{1}{T} \int_0^{2\pi} \left| 1 + \mathrm{e}^{\mathrm{i}\gamma} \right|^p d\gamma \left(\int_{-T}^0 |g_{\varepsilon}'(x)|^p dx \right) \le 2\pi (\tau + \varepsilon)^p \{ M^p g_{\varepsilon}(x) \}.$$
(66)

Note that from (59) for every $x \in \mathbb{R}$ such that $x \ge 0$, $|g_{\varepsilon}(-x)| \le |g_{\varepsilon}(x)|$, we have

$$M^{p}g_{\varepsilon}(x) = \limsup_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |g_{\varepsilon}(x)|^{p} dx \le 2 \limsup_{T \to \infty} \frac{1}{T} \int_{-T}^{0} |g_{\varepsilon}(x)|^{p} .$$
(67)

Then from (66) and (67), we get

$$\limsup_{T \to \infty} \frac{1}{T} \int_{-T}^{0} \left| g_{\varepsilon}'(x) \right|^p dx \le (\tau + \varepsilon)^p C_p \limsup_{T \to \infty} \frac{1}{T} \int_{-T}^{0} \left| g_{\varepsilon}(x) \right|^p, \tag{68}$$

where C_p is as given in (11). For any $x \in \mathbb{R}$,

$$\lim_{\varepsilon \to 0} g_{\varepsilon}(x) = \lim_{\varepsilon \to 0} e^{i\frac{\varepsilon}{2}x} \frac{\sin\frac{\varepsilon}{2}x}{\frac{\varepsilon}{2}x} f(x) = f(x),$$
(69)

and

$$\lim_{\varepsilon \to 0} g'_{\varepsilon}(x) = f'(x).$$
(70)

Inequality (68) is true for every $\varepsilon > 0$, therefore by letting $\varepsilon \to 0$, and using (69) and (70), we get (28).

Acknowledgement

The author would like to thank the referees for their helpful suggestions.

References

 A. AZIZ, Q. G. MOHAMMAD, Simple proof of a theorem of Erdős and Lax, Proc. Amer. Math. Soc. 80(1980), 119–122.

- [2] S. N. BERNSTEIN, Sur une propriété des fonctions entières, Comptes rendus 176(1923), 1603–1605.
- [3] S. N. BERNSTEIN, Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d'une variable réelle, Gauthier–Villars, Paris, 1926.
- [4] R. P. BOAS, JR, Entire functions, Academic Press, New York, 1954.
- [5] K. K. DEWAN, N. K. GOVIL, An inequality for self-inversive polynomials, J. Math. Anal. Appl. 95(1982), 490.
- [6] C. FRAPPIER, Q. I. RAHMAN, ST. RUSCHEWEYH, New inequalities for polynomials, Trans. Amer. Math. Soc. 288(1985), 69–99.
- [7] C. FRAPPIER, Q. I. RAHMAN, ST. RUSCHEWEYH, Inequalities for polynomials, J. Approx. Theory 44(1985), 73–81.
- [8] N. K. GOVIL, L^p inequalities for entire functions of exponential type, Math. Inequal. Appl. 6(2003), 445–452.
- [9] N. K. GOVIL, V. K. JAIN, G. LABELLE, Inequalities for polynomials satisfying $p(z) \equiv z^n p(1/z)$, Proc. Amer. Math. Soc. **57**(1976), 238–242.
- [10] N. K. GOVIL, Q. I. RAHMAN, Functions of exponential type not vanishing in a halfplane and related polynomials, Trans. Amer. Math. Soc. 137(1969), 501–517.
- [11] N. K. GOVIL, D. H. VETTERLINE, Inequalities for a class of polynomials satisfying $p(z) \equiv z^n p(1/z)$, Complex variables Theory Appl. **31**(1996), 285–191.
- [12] A. R. HARVEY, The mean of a function of exponential type, Amer. J. Math. 70(1948), 181–202.
- [13] M. A. MALIK, On the derivative of a polynomial, J. London Math. Soc. 1(1969), 57–60.
- [14] Q. I. RAHMAN, G. SCHMEISSER, L^p inequalities for entire functions of exponential type, Trans. Amer. Math. Soc. **320**(1990), 91–103.
- [15] Q. I. RAHMAN, G. SCHMEISSER, Analytic theory of polynomials, Clarendon Press, Oxford, 2002.
- [16] Q. I. RAHMAN, Q. M. TARIQ, An inequality for self-reciprocal polynomials, East J. Approx. 12(2006), 43–51.
- [17] Q. I. RAHMAN, Q. M. TARIQ, On Bernstein's inequality for entire functions of exponential type, Comput. Methods Funct. Theory 7(2007), 167–184.
- [18] Q. I. RAHMAN, Q. M. TARIQ, On Bernstein's inequality for entire functions of exponential type, J. Math. Anal. Appl. 359(2009), 168–180.
- [19] A. ZYGMUND, A remark on conjugate series, Proc. London Math. Soc. 34(1932), 292– 400.