Some inequalities for polynomials and transcendental entire functions of exponential type

Qazi M. TARIQ ${ }^{1, *}$
${ }^{1}$ Department of Mathematics and Computer Science, Virginia State University, Petersburg, VA 23 806, U.S.A.

Received January 18, 2013; accepted October 7, 2013

Abstract

Let p be a polynomial of degree n such that $|p(z)| \leq M(|z|=1)$. The Bernstein's inequality for polynomials states that $\left|p^{\prime}(z)\right| \leq M n(|z|=1)$. A polynomial p of degree n that satisfies the condition $p(z) \equiv z^{n} p(1 / z)$ is called a self-reciprocal polynomial. If p is a self-reciprocal polynomial, then $f(z)=p\left(\mathrm{e}^{\mathrm{i} z}\right)$ is an entire function of exponential type n such that $f(z)=\mathrm{e}^{\mathrm{inz}} f(-z)$. Thus the class of entire functions of exponential type τ whose elements satisfy the condition $f(z)=\mathrm{e}^{\mathrm{i} \tau z} f(-z)$ is a natural generalization of the class of self-reciprocal polynomials. In this paper we present some Bernstein's type inequalities for self-reciprocal polynomials and related entire functions of exponential type under certain restrictions on the location of their zeros. AMS subject classifications: Primary 41A17; Secondary 30A10, 30D15, 41A10, 41A17, 42A05, 42A16, 42A75 Key words: polynomials, Bernstein's inequality, entire functions of exponential type, L^{p} inequality

1. Introduction and statement of results

1.1. Bernstein's inequality for polynomials

Let \mathcal{P}_{n} denote the class of all polynomials of degree at most n and let $f \in \mathcal{P}_{n}$. An inequality for polynomials in \mathcal{P}_{n}, known as Bernstein's inequality, gives an estimate for $\left|f^{\prime}(z)\right|$ on the unit circle in terms of the maximum of $|f(z)|$ on the same circle. It states (see [15], p. 508) that

$$
\begin{equation*}
\max _{|z|=1}\left|f^{\prime}(z)\right| \leq n \max _{|z|=1}|f(z)|, \quad f \in \mathcal{P}_{n}, \tag{1}
\end{equation*}
$$

where the equality holds for polynomials of the form $c z^{n}, c \neq 0$.
It is known [13] that if f is as above and $f^{*}(z):=z^{n} \overline{f(1 / \bar{z})}$, then on $|z|=1$

$$
\begin{equation*}
\left|f^{\prime}(z)\right|+\left|f^{* \prime}(z)\right| \leq n \max _{|z|=1}|f(z)|, \quad f \in \mathcal{P}_{n} \tag{2}
\end{equation*}
$$

[^0]Let \mathcal{P}_{n}^{\sim} be the subclass of \mathcal{P}_{n} consisting of all polynomials f which satisfy the condition $f(z) \equiv f^{*}(z)$. It follows from (2) that

$$
\begin{equation*}
\max _{|z|=1}\left|f^{\prime}(z)\right| \leq \frac{n}{2} \max _{|z|=1}|f(z)|, \quad f \in \mathcal{P}_{n}^{\sim} \tag{3}
\end{equation*}
$$

Let $f \in \mathcal{P}_{n}$ and z_{0} a point on the unit circle such that $\left|f\left(z_{0}\right)\right|=\max _{|z|=1}|f(z)|$. Clearly, $\left|f^{* \prime}\left(z_{0}\right)\right|=\left|n f\left(z_{0}\right)-z_{0} f^{\prime}\left(z_{0}\right)\right| \geq n\left|f\left(z_{0}\right)\right|-\left|f^{\prime}\left(z_{0}\right)\right|$. Hence, if $f \in \mathcal{P}_{n}^{\sim}$, then

$$
\max _{|z|=1}\left|f^{\prime}(z)\right| \geq \frac{n}{2} \left\lvert\, f^{\prime}\left(\left.z_{0}\left|=\frac{n}{2} \max _{|z|=1}\right| f(z) \right\rvert\,\right.\right.
$$

and so, in (3), the inequality sign " \leq " may be replaced by "=". Thus, we have

$$
\begin{equation*}
\max _{|z|=1}\left|f^{\prime}(z)\right|=\frac{n}{2} \max _{|z|=1}|f(z)|, \quad f \in \mathcal{P}_{n}^{\sim} \tag{4}
\end{equation*}
$$

The subclass \mathcal{P}_{n}^{\sim} of \mathcal{P}_{n} is of considerable importance. There is another subclass of \mathcal{P}_{n} which has proved itself to be equally significant, if not more. It consists of those polynomials f in \mathcal{P}_{n} which satisfy the condition $f(z) \equiv z^{n} f(1 / z)$. Let us denote it by \mathcal{P}_{n}^{\vee}. The condition defining the subclass \mathcal{P}_{n}^{\vee} looks very similar to the one defining \mathcal{P}_{n}^{\sim}. As regards the distribution of their zeros, polynomials in \mathcal{P}_{n}^{\sim} and those in \mathcal{P}_{n}^{\vee}, they all have at least half of their zeros outside the open unit disk (here it is understood that a polynomial f belonging to \mathcal{P}_{n} but of degree $m<n$ has $n-m$ of its zeros at ∞).

Frappier, Rahman and Ruscheweyh ([6], p. 97) showed that for the polynomial $f(z):=\left\{(1-\mathrm{i} z)^{2}+z^{n-2}(z-\mathrm{i})^{2}\right\} / 4$, which clearly belongs to \mathcal{P}_{n}^{\vee}, we have

$$
\max _{|z|=1}|f(z)|=1=|f(\mathrm{i})| \text { whereas }\left|f^{\prime}(-\mathrm{i})\right|=n-1
$$

thus exhibiting a polynomial f in \mathcal{P}_{n}^{\vee} for which

$$
\begin{equation*}
\max _{|z|=1}\left|f^{\prime}(z)\right| \geq(n-1) \max _{|z|=1}|f(z)| . \tag{5}
\end{equation*}
$$

Later Frappier, Rahman and Ruscheweyh ([7, Theorem 2]) proved that for polynomials $f(z):=\sum_{\nu=0}^{n} a_{\nu} z^{\nu}$, whose constant term a_{0} is equal to a_{n} (the coefficient of the leading term $a_{n} z^{n}$), we have

$$
\begin{equation*}
\max _{|z|=1}\left|f^{\prime}(z)\right| \leq\left(n-\frac{1}{2}+\frac{1}{2(n+1)}\right) \max _{|z|=1}|f(z)| \tag{6}
\end{equation*}
$$

Since f belongs to \mathcal{P}_{n}^{\vee} if and only if $a_{k}=a_{n-k}$ for each $k(k=0 \ldots n)$, the above inequality certainly holds for polynomials in \mathcal{P}_{n}^{\vee}. Inequalities (5) and (6) show that by restricting ourselves to the subclass \mathcal{P}_{n}^{\vee}, we do not obtain a meaningful improvement on the Bernstein's inequality (1). This is quite surprising since the two classes \mathcal{P}_{n}^{\sim} and \mathcal{P}_{n}^{\vee} look similar; for \mathcal{P}_{n}^{\sim} holds formula (4) by which $\left|f^{\prime}(z)\right|$ at a point of the unit circle cannot be larger than $n / 2$ times $M:=\max _{|z|=1}|f(z)|$ if $f \in \mathcal{P}_{n}^{\sim}$ while it can be as large as $n-1$ times M if f belongs to \mathcal{P}_{n}^{\vee}, as (5) says.

However, under some additional restrictions, either on the location of the zeros or on the coefficients of polynomials in \mathcal{P}_{n}^{\vee}, the bound in (6) can be improved. For example, Rahman and Tariq [16] (see also [11]) proved that for a polynomial $f(z):=\sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ in \mathcal{P}_{n}^{\vee}, whose coefficients lie in a sector of opening $0 \leq \gamma<\pi$ with the vertex at the origin, we have

$$
\begin{equation*}
\max _{|z|=1}\left|f^{\prime}(z)\right| \leq \frac{n}{2 \cos (\gamma / 2)}|f(1)| . \tag{7}
\end{equation*}
$$

In the case when n is an even integer, the equality holds in (7) for the polynomial $f(z)=z^{n}+2 \mathrm{e}^{\mathrm{i} \gamma} z^{n / 2}+1$.

On the other hand, if we assume that all the zeros of f are in the left half plane or in the right half plane [9], then

$$
\begin{equation*}
\max _{|z|=1}\left|f^{\prime}(z)\right| \leq \frac{n}{\sqrt{2}} \max _{|z|=1}|f(z)| \tag{8}
\end{equation*}
$$

Very few sharp results are known about the class \mathcal{P}_{n}^{\vee} although many papers have been written on the subject since 1976 (see for example, [9, 11, 16]). In fact, the sharp inequality analogous to (1) is still unknown even for $n=3$.

The Bernstein's inequality has been generalized in many ways. For example, if f is a polynomial in \mathcal{P}_{n}, then by Zygmund [19] for any $p \geq 1$, we have

$$
\begin{equation*}
\int_{-\pi}^{\pi}\left|f^{\prime}\left(e^{i \theta}\right)\right|^{p} d \theta \leq n^{p} \int_{-\pi}^{\pi}\left|f\left(e^{i \theta}\right)\right|^{p} d \theta, \quad f \in \mathcal{P}_{n} \tag{9}
\end{equation*}
$$

If we assume that f belongs to \mathcal{P}_{n}^{\sim}, the above inequality can be improved. In this case Dewan and Govil [5] proved the following result

$$
\begin{equation*}
\int_{-\pi}^{\pi}\left|f^{\prime}\left(e^{i \theta}\right)\right|^{p} d \theta \leq n^{p} C_{p} \int_{-\pi}^{\pi}\left|f\left(e^{i \theta}\right)\right|^{p} d \theta, \quad f \in \mathcal{P}_{n}^{\sim} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{p}=\frac{2 \pi}{\int_{-\pi}^{\pi}\left|1+e^{i \alpha}\right|^{p} d \alpha}=2^{-p} \frac{\sqrt{\pi} \Gamma(p / 2+1)}{\Gamma(p / 2+1 / 2)} \tag{11}
\end{equation*}
$$

In this paper, we present a property of polynomials in \mathcal{P}_{n}^{\vee} which have all their zeros in the left half plane. More precisely, we have the following

Theorem 1. Let f be a polynomial in \mathcal{P}_{n}^{\vee} having all its zeros in the left half plane. Suppose in addition that its zeros which lie in the second quadrant are of modulus at most 1. Then

$$
\begin{equation*}
\left|f^{\prime}\left(\mathrm{e}^{-\mathrm{i} \theta}\right)\right| \leq\left|f^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|, \quad 0 \leq \theta \leq \pi \tag{12}
\end{equation*}
$$

As the first application of Theorem 1, we will prove the following L^{p} inequality for the subclass \mathcal{P}_{n}^{\vee}. We do not know if it is sharp.
Corollary 1. Let f, which has all its zeros in the left half plane, belong to \mathcal{P}_{n}^{\vee}. Furthermore, the zeros in the second quadrant are in the unit disk $\{z:|z| \leq 1\}$. Then, for $p \geq 1$

$$
\begin{equation*}
\int_{-\pi}^{0}\left|f^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} d \theta \leq n^{p} C_{p} \int_{-\pi}^{0}\left|f\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} d \theta \tag{13}
\end{equation*}
$$

where C_{p} is as given in (11).

As the next application we state the following corollary.
Corollary 2. Let f, which has all its zeros in the left half plane, belong to \mathcal{P}_{n}^{\vee}. Furthermore, the zeros in the second quadrant are in the unit disk $\{z:|z| \leq 1\}$. Suppose that $\left|f\left(\mathrm{e}^{-\mathrm{i} \theta}\right)\right| \leq M$ for $0 \leq \theta \leq \pi$. Then

$$
\begin{equation*}
\left|f^{\prime}\left(\mathrm{e}^{-\mathrm{i} \theta}\right)\right| \leq M \frac{n}{2}, \quad 0 \leq \theta \leq \pi \tag{14}
\end{equation*}
$$

The example $f(z)=\left(z^{2}+1\right)^{\frac{n}{2}}$ shows that the estimate is sharp when n is even. For odd n, the equality holds for $f(z)=(z+1)^{n}$.

1.2. Transcendental entire functions of exponential type

For an entire function f and a real number $r>0$, let $M(r)=M_{f}(r):=\max _{|z|=r}|f(z)|$. Unless f is a constant of modulus less than or equal to 1 , its order, which is denoted by ρ, is defined to be $\lim \sup _{r \rightarrow \infty}(\log r)^{-1} \log \log M(r)$. Constants of modulus less than or equal to 1 are of order 0 by convention.

If f is of finite positive order ρ, then $T:=\limsup _{r \rightarrow \infty} r^{-\rho} \log M(r)$ is called its type.

An entire function f is said to be of exponential type τ if for any $\varepsilon>0$ there exists a constant $k(\varepsilon)$ such that $|f(z)| \leq k(\varepsilon) \mathrm{e}^{(\tau+\varepsilon)|z|}$ for all $z \in \mathbb{C}$. Any entire function of order less than 1 is of exponential type τ, where τ can be taken to be any number greater than or equal to 0 . Functions of order 1 type $T \leq \tau$ are also of exponential type τ.

If f is an entire function of exponential type, then its indicator function $h_{f}(\theta)$ is defined by $h_{f}(\theta):=\limsup _{r \rightarrow \infty} r^{-1} \log \left|f\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right|$. It describes the growth of f along the ray $\{z \mid \arg z=\theta\} . h_{f}(\theta)$ is either finite or $-\infty$ and is a continuous function of θ unless it is identically $-\infty$.

For a detailed discussion on entire functions of exponential type, we refer the reader to Boas [4].

Bernstein [2], (see also [3], p. 102) extended inequality (1) to arbitrary entire functions of exponential type bounded on the real line.

Theorem 2. Let f be an entire function of exponential type $\tau>0$ such that $|f(x)| \leq M$ on the real axis. Then

$$
\begin{equation*}
\sup _{-\infty<x<\infty}\left|f^{\prime}(x)\right| \leq M \tau \tag{15}
\end{equation*}
$$

The equality in (15) holds if and only if $f(z) \equiv a \mathrm{e}^{\mathrm{i} \tau z}+b \mathrm{e}^{-\mathrm{i} \tau z}$, where $a, b \in \mathbb{C}$.
If $f \in \mathcal{P}_{n}^{\vee}$, then $g(z):=f\left(\mathrm{e}^{\mathrm{i} z}\right)$ is an entire function of exponential type which satisfies the condition $g(z) \equiv \mathrm{e}^{\mathrm{i} n z} g(-z)$. Moreover, its type is n. This suggests that the class of entire functions of exponential type that generalizes \mathcal{P}_{n}^{\vee} consists of entire functions of exponential type f such that $f(z) \equiv \mathrm{e}^{\mathrm{i} \tau z} f(-z)$. Let us denote this class by $\mathcal{F}_{\tau}^{\vee}$ which has been studied by Govil [8], Rahman and Tariq [17, 18].

Rahman and Tariq ([17, Theorem 2]) proved the following Theorem which is akin to (5), a result proved by Frappier, Rahman and Ruscheweyh [7] for polynomials.

Theorem 3. For a given positive number ε, as small as we please, there exists an entire function $f_{\varepsilon} \in \mathcal{F}_{\tau}^{\vee}$ such that

$$
\begin{equation*}
\sup _{-\infty<x<\infty}\left|f_{\varepsilon}^{\prime}(x)\right| \geq(\tau-\varepsilon) \sup _{-\infty<x<\infty}\left|f_{\varepsilon}(x)\right| \tag{16}
\end{equation*}
$$

Like polynomials, improved inequalities for $\mathcal{F}_{\tau}^{\vee}$ can be obtained if we impose some additional restriction on it. For example, Rahman and Tariq ([17, Theorem 1]) proved the following theorem for functions in $\mathcal{F}_{\tau}^{\vee}$ which are uniformly almost periodic on the real line. It is clearly an extension of (7) for entire functions of exponential type.
Theorem 4. Let $f \in \mathcal{F}_{\tau}^{\vee}$ be uniformly almost periodic on the real line. Furthermore, suppose that the coefficients A_{1}, A_{2}, \ldots of the Fourier series $\sum_{n=1}^{\infty} A_{n} \mathrm{e}^{\mathrm{i} \Lambda_{n} x}$ of f lie in a sector of opening $0 \leq \gamma<\pi$ with the vertex at the origin. Then

$$
\begin{equation*}
\sup _{-\infty<x<\infty}\left|f^{\prime}(x)\right| \leq \frac{\tau}{2 \cos (\gamma / 2)}|f(0)| \tag{17}
\end{equation*}
$$

The result is best possible as the equality holds for $f(z)=\mathrm{e}^{\mathrm{i} \tau z}+2 \mathrm{e}^{\mathrm{i} \gamma} \mathrm{e}^{\mathrm{i} \tau z / 2}+1$.
Let $p>0$ be a real number. We say that a function f belongs to L^{p} on the real line if, $\int_{-\infty}^{\infty}|f(x)|^{p} d x<\infty$. Inequalities (9) and (10) have been generalized for entire functions of exponential type as well. For example, as a generalization of (9) we have

Theorem 5. Let f be an entire function of exponential type τ that belongs to L^{p} on the real line, where $p>0$ is a real number. Then

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left|f^{\prime}(x)\right|^{p} d x \leq \tau^{p} \int_{-\infty}^{\infty}|f(x)|^{p} d x \tag{18}
\end{equation*}
$$

For various refinement and detailed information we refer the reader to the paper of Rahman and Schemeisser [14].

For functions f in $\mathcal{F}_{\tau}^{\vee}$ that belong to L^{2} on the real line, Rahman and Tariq ([18, Theorem 3]) proved that

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left|f^{\prime}(x)\right|^{2} d x \leq \frac{\tau^{2}}{2} \int_{-\infty}^{\infty}|f(x)|^{2} d x \tag{19}
\end{equation*}
$$

where the coefficient $\tau^{2} / 2$ of $\int_{-\infty}^{\infty}|f(x)|^{2} d x$ cannot be replaced by a smaller number.
In this paper, we present the following theorem for functions in $\mathcal{F}_{\tau}^{\vee}$ that have all their zeros in the first and the third quadrants. It is clearly an extension of Theorem 1 for entire functions of exponential type.
Theorem 6. Let f, which has all its zeros in the first and the third quadrants, belong to $\mathcal{F}_{\tau}^{\vee}$. Then

$$
\begin{equation*}
\left|f^{\prime}(-x)\right| \leq\left|f^{\prime}(x)\right|, \quad x>0 \tag{20}
\end{equation*}
$$

As applications of Theorem 6, we state the following inequality about functions in $\mathcal{F}_{\tau}^{\vee}$. We do not know if it is sharp.

Corollary 3. Let f, which has all its zeros in the first and the third quadrants, belong to $\mathcal{F}_{\tau}^{\vee}$. Further suppose that $f \in L^{p}$ on $(-\infty, 0)$. Then, for $p \geq 1$

$$
\begin{equation*}
\int_{-\infty}^{0}\left|f^{\prime}(x)\right|^{p} d x \leq \tau^{p} C_{p} \int_{-\infty}^{0}|f(x)|^{p} d x \tag{21}
\end{equation*}
$$

where C_{p} is as given in (11).
Corollary 4. Let f, which has all its zeros in the first and the third quadrants, belong to $\mathcal{F}_{\tau}^{\vee}$. Further assume that $|f(x)| \leq M$ on $(-\infty, 0)$. Then

$$
\begin{equation*}
\left|f^{\prime}(x)\right| \leq \frac{M \tau}{2}, \quad x \leq 0 \tag{22}
\end{equation*}
$$

The estimate is sharp as the example $M\left(1+\mathrm{e}^{\mathrm{i} \tau z}\right) / 2$ shows.
Corollary 5. Let f, which has all its zeros in the first and the third quadrants, belong to $\mathcal{F}_{\tau}^{\vee}$. Further assume that $|f(x)| \leq M$ on $(-\infty, 0)$. Then

$$
\begin{equation*}
\left|f^{\prime}(x+\mathrm{i} y)\right| \leq \frac{M \tau}{2} \mathrm{e}^{-\tau y}, \quad x<0, y<0 \tag{23}
\end{equation*}
$$

The estimate is sharp as the example $M\left(1+\mathrm{e}^{\mathrm{i} \tau z}\right) / 2$ shows.

1.3. Mean value of entire functions of exponential type

Let $p>0$ be a real number. For a function f, the mean of order p on the real line is defined by

$$
\begin{equation*}
M^{p} f(x)=\limsup _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|f(x)|^{p} d x \tag{24}
\end{equation*}
$$

We say that f has a bounded mean of order p, if $M^{p} f(x)<\infty$. It can be easily seen that a function bounded on the real axis will always have a bounded mean. However, there are functions which have a bounded mean but not bounded on the real line. Harvey [12] considered the problems of the mean value of entire functions of exponential type. Here is one of his results.

Theorem 7. If f is an entire function of exponential type τ, then

$$
\begin{equation*}
M^{p} f^{\prime}(x) \leq \frac{(p+2) 2^{p+2}}{\pi \tau p \delta^{p+1}}\left(\mathrm{e}^{\tau \delta p}-1\right) M^{p} f(x), \quad p>0 \tag{25}
\end{equation*}
$$

where δ is an arbitrary positive number.
However, when p is greater than one, the constant in the above theorem can be replaced by τ^{p}. More precisely, Harvey [12] proved that

Theorem 8. If f is an entire function of exponential type τ, then

$$
\begin{equation*}
M^{p} f^{\prime}(x) \leq \tau^{p} M^{p} f(x), \quad p>1 . \tag{26}
\end{equation*}
$$

As to the mean value of functions in $\mathcal{F}_{\tau}^{\vee}$, Rahman and Tariq [18] considered the case when $p=2$ and obtained the following inequality.

Theorem 9. If f, which is a uniformly almost periodic function on the real line, belongs to $\mathcal{F}_{\tau}^{\vee}$, then

$$
\begin{equation*}
\limsup _{T \rightarrow \infty} \frac{1}{T} \int_{-T}^{0}\left|f^{\prime}(x)\right|^{2} d x \leq \frac{\tau^{2}}{2} \limsup _{T \rightarrow \infty} \frac{1}{T} \int_{-T}^{0}|f(x)|^{2} d x \tag{27}
\end{equation*}
$$

Inequality (27) is sharp as the example $f(z)=\left(1+\mathrm{e}^{\mathrm{i} \tau z}\right) / 2$ shows.
Here, we will prove the following inequality about the mean value theorem for functions in $\mathcal{F}_{\tau}^{\vee}$. We do not know if it is sharp.

Theorem 10. Let f, which has all its zeros in the first and the third quadrants, belong to $\mathcal{F}_{\tau}^{\vee}$. Assume further that f has a bounded mean of order p where $p \geq 1$. Then

$$
\begin{equation*}
\limsup _{T \rightarrow \infty} \frac{1}{T} \int_{-T}^{0}\left|f^{\prime}(x)\right|^{p} d x \leq \tau^{p} C_{p} \limsup _{T \rightarrow \infty} \frac{1}{T} \int_{-T}^{0}|f(x)|^{p} d x \tag{28}
\end{equation*}
$$

where C_{p} is as given in (11).
The rest of the paper is organized as follows. In Section 2, we list all the lemmas needed in our proofs. Section 3 deals with the proofs of Theorem 1, Theorem 6 and Theorem 10 and their corollaries discussed above.

2. Lemmas

The first two Lemmas have been proved by Rahman and Tariq [18].
Lemma 1. Let f belong to $\mathcal{F}_{\tau}^{\vee}$ such that $|f(x)|$ is bounded on the real line. Then, for any real γ and $s=-\gamma / \tau$, we have

$$
\begin{equation*}
-\mathrm{i}\left\{\mathrm{e}^{\mathrm{i} \gamma} f^{\prime}(x)+\mathrm{e}^{\mathrm{i} \tau x} f^{\prime}(-x)\right\}=\sum_{n=-\infty}^{\infty} c_{n} f\left(x-s+\frac{n \pi}{\tau}\right), \quad x \in \mathbb{R} \tag{29}
\end{equation*}
$$

where

$$
c_{n}=\frac{1}{(s \tau-n \pi)^{2}}\left\{1+(-1)^{n}\right\}\left\{1-(-1)^{n} \cos \gamma\right\} \tau, \quad n=0, \pm 1, \pm 2, \ldots
$$

and $\sum_{n=-\infty}^{\infty}\left|c_{n}\right|=\tau$.
Lemma 2. Let f belong to $\mathcal{F}_{\tau}^{\vee}$ such that $|f(x)| \leq M$ on the real line. Then

$$
\begin{equation*}
\left|f^{\prime}(x)\right|+\left|f^{\prime}(-x)\right| \leq M \tau, \quad x \in \mathbb{R} \tag{30}
\end{equation*}
$$

We will make use of the following interpolation formula due to Aziz and Moham$\operatorname{mad}[1]$.

Lemma 3. Let f belong to \mathcal{P}_{n} and let $\xi_{1}, \xi_{2}, \cdots \xi_{n}$ be the zeros of $z^{n}+a$, where $a \neq-1$ is an arbitrary complex number. Then for any complex number z we have

$$
\begin{equation*}
z f^{\prime}(z)=\frac{n}{1+a} f(z)+\frac{1+a}{n a} \sum_{\nu=1}^{n} c_{\nu}(a) f\left(z \xi_{\nu}\right) \tag{31}
\end{equation*}
$$

where

$$
\sum_{\nu=1}^{n} c_{\nu}(a)=\sum_{\nu=1}^{n} \frac{\xi_{\nu}}{\left(\xi_{\nu}-1\right)^{2}}=-\frac{n^{2} a}{(1+a)^{2}}
$$

The next inequality, that can be found in Malik [13] (also see, Govil and Rahman ([10], Inequality (3.2)) where this inequality is given for any order derivatives) is well-known and widely used in the study of polynomials.

Lemma 4. Let f belong to \mathcal{P}_{n}. Define $g(z) \equiv z^{n} \overline{f(1 / \bar{z})}$, a polynomial in \mathcal{P}_{n}. Then

$$
\begin{equation*}
\left|f^{\prime}(z)\right|+\left|g^{\prime}(z)\right| \leq n \max _{|z|=1}|f(z)|, \quad|z|=1 \tag{32}
\end{equation*}
$$

Lemma 5. Let us denote $\omega_{\nu}=z_{\nu}+1 / z_{\nu}$ and $\omega_{\mu}=z_{\mu}+1 / z_{\mu}$, where z_{ν}, z_{μ} are complex numbers such that $\pi / 2 \leq \arg z_{\nu}$, arg $z_{\mu} \leq \pi$ and $\left|z_{\nu}\right| \leq 1,\left|z_{\mu}\right| \leq 1$. Define

$$
\begin{aligned}
F\left(x ; \omega_{\nu}, \omega_{\mu}\right) & =-4 x^{2} \Im\left(\omega_{\nu}-\bar{\omega}_{\mu}\right)+4 x \Im\left(\omega_{\nu} \omega_{\mu}\right)-\left(\left|\omega_{\mu}\right|^{2} \Im \omega_{\nu}+\left|\omega_{\nu}\right|^{2} \Im \omega_{\mu}\right) \\
G\left(x ; \omega_{\nu}\right) & =-2(x+1) \Im \omega_{\nu}
\end{aligned}
$$

Then for $-1 \leq x \leq 1$,

$$
\begin{array}{r}
F\left(x ; \omega_{\nu}, \omega_{\mu}\right) \geq 0 \\
G\left(x ; \omega_{\nu}\right) \geq 0 .
\end{array}
$$

Proof. First, we note that ω_{ν} may be written as $\omega_{\nu}:=x_{\nu} R_{\nu}+\mathrm{i} y_{\nu} L_{\nu}$, where

$$
R_{\nu}=\left(1+\frac{1}{x_{\nu}^{2}+y_{\nu}^{2}}\right) \geq 0, \quad L_{\nu}=\left(1-\frac{1}{x_{\nu}^{2}+y_{\nu}^{2}}\right) \leq 0
$$

$x_{\nu}=\Re z_{\nu}$ and $y_{\nu}=\Im z_{\nu}$. Since $\arg z_{\nu}$ lies in $[\pi / 2, \pi]$, it implies that $\Re \omega_{\nu} \leq 0$ and $\Im \omega_{\nu} \leq 0$. Similarly, $\omega_{\mu}:=x_{\mu} R_{\mu}+\mathrm{i} y_{\mu} L_{\mu}$, where $R_{\mu} \geq 0, L_{\mu} \leq 0, \Re \omega_{\mu} \leq 0$ and $\Im \omega_{\mu} \leq 0$.
$F\left(x ; \omega_{\nu}, \omega_{\mu}\right)$ is a quadratic function of the form $a x^{2}+b x+c$, where $a=-4 \Im\left(\omega_{\nu}-\right.$ $\left.\bar{\omega}_{\mu}\right) \geq 0, b=4 \Im\left(\omega_{\nu} \omega_{\mu}\right) \geq 0$, and $c=-\left(\left|\omega_{\mu}\right|^{2} \Im \omega_{\nu}+\left|\omega_{\nu}\right|^{2} \Im \omega_{\mu}\right) \geq 0$. Its vertex is $\left(-b / 2 a, F\left(-b / 2 a ; \omega_{\nu}, \omega_{\mu}\right)\right)$, where $-b / 2 a=\Im\left(\omega_{\nu} \omega_{\mu}\right) / 2 \Im\left(\omega_{\nu}-\bar{\omega}_{\mu}\right)$ and

$$
\begin{aligned}
F\left(-b / 2 a ; \omega_{\nu}, \omega_{\mu}\right) & =\frac{\left(\Im\left(\omega_{\nu} \omega_{\mu}\right)\right)^{2}}{\Im\left(\omega_{\nu}-\bar{\omega}_{\mu}\right)}-\left(\left|\omega_{\mu}\right|^{2} \Im \omega_{\nu}+\left|\omega_{\nu}\right|^{2} \Im \omega_{\mu}\right) \\
& =\frac{\left(\Im\left(\omega_{\nu} \omega_{\mu}\right)\right)^{2}-\left(\left|\omega_{\mu}\right|^{2} \Im \omega_{\nu}+\left|\omega_{\nu}\right|^{2} \Im \omega_{\mu}\right) \Im\left(\omega_{\nu}-\bar{\omega}_{\mu}\right)}{\Im\left(\omega_{\nu}-\bar{\omega}_{\mu}\right)}
\end{aligned}
$$

The numerator $\left(\Im\left(\omega_{\nu} \omega_{\mu}\right)\right)^{2}-\left(\left|\omega_{\mu}\right|^{2} \Im \omega_{\nu}+\left|\omega_{\nu}\right|^{2} \Im \omega_{\mu}\right) \Im\left(\omega_{\nu}-\bar{\omega}_{\mu}\right)$ of the above expression is equal to

$$
\begin{align*}
& \left(x_{\mu} R_{\mu} y_{\nu} L_{\nu}+x_{\nu} R_{\nu} y_{\mu} L_{\mu}\right)^{2}-\left\{y_{\nu} L_{\nu}\left(x_{\mu}^{2} R_{\mu}^{2}+y_{\mu}^{2} L_{\mu}^{2}\right)+y_{\mu} L_{\mu}\left(x_{\nu}^{2} R_{\nu}^{2}+y_{\nu}^{2} L_{\nu}\right)\right\}\left(y_{\nu} L_{\nu}+y_{\mu} L_{\mu}\right) \\
& \quad \quad=-\left[y_{\mu} L_{\mu} y_{\nu} L_{\nu}\left\{\left(x_{\mu} R_{\mu}-x_{\nu} R_{\nu}\right)^{2}+\left(y_{\mu}^{2} L_{\mu}^{2}+y_{\nu}^{2} L_{\nu}\right)^{2}\right\}+2 y_{\nu}^{2} L_{\nu}^{2} y_{\mu}^{2} L_{\mu}^{2}\right] \tag{33}\\
& \quad \leq 0 .
\end{align*}
$$

Since $\Im\left(\omega_{\nu}-\bar{\omega}_{\mu}\right) \leq 0$, we have $a \geq 0$ and $F\left(-b / 2 a ; \omega_{\nu}, \omega_{\mu}\right) \geq 0$. Also, $F\left(x ; \omega_{\nu}, \omega_{\mu}\right)$ will attain the minimum value at the vertex. Thus, for any real number x we have $F\left(x ; \omega_{\nu}, \omega_{\mu}\right) \geq F\left(-b / 2 a ; \omega_{\nu}, \omega_{\mu}\right) \geq 0$ and hence in particular for $-1 \leq x \leq 1$.

As far as the function G is concerned, we just have to note that $\Im \omega_{\nu} \leq 0$, which shows that $G\left(x ; \omega_{\nu}\right)=-2(x+1) \Im \omega_{\nu} \geq 0$ for $-1 \leq x \leq 1$.

3. Proofs of Theorem 1, Theorem 6 and Theorem 10

3.1. Proof of Theorem 1 and its corollaries

Case 1. f has all its zeros on the unit circle
Let us assume that $z_{\nu}:=\mathrm{e}^{\mathrm{i} \theta_{\nu}}$, where $\pi / 2 \leq \theta_{\nu} \leq \pi(\nu=1,2, \ldots, l)$ are l zeros of f. Since f belongs to \mathcal{P}_{n}^{\vee}, for every $\nu, 1 / z_{\nu}=\mathrm{e}^{-\mathrm{i} \theta_{\nu}}$ is also a zeros of f. Assume further that f has a zero of multiplicity m at -1 , where $m \geq 0$. Thus f may be written as

$$
f(z)=(z+1)^{m} \prod_{\nu=1}^{l}\left(z-\mathrm{e}^{\mathrm{i} \theta_{\nu}}\right)\left(z-\mathrm{e}^{-\mathrm{i} \theta_{\nu}}\right)
$$

where $n=2 l+m$. Let θ be a number in $[0, \pi]$ such that $\theta \neq \theta_{\nu},(\nu=1,2, \ldots, l)$. Then

$$
\frac{f^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)}{f\left(\mathrm{e}^{\mathrm{i} \theta}\right)}=\Re \frac{f^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)}{f\left(\mathrm{e}^{\mathrm{i} \theta}\right)}+\mathrm{i} \Im \frac{f^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta \theta}\right)}{f\left(\mathrm{e}^{\mathrm{i} \theta}\right)}
$$

where

$$
\Re \frac{f^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)}{f\left(\mathrm{e}^{\mathrm{i} \theta}\right)}=\frac{m(\cos \theta+1)}{\left|1+\mathrm{e}^{\mathrm{i} \theta}\right|^{2}}+\sum_{\nu=1}^{l} \frac{\cos \theta-\cos \theta_{\nu}}{\left|\mathrm{e}^{\mathrm{i} \theta}-\mathrm{e}^{\mathrm{i} \theta_{\nu}}\right|^{2}}+\frac{\cos \theta-\cos \theta_{\nu}}{\left|\mathrm{e}^{\mathrm{i} \theta}-\mathrm{e}^{-\mathrm{i} \theta_{\nu}}\right|^{2}}
$$

and

$$
\Im \frac{f^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)}{f\left(\mathrm{e}^{\mathrm{i} \theta}\right)}=-\frac{m \sin \theta}{\left|1+\mathrm{e}^{\mathrm{i} \theta}\right|^{2}}+\sum_{\nu=1}^{l} \frac{\sin \theta_{\nu}-\sin \theta}{\left|\mathrm{e}^{\mathrm{i} \theta}-\mathrm{e}^{\mathrm{i} \theta_{\nu}}\right|^{2}}-\frac{\sin \theta_{\nu}+\sin \theta}{\left|\mathrm{e}^{\mathrm{i} \theta}-\mathrm{e}^{-\mathrm{i} \theta_{\nu}}\right|^{2}}
$$

Note that $\Re\left(f^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right) / f\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right)$ is an even function of θ and $\Im\left(f^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right) / f\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right)$ is an odd function of θ. So $\left|f^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right| /\left|f\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|$ is equal to

$$
\begin{align*}
\sqrt{\left(\Re \frac{f^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)}{f\left(\mathrm{e}^{\mathrm{i} \theta}\right)}\right)^{2}+\left(\Im \frac{f^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)}{f\left(\mathrm{e}^{\mathrm{i} \theta}\right)}\right)^{2}} & =\sqrt{\left(\Re \frac{f^{\prime}\left(\mathrm{e}^{-\mathrm{i} \theta}\right)}{f\left(\mathrm{e}^{-\mathrm{i} \theta}\right)}\right)^{2}+\left(-\Im \frac{f^{\prime}\left(\mathrm{e}^{-\mathrm{i} \theta}\right)}{f\left(\mathrm{e}^{-\mathrm{i} \theta}\right)}\right)^{2}} \\
& =\left|\frac{f^{\prime}\left(\mathrm{e}^{-\mathrm{i} \theta}\right)}{f\left(\mathrm{e}^{-\mathrm{i} \theta}\right)}\right| \tag{34}
\end{align*}
$$

For $f \in \mathcal{P}_{n}^{\vee}$ and $\theta \in[0, \pi]$, we have $\left|f\left(\mathrm{e}^{-\mathrm{i} \theta}\right)\right|=\left|f\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|$. So we conclude, from (34)

$$
\left|f^{\prime}\left(\mathrm{e}^{-\mathrm{i} \theta}\right)\right| \leq\left|f^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|, \quad 0 \leq \theta \leq \pi, f\left(\mathrm{e}^{\mathrm{i} \theta}\right) \neq 0
$$

By continuity, the same must hold for those θ for which $f\left(\mathrm{e}^{\mathrm{i} \theta}\right)=0$.
Case 2. f is a second degree polynomial
Let z_{ν} be the zero of f such that $\pi / 2 \leq \arg z_{\nu} \leq \pi$ and $\left|z_{\nu}\right| \leq 1$. The polynomial f and its derivative f^{\prime} may be written as $f(z)=\left(z-z_{\nu}\right)\left(z-1 / z_{\nu}\right)$ and $f^{\prime}(z)=2 z-\omega_{\nu}$, respectively, where $\omega_{\nu}:=z_{\nu}+1 / z_{\nu}=x_{\nu} R_{\nu}+\mathrm{i} y_{\nu} L_{\nu},-1 \leq x_{\nu}=\Re z_{\nu} \leq 0$,

$$
R_{\nu}=\left(1+\frac{1}{x_{\nu}^{2}+y_{\nu}^{2}}\right)>0,0 \leq y_{\nu}=\Im z_{\nu} \leq 1 \text { and } L_{\nu}=\left(1-\frac{1}{x_{\nu}^{2}+y_{\nu}^{2}}\right)<0
$$

The conditions on $R_{\nu}, L_{\nu}, x_{\nu}, y_{\nu}$ ensure that ω_{ν} lies in the third quadrant. Thus, we have

$$
\left|f^{\prime}\left(\mathrm{e}^{-\mathrm{i} \theta}\right)\right|=\left|2 \mathrm{e}^{-\mathrm{i} \theta}-\omega_{\nu}\right| \leq\left|2 \mathrm{e}^{\mathrm{i} \theta}-\omega_{\nu}\right|=\left|f^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|, \quad 0 \leq \theta \leq \pi
$$

This proves the theorem when f is a polynomial of degree 2 . We also note that for $0 \leq \theta \leq \pi, \mid f\left(\mathrm{e}^{-\mathrm{i} \theta}|=| f\left(\mathrm{e}^{\mathrm{i} \theta} \mid\right.\right.$. Thus, for any f in \mathcal{P}_{2}^{\vee} we have

$$
\begin{equation*}
\left|\frac{f^{\prime}\left(\mathrm{e}^{-\mathrm{i} \theta}\right)}{f\left(\mathrm{e}^{-\mathrm{i} \theta}\right)}\right| \leq\left|\frac{f^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)}{f\left(\mathrm{e}^{\mathrm{i} \theta}\right)}\right|, \quad 0 \leq \theta \leq \pi \tag{35}
\end{equation*}
$$

Case 3. Not all the zeros of f are on the unit circle
Let $z_{\nu}(\nu=1,2, \cdots, l)$ be the zeros f such that $\pi / 2 \leq \arg z_{\nu} \leq \pi$ and $\left|z_{\nu}\right| \leq 1$. Also suppose that f has a zero of multiplicity m at -1 where $m \geq 0$. Then f can be represented as

$$
f(z)=(z+1)^{m} \prod_{\nu=1}^{l} g_{\nu}(z)
$$

where $g_{\nu}(z)=\left(z-z_{\nu}\right)\left(z-1 / z_{\nu}\right)$ is a second degree polynomial in \mathcal{P}_{2}^{\vee} for each ν. For any z on the unit circle such that $f(z) \neq 0$ we have

$$
\frac{f^{\prime}(z)}{f(z)}=\frac{m}{z+1}+\sum_{\nu=1}^{l} \frac{g_{\nu}^{\prime}(z)}{g_{\nu}(z)}
$$

A straightforward calculation gives us

$$
\begin{align*}
\left|\frac{f^{\prime}(z)}{f(z)}\right|^{2}= & \left|\frac{m}{z+1}\right|^{2} \tag{36}\\
& +\sum_{\nu=1}^{l}\left(\left|\frac{g_{\nu}^{\prime}(z)}{g_{\nu}(z)}\right|^{2}+2 \Re\left(\frac{m}{\left.\left.\overline{(z+1)} \frac{g_{\nu}^{\prime}(z)}{g_{\nu}(z)}\right)+2 \sum_{\mu=\nu+1}^{l} \Re\left(\frac{g_{\nu}^{\prime}(z)}{g_{\nu}(z)} \frac{\overline{g_{\mu}^{\prime}(z)}}{\overline{g_{\mu}(z)}}\right)\right)} .\right.\right.
\end{align*}
$$

There are four parts in the above equation. We will compare the value of each part at $\mathrm{e}^{-\mathrm{i} \theta}$ and $\mathrm{e}^{\mathrm{i} \theta}$, respectively.

The first part $|m /(z+1)|^{2}$ gives us

$$
\begin{equation*}
\left|\frac{m}{\mathrm{e}^{-\mathrm{i} \theta}+1}\right|^{2}=\left|\frac{m}{\mathrm{e}^{\mathrm{i} \theta}+1}\right|^{2}, \quad 0 \leq \theta \leq \pi \tag{37}
\end{equation*}
$$

Since $g_{\nu}(z)$ belongs to \mathcal{P}_{2}^{\vee} for each ν, from (35) the second part $\left|g_{\nu}^{\prime}(z) / g_{\nu}(z)\right|^{2}$ gives us

$$
\begin{equation*}
\left|\frac{g_{\nu}^{\prime}\left(\mathrm{e}^{-\mathrm{i} \theta}\right)}{g_{\nu}\left(\mathrm{e}^{-\mathrm{i} \theta}\right)}\right|^{2} \leq\left|\frac{g_{\nu}^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)}{g_{\nu}\left(\mathrm{e}^{\mathrm{i} \theta}\right)}\right|^{2}, \quad 0 \leq \theta \leq \pi \tag{38}
\end{equation*}
$$

Let $z=x+\mathrm{i} y$ be a point on the unit circle. From Case 2 again, it is easy to verify that

$$
\begin{align*}
\overline{(z+1)} \frac{g_{\nu}^{\prime}(z)}{g_{\nu}(z)} & =\frac{m}{\overline{(z+1)}} \frac{2 z-\omega_{\nu}}{z^{2}-\omega_{\nu} z+1} \\
& =\frac{m}{|z+1|^{2}} \frac{2 z-\omega_{\nu}}{\left|z^{2}-\omega_{\nu} z+1\right|^{2}}(z+1)\left(\bar{z}^{2}-\overline{\omega_{\nu} z}+1\right) \\
& =\frac{m}{|z+1|^{2}} \frac{\left(Q_{1}\left(x ; \omega_{\nu}\right)+y S_{1}\left(x ; \omega_{\nu}\right)\right)+\mathrm{i}\left(Q_{2}\left(x ; \omega_{\nu}\right)+y S_{2}\left(x ; \omega_{\nu}\right)\right)}{\left|z^{2}-\omega_{\nu} z+1\right|^{2}} \tag{39}
\end{align*}
$$

where

$$
\begin{align*}
Q_{1}\left(x ; \omega_{\nu}\right) & =(x+1)\left(4 x-2(x+1) \Re \omega_{\nu}+\left|\omega_{\nu}\right|^{2}\right) \\
S_{1}\left(x ; \omega_{\nu}\right) & =-2(x+1) \Im \omega_{\nu} \tag{40}\\
Q_{2}\left(x ; \omega_{\nu}\right) & =2\left(1-x^{2}\right) \Im \omega_{\nu} ; \\
S_{2}\left(x ; \omega_{\nu}\right) & =\left(4 x+2(x-1) \Re \omega_{\nu}-\left|\omega_{\nu}\right|^{2}\right)
\end{align*}
$$

Thus from Lemma 5, (39) and the fact that

$$
\left|\mathrm{e}^{-2 \mathrm{i} \theta}-\mathrm{e}^{-\mathrm{i} \theta} \omega_{\nu}+1\right|^{2}=\left|\mathrm{e}^{-2 \mathrm{i} \theta}\right|\left|\mathrm{e}^{2 \mathrm{i} \theta}-\mathrm{e}^{\mathrm{i} \theta} \omega_{\nu}+1\right|^{2}=\left|\mathrm{e}^{2 \mathrm{i} \theta}-\mathrm{e}^{\mathrm{i} \theta} \omega_{\nu}+1\right|^{2}
$$

the third part $\Re\left(m g_{\nu}^{\prime}(z) / \overline{(z+1)} g_{\nu}(z)\right)$ gives us

$$
\begin{align*}
& \Re\left(\frac{m}{\overline{\left(\mathrm{e}^{-\mathrm{i} \theta}+1\right)}} \frac{g_{\nu}^{\prime}\left(\mathrm{e}^{-\mathrm{i} \theta}\right)}{g_{\nu}\left(\mathrm{e}^{\mathrm{-} \mathrm{i} \theta}\right)}\right)=m \frac{Q_{1}\left(\cos (-\theta) ; \omega_{\nu}\right)+\sin (-\theta) S_{1}\left(\cos (-\theta) ; \omega_{\nu}\right)}{\left|\mathrm{e}^{-\mathrm{i} \theta}+1\right|^{2}\left|\mathrm{e}^{-2 \mathrm{i} \theta}-\mathrm{e}^{-\mathrm{i} \theta} \omega_{\nu}+1\right|^{2}} \\
& =m \frac{Q_{1}\left(\cos \theta ; \omega_{\nu}\right)-\sin \theta S_{1}\left(\cos \theta ; \omega_{\nu}\right)}{\left|\mathrm{e}^{\mathrm{i} \theta}+1\right|^{2}\left|\mathrm{e}^{2 \mathrm{i} \theta}-\mathrm{e}^{\mathrm{i} \theta} \omega_{\nu}+1\right|^{2}} \tag{41}\\
& \leq m \frac{Q_{1}\left(\cos \theta ; \omega_{\nu}\right)+\sin \theta S_{1}\left(\cos \theta ; \omega_{\nu}\right)}{\left|\mathrm{e}^{\mathrm{i} \theta}+1\right|^{2}\left|\mathrm{e}^{2 \mathrm{i} \theta}-\mathrm{e}^{\mathrm{i} \theta} \omega_{\nu}+1\right|^{2}} \\
& =\Re\left(\frac{m}{\overline{\left(\mathrm{e}^{\mathrm{i} \theta}+1\right)}} \frac{g_{\nu}^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)}{g_{\nu}\left(\mathrm{e}^{\mathrm{i} \theta}\right)}\right), \quad 0 \leq \theta \leq \pi .
\end{align*}
$$

Let us turn to the fourth part. As in the third part, let $z=x+\mathrm{i} y$ be a point on
the unit circle. Then for any μ and ν, it can be verified that

$$
\begin{align*}
\frac{g_{\nu}^{\prime}(z)}{g_{\nu}(z)} \frac{\overline{g_{\mu}^{\prime}(z)}}{\overline{g_{\mu}(z)}} & =\frac{2 z-\omega_{\nu}}{z^{2}-z \omega_{\nu}+1} \frac{\overline{2 z-\omega_{\mu}}}{\overline{z^{2}-z \omega_{\mu}+1}}=\frac{4-2 z \bar{\omega}_{\mu}-2 \bar{z} \omega_{\nu}+\omega_{\nu} \bar{\omega}_{\mu}}{4 x^{2}-2 x\left(\bar{\omega}_{\mu}+\omega_{\nu}\right)+\omega_{\nu} \bar{\omega}_{\mu}} \tag{42}\\
& =\frac{\left(Q_{3}\left(x ; \omega_{\nu}, \omega_{\mu}\right)+y S_{3}\left(x ; \omega_{\nu}, \omega_{\mu}\right)\right)+\mathrm{i}\left(Q_{4}\left(x ; \omega_{\nu}, \omega_{\mu}\right)+y S_{4}\left(x ; \omega_{\nu}, \omega_{\mu}\right)\right)}{\left|4 x^{2}-2 x\left(\omega_{\nu}+\bar{\omega}_{\mu}\right)+\omega_{\nu} \bar{\omega}_{\mu}\right|^{2}}
\end{align*}
$$

where

$$
\begin{align*}
Q_{3}\left(x ; \omega_{\nu}, \omega_{\mu}\right)= & 16 x^{2}-16 x \Re\left(\bar{\omega}_{\nu}+\omega_{\mu}\right)+8 x y^{2} \Re\left(\bar{\omega}_{\mu}+\omega_{\nu}\right)+8 \Re\left(\bar{\omega}_{\nu} \omega_{\mu}\right) \\
& -4 y^{2} \Re\left(\bar{\omega}_{\mu} \omega_{\nu}\right)+4 x^{2}\left|\bar{\omega}_{\mu}+\omega_{\mu}\right|^{2}+\left|\omega_{\mu} \omega_{\nu}\right|^{2}-4 x \Re\left(\bar{\omega}_{\mu}\left|\omega_{\nu}\right|^{2}+\omega_{\nu}\left|\omega_{\mu}\right|^{2}\right) ; \\
S_{3}\left(x ; \omega_{\nu}, \omega_{\mu}\right)= & -8 x^{2} \Im\left(\omega_{\nu}-\bar{\omega}_{\mu}\right)+8 x \Im\left(\omega_{\nu} \omega_{\mu}\right)+2 \Im \bar{\omega}_{\nu}\left|\omega_{\mu}\right|^{2}-2 \Im \omega_{\mu}\left|\omega_{\nu}\right|^{2} ; \\
Q_{4}\left(x ; \omega_{\nu}, \omega_{\mu}\right)= & 8 x y^{2} \Im\left(\bar{\omega}_{\mu}+\omega_{\nu}\right)-4 y^{2} \Im\left(\bar{\omega}_{\mu} \omega_{\nu}\right) ; \tag{43}\\
S_{4}\left(x ; \omega_{\nu}, \omega_{\mu}\right)= & 8 x^{2} \Re\left(\omega_{\nu}-\bar{\omega}_{\mu}\right)-4 x\left(\left|\omega_{\nu}\right|^{2}-\left|\omega_{\mu}\right|^{2}\right)+2\left|\omega_{\nu}\right|^{2} \Re \bar{\omega}_{\mu}-2\left|\omega_{\mu}\right|^{2} \Re \bar{\omega}_{\nu} .
\end{align*}
$$

Thus from Lemma 5 and (42), the fourth part $\sum_{\mu=\nu+1}^{l} \Re\left(g_{\nu}^{\prime}(z) \overline{g_{\mu}^{\prime}(z)} / g_{\nu}(z) \overline{g_{\mu}(z)}\right)$ gives us

$$
\begin{align*}
& \sum_{\mu=\nu+1}^{l} \Re\left(\frac{g_{\nu}^{\prime}\left(\mathrm{e}^{-\mathrm{i} \theta}\right)}{g_{\nu}\left(\mathrm{e}^{-\mathrm{i} \theta}\right)} \overline{\overline{g_{\mu}^{\prime}\left(\mathrm{e}^{-\mathrm{i} \theta}\right)}} \overline{\overline{g_{\mu}\left(\mathrm{e}^{-\mathrm{i} \theta}\right)}}\right) \\
& =\sum_{\mu=\nu+1}^{l}\left(\frac{Q_{3}\left(\cos (-\theta) ; \omega_{\nu}\right)+\sin (-\theta) S_{3}\left(\cos (-\theta) ; \omega_{\nu}\right)}{\left|4 \cos (-\theta)^{2}-2\left(\omega_{\nu}+\bar{\omega}_{\mu}\right) \cos (-\theta)+\omega_{\nu} \bar{\omega}_{\mu}\right|^{2}}\right) \\
& =\sum_{\mu=\nu+1}^{l}\left(\frac{Q_{3}\left(\cos \theta ; \omega_{\nu}\right)-\sin \theta S_{3}\left(\cos \theta ; \omega_{\nu}\right)}{\left|4 \cos \theta^{2}-2\left(\omega_{\nu}+\bar{\omega}_{\mu}\right) \cos \theta+\omega_{\nu} \bar{\omega}_{\mu}\right|^{2}}\right) \tag{44}\\
& \leq \sum_{\mu=\nu+1}^{l}\left(\frac{Q_{3}\left(\cos \theta ; \omega_{\nu}\right)+\sin \theta S_{3}\left(\cos \theta ; \omega_{\nu}\right)}{\left|4 \cos \theta^{2}-2\left(\omega_{\nu}+\bar{\omega}_{\mu}\right) \cos \theta+\omega_{\nu} \bar{\omega}_{\mu}\right|^{2}}\right) \\
& =\sum_{\mu=\nu+1}^{l} \Re\left(\frac{g_{\nu}^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)}{g_{\nu}\left(\mathrm{e}^{\mathrm{i} \theta}\right)} \frac{\overline{g_{\mu}^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)}}{\overline{g_{\mu}\left(\mathrm{e}^{\mathrm{i} \theta}\right)}}\right), \quad 0 \leq \theta \leq \pi \text {. }
\end{align*}
$$

Using (37), (38), (41) and (44) in (36), we conclude that

$$
\begin{equation*}
\left|\frac{f^{\prime}\left(\mathrm{e}^{-\mathrm{i} \theta}\right)}{f\left(\mathrm{e}^{-\mathrm{i} \theta}\right)}\right|^{2} \leq\left|\frac{f^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)}{f\left(\mathrm{e}^{\mathrm{i} \theta}\right)}\right|^{2}, \quad 0 \leq \theta \leq \pi \tag{45}
\end{equation*}
$$

Since for any $\theta,\left|f\left(\mathrm{e}^{-\mathrm{i} \theta}\right)\right|=\left|f\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|$, we get from (45)

$$
\left|f^{\prime}\left(\mathrm{e}^{-\mathrm{i} \theta}\right)\right| \leq\left|f^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|, \quad 0 \leq \theta \leq \pi, f\left(\mathrm{e}^{\mathrm{i} \theta}\right) \neq 0
$$

By continuity, the same must hold for those θ for which $f\left(\mathrm{e}^{\mathrm{i} \theta}\right)=0$. This completes the proof of Theorem 1 .

Proof of Corollary 1. For polynomials f in \mathcal{P}_{n}^{\vee}, we have

$$
z^{n-1} f^{\prime}\left(\frac{1}{z}\right)+z f^{\prime}(z)=n f(z)
$$

From the interpolation formula (31) of Aziz and Mohammad given in Lemma 3, with $a=\mathrm{e}^{\mathrm{i} \alpha}$, where $\alpha \in \mathbb{R}$ and $z=\mathrm{e}^{\mathrm{i} \theta}$ is a complex number on the unit circle, we get

$$
\mathrm{e}^{\mathrm{i}(\theta+\alpha)} f^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\mathrm{e}^{\mathrm{i}(n-1) \theta} f^{\prime}\left(\mathrm{e}^{-\mathrm{i} \theta}\right)=\frac{\left(1+\mathrm{e}^{\mathrm{i} \alpha}\right)^{2}}{n \mathrm{e}^{\mathrm{i} \alpha}} \sum_{\nu=1}^{n} c_{\nu}(a) f\left(\mathrm{e}^{\mathrm{i} \theta} \xi_{\nu}\right)
$$

which can be written as

$$
\mathrm{e}^{\mathrm{i}(\theta+\alpha)} f^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\mathrm{e}^{\mathrm{i}(n-1) \theta} f^{\prime}\left(\mathrm{e}^{-\mathrm{i} \theta}\right)=n \sum_{\nu=1}^{n} d_{\nu}\left(\mathrm{e}^{\mathrm{i} \alpha}\right) f\left(\mathrm{e}^{\mathrm{i} \theta} \xi_{\nu}\right),
$$

where

$$
\sum_{\nu=0}^{n}\left|d_{\nu}\left(\mathrm{e}^{\mathrm{i} \alpha}\right)\right|=\sum_{\nu=0}^{n}\left|\frac{c_{\nu}\left(\mathrm{e}^{\mathrm{i} \alpha}\right)}{n^{2} \mathrm{e}^{\mathrm{i} \alpha} /\left(1+\mathrm{e}^{\mathrm{i} \alpha}\right)^{2}}\right|=1
$$

For $p \geq 1$, we have

$$
\left|\mathrm{e}^{\mathrm{i}(\theta+\alpha)} f^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\mathrm{e}^{\mathrm{i}(n-1) \theta} f^{\prime}\left(\mathrm{e}^{-\mathrm{i} \theta}\right)\right|^{p} \leq n^{p} \sum_{\nu=1}^{n} d_{\nu}\left(\mathrm{e}^{\mathrm{i} \alpha}\right)\left|f\left(\mathrm{e}^{\mathrm{i} \theta} \xi_{\nu}\right)\right|^{p}
$$

Integrating both sides with respect to θ from $-\pi$ to π, we get

$$
\int_{-\pi}^{\pi}\left|\mathrm{e}^{\mathrm{i}(\theta+\alpha)} f^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\mathrm{e}^{\mathrm{i}(n-1) \theta} f^{\prime}\left(\mathrm{e}^{-\mathrm{i} \theta}\right)\right|^{p} d \theta \leq n^{p} \int_{-\pi}^{\pi}\left|f\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} d \theta
$$

Since the above inequality is true for every α in $[0,2 \pi]$, integrating both sides with respect to α and changing the order of integration, we get

$$
\begin{equation*}
\int_{-\pi}^{\pi} \int_{0}^{2 \pi}\left|\mathrm{e}^{\mathrm{i}(\theta+\alpha)} f^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\mathrm{e}^{\mathrm{i}(n-1) \theta} f^{\prime}\left(\mathrm{e}^{-\mathrm{i} \theta}\right)\right|^{p} d \alpha d \theta \leq 2 \pi n^{p} \int_{-\pi}^{\pi}\left|f\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} d \theta \tag{46}
\end{equation*}
$$

The left-hand side of the inequality (46) is

$$
\begin{align*}
\int_{-\pi}^{\pi} \int_{0}^{2 \pi} & \left|\mathrm{e}^{\mathrm{i}(\theta+\alpha)} f^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\mathrm{e}^{\mathrm{i}(n-1) \theta} f^{\prime}\left(\mathrm{e}^{-\mathrm{i} \theta}\right)\right|^{p} d \alpha d \theta \\
= & \int_{-\pi}^{0} \int_{0}^{2 \pi}\left|f^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p}\left|1-\mathrm{e}^{\mathrm{i}(n-2) \theta-\mathrm{i} \alpha} \frac{f^{\prime}\left(\mathrm{e}^{-\mathrm{i} \theta}\right)}{f^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)}\right|^{p} d \alpha d \theta \\
& +\int_{0}^{\pi} \int_{0}^{2 \pi}\left|f^{\prime}\left(\mathrm{e}^{-\mathrm{i} \theta}\right)\right|^{p}\left|1-\mathrm{e}^{\mathrm{i}(2-n) \theta+\mathrm{i} \alpha} \frac{f^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)}{f^{\prime}\left(\mathrm{e}^{-\mathrm{i} \theta}\right)}\right|^{p} d \alpha d \theta \\
\geq & 2 \int_{-\pi}^{0}\left|f^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} d \theta \int_{0}^{2 \pi}\left|1+\mathrm{e}^{\mathrm{i} \alpha}\right|^{p} d \alpha \tag{47}
\end{align*}
$$

Inequality (47) follows from the fact that

$$
\begin{aligned}
& \left|f^{\prime}\left(\mathrm{e}^{-\mathrm{i} \theta}\right) / f^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right| \geq 1 \text { for }-\pi \leq \theta \leq 0 \\
& \left|f^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right) / f^{\prime}\left(\mathrm{e}^{-\mathrm{i} \theta}\right)\right| \geq 1 \text { for } 0 \leq \theta \leq \pi
\end{aligned}
$$

and

$$
\int_{0}^{2 \pi}\left|1+r \mathrm{e}^{\mathrm{i} \gamma}\right|^{p} d \gamma \geq \int_{0}^{2 \pi}\left|1+\mathrm{e}^{\mathrm{i} \gamma}\right|^{p} d \gamma \text { for every }|r| \geq 1 \text { and } p \geq 1
$$

Also, for $f \in \mathcal{P}_{n}^{\vee},\left|f\left(\mathrm{e}^{-\mathrm{i} \theta}\right)\right|=\left|f\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|$ for $0 \leq \theta \leq \pi$. From (46) and (47) we conclude that

$$
\int_{-\pi}^{0}\left|f^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} d \theta \leq n^{p} C_{p} \int_{-\pi}^{0}\left|f\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} d \theta
$$

where C_{p} is as given in (11).
Proof of Corollary 2. Let f be a polynomial in \mathcal{P}_{n}^{\vee} such that $\left|f\left(\mathrm{e}^{-\mathrm{i} \theta}\right)\right| \leq M$ for $0 \leq \theta \leq \pi$. Since $\left|f\left(\mathrm{e}^{-\mathrm{i} \theta}\right)\right|=\left|f\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|$ for every f in \mathcal{P}_{n}^{\vee}, it implies that $\left|f\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right| \leq M$ for $-\pi \leq \theta \leq \pi$. We also observe that $g(z) \equiv z^{n} \overline{f(1 / \bar{z})}=\overline{f(\bar{z})}$. Then from inequality (32) in Lemma 4, for $z=\mathrm{e}^{\mathrm{i} \theta}$

$$
\begin{equation*}
\left|f^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|+\left|g^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|=\left|f^{\prime}\left(\mathrm{e}^{-\mathrm{i} \theta}\right)\right|+\left|f^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right| \leq n M, \quad-\pi \leq \theta \leq \pi \tag{48}
\end{equation*}
$$

From Theorem $1,\left|f^{\prime}\left(\mathrm{e}^{-\mathrm{i} \theta}\right)\right| \leq\left|f^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|$ for $0 \leq \theta \leq \pi$. So, from (48) we get

$$
\begin{equation*}
2\left|f^{\prime}\left(\mathrm{e}^{-\mathrm{i} \theta}\right)\right| \leq\left|f^{\prime}\left(\mathrm{e}^{-\mathrm{i} \theta}\right)\right|+\left|f^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right| \leq n M, \quad 0 \leq \theta \leq \pi \tag{49}
\end{equation*}
$$

The result follows from (49). It is easy to verify that the equality holds for $f(z)$ $=\left(z^{2}+1\right)^{\frac{n}{2}}$, when n is even and $f(z)=(z+1)^{n}$, when n is odd.

3.2. Proof of Theorem 6 and its corollaries

Let $\left\{z_{\nu}\right\}, \nu=1,2, \ldots$ be the zeros of f other than 0 in $\{z \in \mathbb{C}: \Re z \geq 0, \Im z \geq 0\}$. The number of such zeros can be finite or infinite. Besides, to each zero z_{ν} there corresponds a zero $-z_{\nu}$. A zero of f at the origin, if there is any, must be of even multiplicity, say $2 k$. For these reasons, the Hadamard factorization of f takes the form

$$
f(z)=c z^{2 k} \mathrm{e}^{\mathrm{i} \tau z / 2} \prod_{\nu}\left(1-\frac{z^{2}}{z_{\nu}^{2}}\right)
$$

where c is a constant and k is a non-negative integer. Now, let us write

$$
x_{\nu}=\Re z_{\nu} \text { and } y_{\nu}=\Im z_{\nu}
$$

so that $x_{\nu} \geq 0$ and $y_{\nu} \geq 0$.
Case 1. f has only real zeros
In this case, for any real x different from 0 that is not a zero of f, we have

$$
\frac{f^{\prime}(x)}{f(x)}=\frac{2 k}{x}+\sum_{\nu}\left(\frac{1}{x_{\nu}+x}-\frac{1}{x_{\nu}-x}\right)+\mathrm{i} \frac{\tau}{2}
$$

The real part of $f^{\prime}(x) / f(x)$ is clearly an odd function of x and so

$$
\frac{f^{\prime}(-x)}{f(-x)}=-\left(\frac{2 k}{x}+\sum_{\nu}\left(\frac{1}{x_{\nu}+x}-\frac{1}{x_{\nu}-x}\right)\right)+\mathrm{i} \frac{\tau}{2}
$$

From the definition of the class $\mathcal{F}_{\tau}^{\vee}$ it is clear that $|f(-x)|=|f(x)|$ for any real x. Hence $\left|f^{\prime}(-x)\right|=\left|f^{\prime}(x)\right|$. Since it holds for any x such that $f(x) \neq 0$, by continuity it also holds for those values for x for which $f(x)=0$.
Case 2. The zeros of f are not all real
In this case, for any real x different from 0 that is not a zero of f, we have

$$
\frac{f^{\prime}(x)}{f(x)}=A_{f}(x)+\mathrm{i}\left(\frac{\tau}{2}+B_{f}(x)\right)
$$

where

$$
A_{f}(x):=\frac{2 k}{x}+\sum_{\nu}\left(\frac{x_{\nu}+x}{\left(x_{\nu}+x\right)^{2}+y_{\nu}^{2}}-\frac{x_{\nu}-x}{\left(x_{\nu}-x\right)^{2}+y_{\nu}^{2}}\right)
$$

and

$$
B_{f}(x):=4 x \sum_{\nu}\left(\frac{x_{\nu} y_{\nu}}{\left(\left(x_{\nu}+x\right)^{2}+y_{\nu}^{2}\right)\left(\left(x_{\nu}-x\right)^{2}+y_{\nu}^{2}\right)}\right)
$$

Consequently, for any real $x \neq 0$ such that $f(x) \neq 0$ we have

$$
\left|\frac{f^{\prime}(x)}{f(x)}\right|=\sqrt{\left(A_{f}(x)\right)^{2}+\left(B_{f}(x)+\frac{\tau}{2}\right)^{2}}
$$

Now note that $B_{f}(x)$ is an odd function that is positive for $x>0$. Hence

$$
\left|B_{f}(-x)+\frac{\tau}{2}\right|<\left|B_{f}(x)+\frac{\tau}{2}\right|, \quad x>0, f(x) \neq 0
$$

Since $|f(-x)|=|f(x)|$, we find that $\left|f^{\prime}(-x)\right| \leq\left|f^{\prime}(x)\right|$ for any positive x if $f(x) \neq 0$. However, by continuity, the same must also hold for those values of x for which $f(x)=0$. The proof of Theorem 6 is thus complete.

Proof of Corollary 3. Let $p \geq 1$ be any real number. From the interpolation formula (29) given in Lemma 1, we get

$$
\left|\frac{\mathrm{e}^{\mathrm{i} \gamma} f^{\prime}(x)+\mathrm{e}^{\mathrm{i} \tau x} f^{\prime}(-x)}{\tau}\right|^{p} \leq \sum_{n=-\infty}^{\infty} \frac{c_{n}}{\tau}\left|f\left(x-s+\frac{n \pi}{\tau}\right)\right|^{p}
$$

If we integrate both sides of the above inequality with respect to x on the real line, we have

$$
\int_{-\infty}^{\infty}\left|\mathrm{e}^{\mathrm{i} \gamma} f^{\prime}(x)+\mathrm{e}^{\mathrm{i} \tau x} f^{\prime}(-x)\right|^{p} d x \leq \tau^{p} \int_{-\infty}^{\infty}|f(x)|^{p} d x
$$

The above integral is true for any $0 \leq \gamma \leq 2 \pi$, therefore by integrating both sides with respect to γ on the interval $[0,2 \pi]$ we get

$$
\begin{equation*}
\int_{0}^{2 \pi} \int_{-\infty}^{\infty}\left|\mathrm{e}^{\mathrm{i} \gamma} f^{\prime}(x)+\mathrm{e}^{\mathrm{i} \tau x} f^{\prime}(-x)\right|^{p} d x d \gamma \leq 2 \pi \tau^{p} \int_{-\infty}^{\infty}|f(x)|^{p} d x \tag{50}
\end{equation*}
$$

The integral on the left-hand side of (50) may be written as

$$
\begin{equation*}
\int_{0}^{2 \pi} \int_{-\infty}^{0}\left|\mathrm{e}^{\mathrm{i} \gamma} f^{\prime}(x)+\mathrm{e}^{\mathrm{i} \tau x} f^{\prime}(-x)\right|^{p} d x d \gamma+\int_{0}^{2 \pi} \int_{0}^{\infty}\left|\mathrm{e}^{\mathrm{i} \gamma} f^{\prime}(x)+\mathrm{e}^{\mathrm{i} \tau x} f^{\prime}(-x)\right|^{p} d x d \gamma \tag{51}
\end{equation*}
$$

The first integral $\int_{0}^{2 \pi} \int_{-\infty}^{0}\left|\mathrm{e}^{\mathrm{i} \gamma} f^{\prime}(x)+\mathrm{e}^{\mathrm{i} \tau x} f^{\prime}(-x)\right|^{p} d x d \gamma$ in (51), after the change of order of integration can be written as

$$
\begin{align*}
\int_{-\infty}^{0} \int_{0}^{2 \pi} & \left|\mathrm{e}^{\mathrm{i} \gamma} f^{\prime}(x)+\mathrm{e}^{\mathrm{i} \tau x} f^{\prime}(-x)\right|^{p} d x d \gamma \\
& =\int_{-\infty}^{0}\left|f^{\prime}(x)\right|^{p} d x \int_{0}^{2 \pi}\left|1+\mathrm{e}^{\mathrm{i} \tau x-\mathrm{i} \gamma} \frac{f^{\prime}(-x)}{f^{\prime}(x)}\right|^{p} d \gamma \\
& \geq \int_{-\infty}^{0}\left|f^{\prime}(x)\right|^{p} d x \int_{0}^{2 \pi}\left|1+\mathrm{e}^{\mathrm{i} \gamma}\right|^{p} d \gamma \tag{52}
\end{align*}
$$

Inequality (52) follows because for $x \leq 0,\left|f^{\prime}(-x) / f^{\prime}(x)\right| \geq 1$ from Theorem 6 and $\int_{0}^{2 \pi}\left|1+r \mathrm{e}^{\mathrm{i} \gamma}\right|^{p} d \gamma \geq \int_{0}^{2 \pi}\left|1+\mathrm{e}^{\mathrm{i} \gamma}\right|^{p} d \gamma$ for every $|r| \geq 1$ and $p \geq 1$.
Similar reasoning applied to the second integral $\int_{0}^{2 \pi} \int_{0}^{\infty}\left|\mathrm{e}^{\mathrm{i} \gamma} f^{\prime}(x)+\mathrm{e}^{\mathrm{i} \tau x} f^{\prime}(-x)\right|^{p} d x d \gamma$ in (51) gives

$$
\begin{equation*}
\int_{0}^{2 \pi} \int_{0}^{\infty}\left|\mathrm{e}^{\mathrm{i} \gamma} f^{\prime}(x)+\mathrm{e}^{\mathrm{i} \tau x} f^{\prime}(-x)\right|^{p} d x d \gamma \geq \int_{0}^{\infty}\left|f^{\prime}(-x)\right|^{p} d x \int_{0}^{2 \pi}\left|1+\mathrm{e}^{\mathrm{i} \gamma}\right|^{p} d \gamma \tag{53}
\end{equation*}
$$

as once again from Theorem 6 we have $\left|f^{\prime}(x) / f^{\prime}(-x)\right| \geq 1$ when $x \geq 0$.
Thus from (50), (52) and (53) we get

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|1+\mathrm{e}^{\mathrm{i} \gamma}\right|^{p} d \gamma\left(\int_{-\infty}^{0}\left|f^{\prime}(x)\right|^{p} d x+\int_{0}^{\infty}\left|f^{\prime}(-x)\right|^{p} d x\right) \leq 2 \pi \tau^{p} \int_{-\infty}^{\infty}|f(x)|^{p} d x \tag{54}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\int_{-\infty}^{0}\left|f^{\prime}(x)\right|^{p} d x+\int_{0}^{\infty}\left|f^{\prime}(-x)\right|^{p} d x=2 \int_{-\infty}^{0}\left|f^{\prime}(x)\right|^{p} d x \tag{55}
\end{equation*}
$$

Also, for $f \in \mathcal{F}_{\tau}^{\vee}$, we have $|f(x)|=|f(-x)|$, and so

$$
\begin{equation*}
\int_{-\infty}^{\infty}|f(x)|^{p} d x=2 \int_{-\infty}^{0}|f(x)|^{p} d x \tag{56}
\end{equation*}
$$

From (54), (55), and (56) we get

$$
\int_{-\infty}^{0}\left|f^{\prime}(x)\right|^{p} d x \leq \tau^{p} C_{p} \int_{-\infty}^{0}|f(x)|^{p} d x
$$

where C_{p} is as given in (11).

Proof of Corollary 4. Let $f \in \mathcal{F}_{\tau}^{\vee}$ such that $|f(x)| \leq M$ for $x \leq 0$. Since $f \in \mathcal{F}_{\tau}^{\vee}$, we have $|f(x)|=|f(-x)|$ for $x \in \mathbb{R}$ and hence $|f(x)| \leq M$ for $-\infty<x<\infty$. So from inequality (30) in Lemma 2 we have

$$
\begin{equation*}
\left|f^{\prime}(x)\right|+\left|f^{\prime}(-x)\right| \leq M \tau, \quad x \in \mathbb{R} \tag{57}
\end{equation*}
$$

Also, from Theorem 6, $\left|f^{\prime}(-x)\right| \geq\left|f^{\prime}(x)\right|$ for $x \leq 0$, and (57) then gives us

$$
\left|f^{\prime}(x)\right| \leq \frac{M \tau}{2}, \quad x \leq 0
$$

It is easy to verify that the equality holds in (22) for $f(x)=M\left(1+\mathrm{e}^{\mathrm{i} \tau z}\right) / 2$.
Proof of Corollary 5. Let f satisfy the conditions given in Corollary 5. Then according to Corollary 4, for $x \leq 0,\left|f^{\prime}(x)\right| \leq M \tau / 2$. From Rahman and Tariq $\left(\left[18\right.\right.$, Lemma 3]), $h_{f}(\pi / 2) \leq 0$. Thus we have $h_{f^{\prime}}(\pi / 2) \leq h_{f}(\pi / 2) \leq 0$ as well. Consider the function $g(z)=\mathrm{e}^{\mathrm{i} \tau z} \overline{f(\bar{z})}$. Then $g(z)$ is an entire function of exponential type τ and $g(z)=f(-z)$. From Corollary $4,\left|g^{\prime}(x)\right| \leq M \tau / 2$ for $x \geq 0$. Also, $h_{g^{\prime}}(\pi / 2)=h_{f^{\prime}}(-\pi / 2)=\tau$. Then according to Theorem 6.2.3 ([4], page 82), for $x \geq 0, y \geq 0$,

$$
\left|g^{\prime}(x+\mathrm{i} y)\right| \leq \frac{M \tau}{2} \mathrm{e}^{\tau y}
$$

Since $g(z)=f(-z)$, we have for $x \leq 0, y \leq 0$,

$$
\left|f^{\prime}(x+\mathrm{i} y)\right| \leq \frac{M \tau}{2} \mathrm{e}^{-\tau y}
$$

It is easy to see that the equality holds for the function $M\left(1+\mathrm{e}^{\mathrm{i} \tau z}\right) / 2$.

3.3. Proof of Theorem 10

Let f, whose zeros lie in the first and the third quadrants, belong to $\mathcal{F}_{\tau}^{\vee}$. Let $\varepsilon>0$ be an arbitrary real number. Define the function g_{ε} as follows

$$
\begin{equation*}
g_{\varepsilon}(z)=\mathrm{e}^{\mathrm{i} \frac{\varepsilon}{2} z} \frac{\sin \frac{\varepsilon}{2} z}{\frac{\varepsilon}{2} z} f(z) . \tag{58}
\end{equation*}
$$

It is obvious that $g_{\varepsilon}(z)$ is an entire function of exponential type $\tau+\varepsilon$. Also,

$$
\mathrm{e}^{\mathrm{i}(\tau+\varepsilon) z} g_{\varepsilon}(-z)=\mathrm{e}^{\mathrm{i} \frac{\varepsilon}{2} z} \frac{\sin \frac{\varepsilon}{2} z}{\frac{\varepsilon}{2} z} \mathrm{e}^{\mathrm{i} \tau z} f(-z)=\mathrm{e}^{\mathrm{i} \frac{\mathrm{\varepsilon}}{2} z} \frac{\sin \frac{\varepsilon}{2} z}{\frac{\varepsilon}{2} z} f(z)=g_{\varepsilon}(z)
$$

Thus, $g_{\varepsilon}(z)$ belongs to $\mathcal{F}_{\tau+\varepsilon}^{\vee}$.
Note that the zeros of $g_{\varepsilon}(z)$ are the zeros of $\sin \frac{\varepsilon}{2} z$ or the zeros of $f(z)$. Since the zeros of $\sin z$ are all real, the zeros of $g_{\varepsilon}(z)$ also lie in the first and third quadrants. Hence, according to Theorem 6,

$$
\begin{equation*}
\left|g_{\varepsilon}^{\prime}(-x)\right| \leq\left|g_{\varepsilon}^{\prime}(x)\right|, \quad x \geq 0 \tag{59}
\end{equation*}
$$

Next, we will show that g_{ε} is bounded on the real line. The assumption that $M^{p}(f)<$ ∞ gives us ([12, Theorem 1]), $f(x)=O\left(|x|^{\frac{1}{p}}\right)$ as $|x| \rightarrow \infty$. It means there exist a positive real number $x_{0} \in \mathbb{R}$ and a real number $N_{1} \in \mathbb{R}$ such that $|f(x)| \leq N_{1}|x|^{\frac{1}{p}}$ for $|x| \geq x_{0}$. Thus for $|x| \geq x_{0}$,

$$
\left|g_{\varepsilon}(x)\right|=\left|\mathrm{e}^{\mathrm{i} \frac{\varepsilon}{2} x} \frac{\sin \frac{\varepsilon}{2} x}{\frac{\varepsilon}{2} x} f(x)\right| \leq N_{1}\left|\frac{\sin \frac{\varepsilon}{2} x}{\frac{\varepsilon}{2} x}\right||x|^{\frac{1}{p}} \leq N_{1} \frac{2}{\varepsilon|x|^{1-\frac{1}{p}}} \leq N_{1} \frac{2}{\varepsilon\left|x_{0}\right|^{1-\frac{1}{p}}}
$$

On the interval $\left[-x_{0}, x_{0}\right], g_{\varepsilon}$ is continuous and hence bounded. So there exists a real number N_{2} such that $\left|g_{\varepsilon}(x)\right| \leq N_{2}$ for $x \in\left[-x_{0}, x_{0}\right]$. Let $K=\max \left(2 N_{1} / \varepsilon\left|x_{0}\right|^{1-\frac{1}{p}}, N_{2}\right)$. Then $\left|g_{\varepsilon}(x)\right| \leq K$ for $x \in \mathbb{R}$. Thus g_{ε} is bounded on the real line and belongs to $\mathcal{F}_{\tau+\varepsilon}^{\vee}$. Hence Lemma 1 (with τ replaced by $\tau+\varepsilon$), when applied to the function $g_{\varepsilon}(z)$, gives us for $x \in \mathbb{R}$

$$
-\mathrm{i}\left\{\mathrm{e}^{\mathrm{i} \gamma} g_{\varepsilon}^{\prime}(x)+\mathrm{e}^{\mathrm{i}(\tau+\varepsilon) x} g_{\varepsilon}^{\prime}(-x)\right\}=\sum_{n=-\infty}^{\infty} c_{n} g_{\varepsilon}\left(x-s+\frac{n \pi}{\tau+\varepsilon}\right)
$$

where
$c_{n}=\frac{1}{(s(\tau+\varepsilon)-n \pi)^{2}}\left\{1+(-1)^{n}\right\}\left\{1-(-1)^{n} \cos \gamma\right\}(\tau+\varepsilon), \quad n=0, \pm 1, \pm 2, \ldots$, γ is any real number, $s=-\gamma /(\tau+\varepsilon)$, and $\sum_{n=\infty}^{\infty}\left|c_{n}\right|=\tau+\varepsilon$.
From the above interpolation formula we have

$$
\begin{equation*}
\frac{-\mathrm{i}\left\{\mathrm{e}^{\mathrm{i} \gamma} g_{\varepsilon}^{\prime}(x)+\mathrm{e}^{\mathrm{i}(\tau+\varepsilon) x} g_{\varepsilon}^{\prime}(-x)\right\}}{\tau+\varepsilon}=\sum_{n=-\infty}^{\infty} d_{n} g_{\varepsilon}\left(x-s+\frac{n \pi}{\tau+\varepsilon}\right) \tag{60}
\end{equation*}
$$

where $d_{n}=c_{n} /(\tau+\varepsilon)$ and $\sum_{n=-\infty}^{\infty}\left|d_{n}\right|=1$. Thus right-hand side of (60) is a convex combination of $\left\{g_{\varepsilon}(x-s+n \pi / \tau+\varepsilon)\right\}_{n=-\infty}^{\infty}$. So for $p \geq 1$ we get

$$
\left|\frac{-\mathrm{i}\left\{\mathrm{e}^{\mathrm{i} \gamma} g_{\varepsilon}^{\prime}(x)+\mathrm{e}^{\mathrm{i}(\tau+\varepsilon) x} g_{\varepsilon}^{\prime}(-x)\right\}}{\tau+\varepsilon}\right|^{p} \leq \sum_{n=-\infty}^{\infty}\left|d_{n}\right|\left|g_{\varepsilon}\left(x-s+\frac{n \pi}{\tau+\varepsilon}\right)\right|^{p}
$$

which gives us

$$
\begin{equation*}
\left|\mathrm{e}^{\mathrm{i} \gamma} g_{\varepsilon}^{\prime}(x)+\mathrm{e}^{\mathrm{i}(\tau+\varepsilon) x} g_{\varepsilon}^{\prime}(-x)\right|^{p} \leq(\tau+\varepsilon)^{p} \sum_{n=-\infty}^{\infty}\left|d_{n}\right|\left|g_{\varepsilon}\left(x-s+\frac{n \pi}{\tau+\varepsilon}\right)\right|^{p} \tag{61}
\end{equation*}
$$

Let $T>0$ be an arbitrary real number. Then, integrating both sides of (61) with respect to x we get

$$
\begin{aligned}
& \frac{1}{2 T} \int_{-T}^{T}\left|\mathrm{e}^{\mathrm{i} \gamma} g_{\varepsilon}^{\prime}(x)+\mathrm{e}^{\mathrm{i}(\tau+\varepsilon) x} g_{\varepsilon}^{\prime}(-x)\right|^{p} d x \\
& \leq(\tau+\varepsilon)^{p} \frac{1}{2 T} \int_{-T}^{T} \sum_{n=-\infty}^{\infty}\left|d_{n}\right|\left|g_{\varepsilon}\left(x-s+\frac{n \pi}{\tau+\varepsilon}\right)\right|^{p} d x \\
&=(\tau+\varepsilon)^{p} \sum_{n=-\infty}^{\infty}\left|d_{n}\right| \frac{1}{2 T} \int_{-T}^{T}\left|g_{\varepsilon}\left(x-s+\frac{n \pi}{\tau+\varepsilon}\right)\right|^{p} d x
\end{aligned}
$$

We can change the order of integration in the last inequality because the series on right-hand side of (61) is absolutely convergent and hence uniformly convergent. Applying Lemma 4 followed by Lemma 1 given in [12] we get

$$
\begin{aligned}
\limsup _{T \rightarrow \infty} & \frac{1}{2 T} \int_{-T}^{T}\left|\mathrm{e}^{\mathrm{i} \gamma} g_{\varepsilon}^{\prime}(x)+\mathrm{e}^{\mathrm{i}(\tau+\varepsilon) x} g_{\varepsilon}^{\prime}(-x)\right|^{p} d x \\
& \leq(\tau+\varepsilon)^{p} \sum_{n=-\infty}^{\infty}\left|d_{n}\right| \limsup _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}\left|g_{\varepsilon}\left(x-s+\frac{n \pi}{\tau+\varepsilon}\right)\right|^{p} d x \\
& =(\tau+\varepsilon)^{p} \sum_{n=-\infty}^{\infty}\left|d_{n}\right| \limsup _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}\left|g_{\varepsilon}(x)\right|^{p} d x=(\tau+\varepsilon)^{p} M^{p} g_{\varepsilon}(x)
\end{aligned}
$$

Thus $M^{p}\left\{\mathrm{e}^{\mathrm{i} \gamma} g_{\varepsilon}^{\prime}(x)+\mathrm{e}^{\mathrm{i}(\tau+\varepsilon) x} g_{\varepsilon}^{\prime}(-x)\right\}$, the mean value of $\left\{\mathrm{e}^{\mathrm{i} \gamma} g_{\varepsilon}^{\prime}(x)+\mathrm{e}^{\mathrm{i}(\tau+\varepsilon) x} g_{\varepsilon}^{\prime}(-x)\right\}$, exists for each real number γ and $\varepsilon>0$. From the definition of limit superior, for every $\delta>0$ there exists a positive $T_{0} \in \mathbb{R}$ such that

$$
\begin{align*}
\frac{1}{2 T} \int_{-T}^{T}\left|\mathrm{e}^{\mathrm{i} \gamma} g_{\varepsilon}^{\prime}(x)+\mathrm{e}^{\mathrm{i}(\tau+\varepsilon) x} g_{\varepsilon}^{\prime}(-x)\right|^{p} d x & <M^{p}\left\{\mathrm{e}^{\mathrm{i} \gamma} g_{\varepsilon}^{\prime}(x)+\mathrm{e}^{\mathrm{i}(\tau+\varepsilon) x} g_{\varepsilon}^{\prime}(-x)\right\}+\delta \\
& \leq(\tau+\varepsilon)^{p} M^{p} g_{\varepsilon}(x)+\delta \tag{62}
\end{align*}
$$

for all $T \geq T_{0}>0, \gamma \in \mathbb{R}$, and $\varepsilon>0$.
Since (62) is true for each γ, integrating both sides with respect to γ from 0 to 2π and changing the order of integration which is justified by Fubini's Theorem as the function $\left|\mathrm{e}^{\mathrm{i} \gamma} g_{\varepsilon}^{\prime}(x)+\mathrm{e}^{\mathrm{i}(\tau+\varepsilon) x} g_{\varepsilon}^{\prime}(-x)\right|^{p}$ is continuous, we get

$$
\begin{equation*}
\frac{1}{2 T} \int_{-T}^{T} \int_{0}^{2 \pi}\left|\mathrm{e}^{\mathrm{i} \gamma} g_{\varepsilon}^{\prime}(x)+\mathrm{e}^{\mathrm{i}(\tau+\varepsilon) x} g_{\varepsilon}^{\prime}(-x)\right|^{p} d \gamma d x<2 \pi\left\{(\tau+\varepsilon)^{p} M^{p} g_{\varepsilon}(x)+\delta\right\} \tag{63}
\end{equation*}
$$

By considering the iterated integral on the left-hand side of (63), we get

$$
\begin{aligned}
\int_{-T}^{T} \int_{0}^{2 \pi} & \left|\mathrm{e}^{\mathrm{i} \gamma} g_{\varepsilon}^{\prime}(x)+\mathrm{e}^{\mathrm{i}(\tau+\varepsilon) x} g_{\varepsilon}^{\prime}(-x)\right|^{p} d \gamma d x \\
= & \int_{-T}^{0} \int_{0}^{2 \pi}\left|g_{\varepsilon}^{\prime}(x)\right|^{p}\left|1+\mathrm{e}^{-\mathrm{i} \gamma+\mathrm{i}(\tau+\varepsilon) x} \frac{g_{\varepsilon}^{\prime}(-x)}{g_{\varepsilon}^{\prime}(x)}\right|^{p} d \gamma d x \\
& +\int_{0}^{T} \int_{0}^{2 \pi}\left|g_{\varepsilon}^{\prime}(-x)\right|^{p}\left|1+\mathrm{e}^{\mathrm{i} \gamma-\mathrm{i}(\tau+\varepsilon) x} \frac{g_{\varepsilon}^{\prime}(x)}{g_{\varepsilon}^{\prime}(-x)}\right|^{p} d \gamma d x \\
\geq & \int_{0}^{2 \pi}\left|1+\mathrm{e}^{\mathrm{i} \gamma}\right|^{p} d \gamma\left(\int_{-T}^{0}\left|g_{\varepsilon}^{\prime}(x)\right|^{p} d x+\int_{0}^{T}\left|g_{\varepsilon}^{\prime}(-x)\right|^{p} d x\right) \\
= & 2 \int_{0}^{2 \pi}\left|1+\mathrm{e}^{\mathrm{i} \gamma}\right|^{p} d \gamma\left(\int_{-T}^{0}\left|g_{\varepsilon}^{\prime}(x)\right|^{p} d x\right)
\end{aligned}
$$

Then multiplying both sides by $1 / 2 T$, from (63) we get

$$
\begin{align*}
& \frac{2}{2 T} \int_{0}^{2 \pi}\left|1+\mathrm{e}^{\mathrm{i} \gamma}\right|^{p} d \gamma\left(\int_{-T}^{0}\left|g_{\varepsilon}^{\prime}(x)\right|^{p} d x\right) \\
& \quad \leq \frac{1}{2 T} \int_{-T}^{T} \int_{0}^{2 \pi}\left|\mathrm{e}^{\mathrm{i} \gamma} g_{\varepsilon}^{\prime}(x)+\mathrm{e}^{\mathrm{i}(\tau+\varepsilon) x} g_{\varepsilon}^{\prime}(-x)\right|^{p} d \gamma d x \\
& \quad \leq 2 \pi\left\{(\tau+\varepsilon)^{p} M^{p} g_{\varepsilon}(x)+\delta\right\} \tag{64}
\end{align*}
$$

Inequality (64) is true for all $T \geq T_{0}$, so taking limit superior when $T \rightarrow \infty$, we get

$$
\begin{equation*}
\limsup _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{2 \pi}\left|1+\mathrm{e}^{\mathrm{i} \gamma}\right|^{p} d \gamma\left(\int_{-T}^{0}\left|g_{\varepsilon}^{\prime}(x)\right|^{p} d x\right) \leq 2 \pi\left\{(\tau+\varepsilon)^{p} M^{p} g_{\varepsilon}(x)+\delta\right\} \tag{65}
\end{equation*}
$$

Since, δ is an arbitrary positive real number, letting $\delta \rightarrow 0$ we get

$$
\begin{equation*}
\limsup _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{2 \pi}\left|1+\mathrm{e}^{\mathrm{i} \gamma}\right|^{p} d \gamma\left(\int_{-T}^{0}\left|g_{\varepsilon}^{\prime}(x)\right|^{p} d x\right) \leq 2 \pi(\tau+\varepsilon)^{p}\left\{M^{p} g_{\varepsilon}(x)\right\} \tag{66}
\end{equation*}
$$

Note that from (59) for every $x \in \mathbb{R}$ such that $x \geq 0,\left|g_{\varepsilon}(-x)\right| \leq\left|g_{\varepsilon}(x)\right|$, we have

$$
\begin{equation*}
M^{p} g_{\varepsilon}(x)=\limsup _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}\left|g_{\varepsilon}(x)\right|^{p} d x \leq 2 \limsup _{T \rightarrow \infty} \frac{1}{T} \int_{-T}^{0}\left|g_{\varepsilon}(x)\right|^{p} \tag{67}
\end{equation*}
$$

Then from (66) and (67), we get

$$
\begin{equation*}
\limsup _{T \rightarrow \infty} \frac{1}{T} \int_{-T}^{0}\left|g_{\varepsilon}^{\prime}(x)\right|^{p} d x \leq(\tau+\varepsilon)^{p} C_{p} \limsup _{T \rightarrow \infty} \frac{1}{T} \int_{-T}^{0}\left|g_{\varepsilon}(x)\right|^{p} \tag{68}
\end{equation*}
$$

where C_{p} is as given in (11).
For any $x \in \mathbb{R}$,

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} g_{\varepsilon}(x)=\lim _{\varepsilon \rightarrow 0} \mathrm{e}^{\mathrm{i} \frac{\varepsilon}{2} x} \frac{\sin \frac{\varepsilon}{2} x}{\frac{\varepsilon}{2} x} f(x)=f(x) \tag{69}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} g_{\varepsilon}^{\prime}(x)=f^{\prime}(x) \tag{70}
\end{equation*}
$$

Inequality (68) is true for every $\varepsilon>0$, therefore by letting $\varepsilon \rightarrow 0$, and using (69) and (70), we get (28).

Acknowledgement

The author would like to thank the referees for their helpful suggestions.

References

[1] A. Aziz, Q. G. Mohammad, Simple proof of a theorem of Erdős and Lax, Proc. Amer. Math. Soc. 80(1980), 119-122.
[2] S. N. Bernstein, Sur une propriété des fonctions entières, Comptes rendus 176(1923), 1603-1605.
[3] S. N. Bernstein, Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d'une variable réelle, Gauthier-Villars, Paris, 1926.
[4] R. P. Boas, Jr, Entire functions, Academic Press, New York, 1954.
[5] K. K. Dewan, N. K. Govil, An inequality for self-inversive polynomials, J. Math. Anal. Appl. 95(1982), 490.
[6] C. Frappier, Q. I. Rahman, St. Ruscheweyh, New inequalities for polynomials, Trans. Amer. Math. Soc. 288(1985), 69-99.
[7] C. Frappier, Q. I. Rahman, St. Ruscheweyh, Inequalities for polynomials, J. Approx. Theory 44(1985), 73-81.
[8] N. K. Govil, L^{p} inequalities for entire functions of exponential type, Math. Inequal. Appl. 6(2003), 445-452.
[9] N. K. Govil, V. K. Jain, G. Labelle, Inequalities for polynomials satisfying $p(z) \equiv$ $z^{n} p(1 / z)$, Proc. Amer. Math. Soc. 57(1976), 238-242.
[10] N. K. Govil, Q. I. Rahman, Functions of exponential type not vanishing in a halfplane and related polynomials, Trans. Amer. Math. Soc. 137(1969), 501-517.
[11] N. K. Govil, D. H. Vetterline, Inequalities for a class of polynomials satisfying $p(z) \equiv z^{n} p(1 / z)$, Complex variables Theory Appl. 31(1996), 285-191.
[12] A. R. Harvey, The mean of a function of exponential type, Amer. J. Math. 70(1948), 181-202.
[13] M. A. Malik, On the derivative of a polynomial, J. London Math. Soc. 1(1969), 57-60.
[14] Q. I. Rahman, G. Schmeisser, L^{p} inequalities for entire functions of exponential type, Trans. Amer. Math. Soc. 320(1990), 91-103.
[15] Q. I. Rahman, G. Schmeisser, Analytic theory of polynomials, Clarendon Press, Oxford, 2002.
[16] Q. I. Rahman, Q. M. TariQ, An inequality for self-reciprocal polynomials, East J. Approx. 12(2006), 43-51.
[17] Q. I. Rahman, Q. M. TariQ, On Bernstein's inequality for entire functions of exponential type, Comput. Methods Funct. Theory 7(2007), 167-184.
[18] Q. I. Rahman, Q. M. TariQ, On Bernstein's inequality for entire functions of exponential type, J. Math. Anal. Appl. 359(2009), 168-180.
[19] A. Zygmund, A remark on conjugate series, Proc. London Math. Soc. 34(1932), 292400.

[^0]: *Corresponding author. Email address: tqazi@vsu.edu (Q. M. Tariq)

