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Abstract. Let p be a polynomial of degree n such that |p(z)| ≤ M (|z| = 1). The
Bernstein’s inequality for polynomials states that |p′(z)| ≤ Mn (|z| = 1). A polynomial p
of degree n that satisfies the condition p(z) ≡ znp(1/z) is called a self-reciprocal polynomial.
If p is a self-reciprocal polynomial, then f(z) = p(eiz) is an entire function of exponential
type n such that f(z) = einzf(−z). Thus the class of entire functions of exponential type
τ whose elements satisfy the condition f(z) = eiτzf(−z) is a natural generalization of
the class of self-reciprocal polynomials. In this paper we present some Bernstein’s type
inequalities for self-reciprocal polynomials and related entire functions of exponential type
under certain restrictions on the location of their zeros.
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1. Introduction and statement of results

1.1. Bernstein’s inequality for polynomials

Let Pn denote the class of all polynomials of degree at most n and let f ∈ Pn. An
inequality for polynomials in Pn, known as Bernstein’s inequality, gives an estimate
for |f ′(z)| on the unit circle in terms of the maximum of |f(z)| on the same circle.
It states (see [15], p. 508) that

max
|z|=1

|f ′(z)| ≤ nmax
|z|=1

|f(z)|, f ∈ Pn, (1)

where the equality holds for polynomials of the form czn, c ̸= 0.
It is known [13] that if f is as above and f∗(z) := znf(1/z), then on |z| = 1

|f ′(z)|+ |f∗′(z)| ≤ nmax
|z|=1

|f(z)|, f ∈ Pn. (2)
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Let P∼
n be the subclass of Pn consisting of all polynomials f which satisfy the

condition f(z) ≡ f∗(z). It follows from (2) that

max
|z|=1

|f ′(z)| ≤ n

2
max
|z|=1

|f(z)|, f ∈ P∼
n . (3)

Let f ∈ Pn and z0 a point on the unit circle such that |f(z0)| = max|z|=1 |f(z)|.
Clearly, |f∗′(z0)| = |nf(z0)− z0f

′(z0)| ≥ n|f(z0)| − |f ′(z0)|. Hence, if f ∈ P∼
n , then

max
|z|=1

|f ′(z)| ≥ n

2
|f ′(z0| =

n

2
max
|z|=1

|f(z)|

and so, in (3), the inequality sign “≤” may be replaced by “=”. Thus, we have

max
|z|=1

|f ′(z)| = n

2
max
|z|=1

|f(z)|, f ∈ P∼
n . (4)

The subclass P∼
n of Pn is of considerable importance. There is another subclass

of Pn which has proved itself to be equally significant, if not more. It consists of
those polynomials f in Pn which satisfy the condition f(z) ≡ znf(1/z). Let us
denote it by P∨

n . The condition defining the subclass P∨
n looks very similar to the

one defining P∼
n . As regards the distribution of their zeros, polynomials in P∼

n and
those in P∨

n , they all have at least half of their zeros outside the open unit disk (here
it is understood that a polynomial f belonging to Pn but of degree m < n has n−m
of its zeros at ∞).

Frappier, Rahman and Ruscheweyh ([6], p. 97) showed that for the polynomial
f(z) := {(1− iz)2 + zn−2(z − i)2}/4, which clearly belongs to P∨

n , we have

max
|z|=1

|f(z)| = 1 = |f(i)| whereas |f ′(−i)| = n− 1,

thus exhibiting a polynomial f in P∨
n for which

max
|z|=1

|f ′(z)| ≥ (n− 1)max
|z|=1

|f(z)|. (5)

Later Frappier, Rahman and Ruscheweyh ([7, Theorem 2]) proved that for poly-
nomials f(z) :=

∑n
ν=0 aνz

ν , whose constant term a0 is equal to an (the coefficient
of the leading term anz

n), we have

max
|z|=1

|f ′(z)| ≤
(
n− 1

2
+

1

2(n+ 1)

)
max
|z|=1

|f(z)|. (6)

Since f belongs to P∨
n if and only if ak = an−k for each k (k = 0 . . . n), the above

inequality certainly holds for polynomials in P∨
n . Inequalities (5) and (6) show

that by restricting ourselves to the subclass P∨
n , we do not obtain a meaningful

improvement on the Bernstein’s inequality (1). This is quite surprising since the
two classes P∼

n and P∨
n look similar; for P∼

n holds formula (4) by which |f ′(z)| at
a point of the unit circle cannot be larger than n/2 times M := max|z|=1 |f(z)| if
f ∈ P∼

n while it can be as large as n− 1 times M if f belongs to P∨
n , as (5) says.



Inequalities for polynomials and entire functions of exponential type 459

However, under some additional restrictions, either on the location of the zeros
or on the coefficients of polynomials in P∨

n , the bound in (6) can be improved.
For example, Rahman and Tariq [16] (see also [11]) proved that for a polynomial
f(z) :=

∑n
ν=0 aνz

ν in P∨
n , whose coefficients lie in a sector of opening 0 ≤ γ < π

with the vertex at the origin, we have

max
|z|=1

|f ′(z)| ≤ n

2 cos(γ/2)
|f(1)|. (7)

In the case when n is an even integer, the equality holds in (7) for the polynomial
f(z) = zn + 2eiγzn/2 + 1.

On the other hand, if we assume that all the zeros of f are in the left half plane
or in the right half plane [9], then

max
|z|=1

|f ′(z)| ≤ n√
2
max
|z|=1

|f(z)|. (8)

Very few sharp results are known about the class P∨
n although many papers have

been written on the subject since 1976 (see for example, [9, 11, 16]). In fact, the
sharp inequality analogous to (1) is still unknown even for n = 3.

The Bernstein’s inequality has been generalized in many ways. For example, if
f is a polynomial in Pn, then by Zygmund [19] for any p ≥ 1, we have∫ π

−π

|f ′(eiθ)|p dθ ≤ np

∫ π

−π

|f(eiθ)|p dθ, f ∈ Pn. (9)

If we assume that f belongs to P∼
n , the above inequality can be improved. In

this case Dewan and Govil [5] proved the following result∫ π

−π

|f ′(eiθ)|p dθ ≤ np Cp

∫ π

−π

|f(eiθ)|p dθ, f ∈ P∼
n , (10)

where

Cp =
2π∫ π

−π
|1 + eiα|pdα

= 2−p

√
π Γ(p/2 + 1)

Γ(p/2 + 1/2)
. (11)

In this paper, we present a property of polynomials in P∨
n which have all their

zeros in the left half plane. More precisely, we have the following

Theorem 1. Let f be a polynomial in P∨
n having all its zeros in the left half plane.

Suppose in addition that its zeros which lie in the second quadrant are of modulus at
most 1. Then

|f ′(e−iθ)| ≤ |f ′(eiθ)|, 0 ≤ θ ≤ π. (12)

As the first application of Theorem 1, we will prove the following Lp inequality
for the subclass P∨

n . We do not know if it is sharp.

Corollary 1. Let f , which has all its zeros in the left half plane, belong to P∨
n .

Furthermore, the zeros in the second quadrant are in the unit disk {z : |z| ≤ 1}.
Then, for p ≥ 1 ∫ 0

−π

|f ′(eiθ)|p dθ ≤ np Cp

∫ 0

−π

|f(eiθ)|p dθ, (13)

where Cp is as given in (11).
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As the next application we state the following corollary.

Corollary 2. Let f , which has all its zeros in the left half plane, belong to P∨
n .

Furthermore, the zeros in the second quadrant are in the unit disk {z : |z| ≤ 1}.
Suppose that |f(e−iθ)| ≤ M for 0 ≤ θ ≤ π. Then

|f ′(e−iθ)| ≤ M
n

2
, 0 ≤ θ ≤ π. (14)

The example f(z) = (z2 +1)
n
2 shows that the estimate is sharp when n is even. For

odd n, the equality holds for f(z) = (z + 1)n.

1.2. Transcendental entire functions of exponential type

For an entire function f and a real number r > 0, letM(r)=Mf (r) :=max|z|=r |f(z)|.
Unless f is a constant of modulus less than or equal to 1, its order, which is denoted
by ρ, is defined to be lim supr→∞(log r)−1 log logM(r). Constants of modulus less
than or equal to 1 are of order 0 by convention.

If f is of finite positive order ρ, then T := lim supr→∞ r−ρ logM(r) is called its
type.

An entire function f is said to be of exponential type τ if for any ε > 0 there
exists a constant k(ε) such that |f(z)| ≤ k(ε)e(τ+ε)|z| for all z ∈ C. Any entire
function of order less than 1 is of exponential type τ , where τ can be taken to be
any number greater than or equal to 0. Functions of order 1 type T ≤ τ are also of
exponential type τ .

If f is an entire function of exponential type, then its indicator function hf (θ) is
defined by hf (θ) := lim supr→∞ r−1 log |f(reiθ)|. It describes the growth of f along
the ray {z| arg z = θ}. hf (θ) is either finite or −∞ and is a continuous function of
θ unless it is identically −∞.

For a detailed discussion on entire functions of exponential type, we refer the
reader to Boas [4].

Bernstein [2], (see also [3], p. 102) extended inequality (1) to arbitrary entire
functions of exponential type bounded on the real line.

Theorem 2. Let f be an entire function of exponential type τ > 0 such that
|f(x)| ≤ M on the real axis. Then

sup
−∞<x<∞

|f ′(x)| ≤ Mτ. (15)

The equality in (15) holds if and only if f(z) ≡ aeiτz + be−iτz, where a, b ∈ C.

If f ∈ P∨
n , then g(z) := f(eiz) is an entire function of exponential type which

satisfies the condition g(z) ≡ einzg(−z). Moreover, its type is n. This suggests that
the class of entire functions of exponential type that generalizes P∨

n consists of entire
functions of exponential type f such that f(z) ≡ eiτzf(−z). Let us denote this class
by F∨

τ which has been studied by Govil [8], Rahman and Tariq [17, 18].
Rahman and Tariq ([17, Theorem 2]) proved the following Theorem which is akin

to (5), a result proved by Frappier, Rahman and Ruscheweyh [7] for polynomials.
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Theorem 3. For a given positive number ε, as small as we please, there exists an
entire function fε ∈ F∨

τ such that

sup
−∞<x<∞

|f ′
ε(x)| ≥ (τ − ε) sup

−∞<x<∞
|fε(x)|. (16)

Like polynomials, improved inequalities for F∨
τ can be obtained if we impose

some additional restriction on it. For example, Rahman and Tariq ([17, Theorem 1])
proved the following theorem for functions in F∨

τ which are uniformly almost periodic
on the real line. It is clearly an extension of (7) for entire functions of exponential
type.

Theorem 4. Let f ∈ F∨
τ be uniformly almost periodic on the real line. Furthermore,

suppose that the coefficients A1, A2, . . . of the Fourier series
∑∞

n=1 Ane
iΛnx of f lie

in a sector of opening 0 ≤ γ < π with the vertex at the origin. Then

sup
−∞<x<∞

|f ′(x)| ≤ τ

2 cos(γ/2)
|f(0)|. (17)

The result is best possible as the equality holds for f(z) = eiτz + 2eiγeiτz/2 + 1.

Let p > 0 be a real number. We say that a function f belongs to Lp on the
real line if,

∫∞
−∞ |f(x)|p dx < ∞. Inequalities (9) and (10) have been generalized for

entire functions of exponential type as well. For example, as a generalization of (9)
we have

Theorem 5. Let f be an entire function of exponential type τ that belongs to Lp

on the real line, where p > 0 is a real number. Then∫ ∞

−∞
|f ′(x)|p dx ≤ τp

∫ ∞

−∞
|f(x)|p dx. (18)

For various refinement and detailed information we refer the reader to the paper
of Rahman and Schemeisser [14].

For functions f in F∨
τ that belong to L2 on the real line, Rahman and Tariq ([18,

Theorem 3]) proved that∫ ∞

−∞
|f ′(x)|2 dx ≤ τ2

2

∫ ∞

−∞
|f(x)|2 dx, (19)

where the coefficient τ2/2 of
∫∞
−∞ |f(x)|2 dx cannot be replaced by a smaller number.

In this paper, we present the following theorem for functions in F∨
τ that have

all their zeros in the first and the third quadrants. It is clearly an extension of
Theorem 1 for entire functions of exponential type.

Theorem 6. Let f , which has all its zeros in the first and the third quadrants,
belong to F∨

τ . Then
|f ′(−x)| ≤ |f ′(x)|, x > 0. (20)

As applications of Theorem 6, we state the following inequality about functions
in F∨

τ . We do not know if it is sharp.



462 Q.M.Tariq

Corollary 3. Let f , which has all its zeros in the first and the third quadrants,
belong to F∨

τ . Further suppose that f ∈ Lp on (−∞, 0). Then, for p ≥ 1∫ 0

−∞
|f ′(x)|p dx ≤ τp Cp

∫ 0

−∞
|f(x)|p dx, (21)

where Cp is as given in (11).

Corollary 4. Let f , which has all its zeros in the first and the third quadrants,
belong to F∨

τ . Further assume that |f(x)| ≤ M on (−∞, 0). Then

|f ′(x)| ≤ Mτ

2
, x ≤ 0. (22)

The estimate is sharp as the example M(1 + eiτz)/2 shows.

Corollary 5. Let f , which has all its zeros in the first and the third quadrants,
belong to F∨

τ . Further assume that |f(x)| ≤ M on (−∞, 0). Then

|f ′(x+ iy)| ≤ Mτ

2
e−τy, x < 0, y < 0. (23)

The estimate is sharp as the example M(1 + eiτz)/2 shows.

1.3. Mean value of entire functions of exponential type

Let p > 0 be a real number. For a function f , the mean of order p on the real line
is defined by

Mpf(x) = lim sup
T→∞

1

2T

∫ T

−T

|f(x)|p dx. (24)

We say that f has a bounded mean of order p, if Mpf(x) < ∞. It can be easily
seen that a function bounded on the real axis will always have a bounded mean.
However, there are functions which have a bounded mean but not bounded on the
real line. Harvey [12] considered the problems of the mean value of entire functions
of exponential type. Here is one of his results.

Theorem 7. If f is an entire function of exponential type τ , then

Mpf ′(x) ≤ (p+ 2)2p+2

πτp δp+1
(eτδp − 1)Mpf(x), p > 0, (25)

where δ is an arbitrary positive number.

However, when p is greater than one, the constant in the above theorem can be
replaced by τp. More precisely, Harvey [12] proved that

Theorem 8. If f is an entire function of exponential type τ , then

Mpf ′(x) ≤ τpMpf(x), p > 1. (26)



Inequalities for polynomials and entire functions of exponential type 463

As to the mean value of functions in F∨
τ , Rahman and Tariq [18] considered the

case when p = 2 and obtained the following inequality.

Theorem 9. If f , which is a uniformly almost periodic function on the real line,
belongs to F∨

τ , then

lim sup
T→∞

1

T

∫ 0

−T

|f ′(x)|2 dx ≤ τ2

2
lim sup
T→∞

1

T

∫ 0

−T

|f(x)|2 dx. (27)

Inequality (27) is sharp as the example f(z) = (1 + eiτz)/2 shows.

Here, we will prove the following inequality about the mean value theorem for
functions in F∨

τ . We do not know if it is sharp.

Theorem 10. Let f , which has all its zeros in the first and the third quadrants,
belong to F∨

τ . Assume further that f has a bounded mean of order p where p ≥ 1.
Then

lim sup
T→∞

1

T

∫ 0

−T

|f ′(x)|p dx ≤ τp Cp lim sup
T→∞

1

T

∫ 0

−T

|f(x)|p dx, (28)

where Cp is as given in (11).

The rest of the paper is organized as follows. In Section 2, we list all the lemmas
needed in our proofs. Section 3 deals with the proofs of Theorem 1, Theorem 6 and
Theorem 10 and their corollaries discussed above.

2. Lemmas

The first two Lemmas have been proved by Rahman and Tariq [18].

Lemma 1. Let f belong to F∨
τ such that |f(x)| is bounded on the real line. Then,

for any real γ and s = −γ/τ , we have

−i
{
eiγf ′(x) + eiτxf ′(−x)

}
=

∞∑
n=−∞

cnf
(
x− s+

nπ

τ

)
, x ∈ R, (29)

where

cn =
1

(sτ − nπ)2
{1 + (−1)n} {1− (−1)n cos γ} τ, n = 0,±1,±2, . . .

and
∑∞

n=−∞ |cn| = τ .

Lemma 2. Let f belong to F∨
τ such that |f(x)| ≤ M on the real line. Then

|f ′(x)|+ |f ′(−x)| ≤ Mτ, x ∈ R. (30)

We will make use of the following interpolation formula due to Aziz and Moham-
mad [1].
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Lemma 3. Let f belong to Pn and let ξ1, ξ2, · · · ξn be the zeros of zn + a, where
a ̸= −1 is an arbitrary complex number. Then for any complex number z we have

zf ′(z) =
n

1 + a
f(z) +

1 + a

na

n∑
ν=1

cν(a)f(zξν), (31)

where
n∑

ν=1

cν(a) =
n∑

ν=1

ξν
(ξν − 1)2

= − n2a

(1 + a)2
.

The next inequality, that can be found in Malik [13] (also see, Govil and Rahman
([10], Inequality (3.2)) where this inequality is given for any order derivatives) is
well-known and widely used in the study of polynomials.

Lemma 4. Let f belong to Pn. Define g(z) ≡ znf(1/z̄), a polynomial in Pn. Then

|f ′(z)|+ |g′(z)| ≤ nmax
|z|=1

|f(z)|, |z| = 1. (32)

Lemma 5. Let us denote ων = zν + 1/zν and ωµ = zµ + 1/zµ, where zν , zµ are
complex numbers such that π/2 ≤ arg zν , arg zµ ≤ π and |zν | ≤ 1, |zµ| ≤ 1. Define

F (x; ων , ωµ) = −4x2ℑ(ων − ω̄µ) + 4xℑ(ωνωµ)− (|ωµ|2ℑων + |ων |2ℑωµ),

G(x; ων) = −2(x+ 1)ℑων .

Then for −1 ≤ x ≤ 1,

F (x; ων , ωµ) ≥ 0,

G(x; ων) ≥ 0.

Proof. First, we note that ων may be written as ων := xνRν + iyνLν , where

Rν =

(
1 +

1

x2
ν + y2ν

)
≥ 0, Lν =

(
1− 1

x2
ν + y2ν

)
≤ 0,

xν = ℜzν and yν = ℑzν . Since argzν lies in [π/2, π], it implies that ℜων ≤ 0 and
ℑων ≤ 0. Similarly, ωµ := xµRµ + iyµLµ, where Rµ ≥ 0, Lµ ≤ 0,ℜωµ ≤ 0 and
ℑωµ ≤ 0.

F (x; ων , ωµ) is a quadratic function of the form ax2+bx+c, where a = − 4ℑ(ων−
ω̄µ) ≥ 0, b = 4ℑ(ωνωµ) ≥ 0, and c = −(|ωµ|2ℑων + |ων |2ℑωµ) ≥ 0. Its vertex is
(−b/2a, F (−b/2a; ων , ωµ)), where −b/2a = ℑ(ωνωµ)/2ℑ(ων − ωµ) and

F (−b/2a; ων , ωµ) =
(ℑ(ωνωµ))

2

ℑ(ων − ωµ)
− (|ωµ|2ℑων + |ων |2ℑωµ)

=
(ℑ(ωνωµ))

2 − (|ωµ|2ℑων + |ων |2ℑωµ)ℑ(ων − ωµ)

ℑ(ων − ωµ)
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The numerator (ℑ(ωνωµ))
2− (|ωµ|2ℑων + |ων |2ℑωµ)ℑ(ων −ωµ) of the above expres-

sion is equal to

(xµRµyνLν+xνRνyµLµ)
2−
{
yνLν(x

2
µR

2
µ+y2µL

2
µ)+yµLµ(x

2
νR

2
ν+y2νLν)

}
(yνLν+yµLµ)

= −
[
yµLµyνLν

{
(xµRµ − xνRν)

2 + (y2µL
2
µ + y2νLν)

2
}
+ 2y2νL

2
νy

2
µL

2
µ

]
(33)

≤ 0.

Since ℑ(ων − ωµ) ≤ 0, we have a ≥ 0 and F (−b/2a;ων , ωµ) ≥ 0. Also, F (x;ων , ωµ)
will attain the minimum value at the vertex. Thus, for any real number x we have
F (x;ων , ωµ) ≥ F (−b/2a;ων , ωµ) ≥ 0 and hence in particular for −1 ≤ x ≤ 1.

As far as the function G is concerned, we just have to note that ℑων ≤ 0, which
shows that G(x;ων) = −2(x+ 1)ℑων ≥ 0 for −1 ≤ x ≤ 1.

3. Proofs of Theorem 1, Theorem 6 and Theorem 10

3.1. Proof of Theorem 1 and its corollaries

Case 1. f has all its zeros on the unit circle
Let us assume that zν := eiθν , where π/2 ≤ θν ≤ π ( ν = 1, 2, . . . , l) are l zeros

of f . Since f belongs to P∨
n , for every ν, 1/zν = e−iθν is also a zeros of f . Assume

further that f has a zero of multiplicity m at −1, where m ≥ 0. Thus f may be
written as

f(z) = (z + 1)m
l∏

ν=1

(z − eiθν )(z − e−iθν ),

where n = 2l +m. Let θ be a number in [0, π] such that θ ̸= θν , (ν = 1, 2, . . . , l).
Then

f ′(eiθ)

f(eiθ)
= ℜf ′(eiθ)

f(eiθ)
+ iℑf ′(eiθ)

f(eiθ)
,

where

ℜf ′(eiθ)

f(eiθ)
=

m(cosθ + 1)

|1 + eiθ|2
+

l∑
ν=1

cosθ − cos θν
|eiθ − eiθν |2

+
cos θ − cos θν
|eiθ − e−iθν |2

and

ℑf ′(eiθ)

f(eiθ)
= − m sin θ

|1 + eiθ|2
+

l∑
ν=1

sin θν − sin θ

|eiθ − eiθν |2
− sin θν + sin θ

|eiθ − e−iθν |2
.

Note that ℜ
(
f ′(eiθ)/f(eiθ)

)
is an even function of θ and ℑ

(
f ′(eiθ)/f(eiθ)

)
is an odd

function of θ. So |f ′(eiθ)|/|f(eiθ)| is equal to√(
ℜf ′(eiθ)

f(eiθ)

)2

+

(
ℑf ′(eiθ)

f(eiθ)

)2

=

√(
ℜf ′(e−iθ)

f(e−iθ)

)2

+

(
−ℑf ′(e−iθ)

f(e−iθ)

)2

=

∣∣∣∣f ′(e−iθ)

f(e−iθ)

∣∣∣∣ . (34)
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For f ∈ P∨
n and θ ∈ [0, π], we have

∣∣f(e−iθ)
∣∣ = ∣∣f(eiθ)∣∣ . So we conclude, from (34)

|f ′(e−iθ)| ≤ |f ′(eiθ)|, 0 ≤ θ ≤ π, f(eiθ) ̸= 0.

By continuity, the same must hold for those θ for which f(eiθ) = 0.
Case 2. f is a second degree polynomial

Let zν be the zero of f such that π/2 ≤ arg zν ≤ π and |zν | ≤ 1. The polynomial
f and its derivative f ′ may be written as f(z) = (z−zν)(z−1/zν) and f ′(z) = 2z−ων ,
respectively, where ων := zν + 1/zν = xνRν + i yνLν ,−1 ≤ xν = ℜzν ≤ 0,

Rν =

(
1 +

1

x2
ν + y2ν

)
> 0, 0 ≤ yν = ℑzν ≤ 1 and Lν =

(
1− 1

x2
ν + y2ν

)
< 0.

The conditions on Rν , Lν , xν , yν ensure that ων lies in the third quadrant. Thus, we
have

|f ′(e−iθ)| = |2e−iθ − ων | ≤ |2eiθ − ων | = |f ′(eiθ)|, 0 ≤ θ ≤ π.

This proves the theorem when f is a polynomial of degree 2. We also note that for
0 ≤ θ ≤ π, |f(e−iθ| = |f(eiθ|. Thus, for any f in P∨

2 we have∣∣∣∣f ′(e−iθ)

f(e−iθ)

∣∣∣∣ ≤ ∣∣∣∣f ′(eiθ)

f(eiθ)

∣∣∣∣ , 0 ≤ θ ≤ π. (35)

Case 3. Not all the zeros of f are on the unit circle
Let zν (ν = 1, 2, · · · , l) be the zeros f such that π/2 ≤ arg zν ≤ π and |zν | ≤ 1.

Also suppose that f has a zero of multiplicity m at −1 where m ≥ 0. Then f can
be represented as

f(z) = (z + 1)m
l∏

ν=1

gν(z),

where gν(z) = (z − zν)(z − 1/zν) is a second degree polynomial in P∨
2 for each ν.

For any z on the unit circle such that f(z) ̸= 0 we have

f ′(z)

f(z)
=

m

z + 1
+

l∑
ν=1

g′ν(z)

gν(z)
.

A straightforward calculation gives us∣∣∣∣ f ′(z)

f(z)

∣∣∣∣2 =

∣∣∣∣ m

z + 1

∣∣∣∣2 (36)

+

l∑
ν=1

(∣∣∣∣g′ν(z)gν(z)

∣∣∣∣2 + 2ℜ

(
m

(z + 1)

g′ν(z)

gν(z)

)
+ 2

l∑
µ=ν+1

ℜ

(
g′ν(z)

gν(z)

g′µ(z)

gµ(z)

))
.

There are four parts in the above equation. We will compare the value of each
part at e−iθ and eiθ, respectively.
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The first part |m/(z + 1)|2 gives us∣∣∣∣ m

e−iθ + 1

∣∣∣∣2 =

∣∣∣∣ m

eiθ + 1

∣∣∣∣2 , 0 ≤ θ ≤ π. (37)

Since gν(z) belongs to P∨
2 for each ν, from (35) the second part |g′ν(z)/gν(z)|

2

gives us ∣∣∣∣g′ν(e−iθ)

gν(e−iθ)

∣∣∣∣2 ≤
∣∣∣∣g′ν(eiθ)gν(eiθ)

∣∣∣∣2 , 0 ≤ θ ≤ π. (38)

Let z = x+ iy be a point on the unit circle. From Case 2 again, it is easy to verify
that

m

(z + 1)

g′ν(z)

gν(z)
=

m

(z + 1)

2z − ων

z2 − ωνz + 1

=
m

|z + 1|2
2z − ων

|z2 − ωνz + 1|2
(z + 1)(z2 − ωνz + 1)

=
m

|z + 1|2
(Q1(x;ων)+y S1(x;ων))+i (Q2(x;ων)+y S2(x;ων))

|z2 − ωνz + 1|2
, (39)

where

Q1(x;ων) = (x+ 1)
(
4x− 2(x+ 1)ℜων + |ων |2

)
;

S1(x;ων) = −2(x+ 1)ℑων ; (40)

Q2(x;ων) = 2(1− x2)ℑων ;

S2(x;ων) =
(
4x+ 2(x− 1)ℜων − |ων |2

)
.

Thus from Lemma 5, (39) and the fact that

|e−2iθ − e−iθ ων + 1|2 = |e−2iθ||e2iθ − eiθ ων + 1|2 = |e2iθ − eiθ ων + 1|2,

the third part ℜ
(
mg′ν(z)/(z + 1)gν(z)

)
gives us

ℜ

(
m

(e−iθ + 1)

g′ν(e
−iθ)

gν(e−iθ)

)
= m

Q1(cos(−θ);ων) + sin(−θ) S1(cos(−θ);ων)

|e−iθ + 1|2 |e−2iθ − e−iθ ων + 1|2

= m
Q1(cos θ;ων)− sin θ S1(cos θ;ων)

|eiθ + 1|2 |e2iθ − eiθ ων + 1|2
(41)

≤ m
Q1(cos θ;ων) + sin θ S1(cos θ;ων)

|eiθ + 1|2 |e2iθ − eiθ ων + 1|2

= ℜ

(
m

(eiθ + 1)

g′ν(e
iθ)

gν(eiθ)

)
, 0 ≤ θ ≤ π.

Let us turn to the fourth part. As in the third part, let z = x+ iy be a point on
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the unit circle. Then for any µ and ν, it can be verified that

g′ν(z)

gν(z)

g′µ(z)

gµ(z)
=

2z − ων

z2 − z ων + 1

2z − ωµ

z2 − z ωµ + 1
=

4− 2zωµ − 2zων + ωνωµ

4x2 − 2x(ωµ + ων) + ωνωµ
(42)

=
(Q3(x;ων , ωµ)+y S3(x;ων , ωµ))+i (Q4(x;ων , ωµ)+y S4(x;ων , ωµ))

|4x2 − 2x(ων + ωµ) + ωνωµ|2
,

where

Q3(x;ων , ωµ) = 16x2 − 16xℜ(ων + ωµ) + 8xy2ℜ(ωµ + ων) + 8ℜ(ωνωµ)

−4y2ℜ(ωµων)+4x2|ωµ + ωµ|2+|ωµων |2−4xℜ(ωµ|ων |2+ων |ωµ|2);

S3(x;ων , ωµ) = −8x2ℑ(ων − ωµ) + 8xℑ(ωνωµ) + 2ℑων |ωµ|2 − 2ℑωµ|ων |2;

Q4(x;ων , ωµ) = 8xy2ℑ(ωµ + ων)− 4y2ℑ(ωµων); (43)

S4(x;ων , ωµ) = 8x2ℜ(ων − ωµ)− 4x(|ων |2 − |ωµ|2) + 2|ων |2ℜωµ − 2|ωµ|2ℜων .

Thus from Lemma 5 and (42), the fourth part
∑l

µ=ν+1 ℜ
(
g′ν(z)g

′
µ(z)/gν(z)gµ(z)

)
gives us

l∑
µ=ν+1

ℜ

(
g′ν(e

−iθ)

gν(e−iθ)

g′µ(e
−iθ)

gµ(e−iθ)

)

=
l∑

µ=ν+1

(
Q3(cos(−θ);ων) + sin(−θ) S3(cos(−θ);ων)

|4 cos(−θ)2 − 2(ων + ω̄µ) cos(−θ) + ων ω̄µ|2

)

=

l∑
µ=ν+1

(
Q3(cos θ;ων)− sin θ S3(cos θ;ων)

|4 cos θ2 − 2(ων + ω̄µ) cos θ + ων ω̄µ|2

)
(44)

≤
l∑

µ=ν+1

(
Q3(cos θ;ων) + sin θ S3(cos θ;ων)

|4 cos θ2 − 2(ων + ω̄µ) cos θ + ων ω̄µ|2

)

=

l∑
µ=ν+1

ℜ

(
g′ν(e

iθ)

gν(eiθ)

g′µ(e
iθ)

gµ(eiθ)

)
, 0 ≤ θ ≤ π.

Using (37), (38), (41) and (44) in (36), we conclude that∣∣∣∣f ′(e−iθ)

f(e−iθ)

∣∣∣∣2 ≤
∣∣∣∣f ′(eiθ)

f(eiθ)

∣∣∣∣2 , 0 ≤ θ ≤ π. (45)

Since for any θ, |f(e−iθ)| = |f(eiθ)|, we get from (45)

|f ′(e−iθ)| ≤ |f ′(eiθ)|, 0 ≤ θ ≤ π, f(eiθ) ̸= 0.

By continuity, the same must hold for those θ for which f(eiθ) = 0. This completes
the proof of Theorem 1.
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Proof of Corollary 1. For polynomials f in P∨
n , we have

zn−1 f ′(
1

z
) + z f ′(z) = n f(z).

From the interpolation formula (31) of Aziz and Mohammad given in Lemma 3, with
a = eiα, where α ∈ R and z = eiθ is a complex number on the unit circle, we get

ei(θ+α) f ′(eiθ)− ei(n−1)θ f ′(e−iθ) =
(1 + eiα)2

n eiα

n∑
ν=1

cν(a) f(e
iθξν),

which can be written as

ei(θ+α) f ′(eiθ)− ei(n−1)θ f ′(e−iθ) = n
n∑

ν=1

dν(e
iα) f(eiθξν),

where
n∑

ν=0

|dν(eiα)| =
n∑

ν=0

∣∣∣∣ cν(e
iα)

n2 eiα/(1 + eiα)2

∣∣∣∣ = 1.

For p ≥ 1, we have

∣∣∣ ei(θ+α) f ′(eiθ)− ei(n−1)θ f ′(e−iθ)
∣∣∣p ≤ np

n∑
ν=1

dν(e
iα)
∣∣f(eiθξν)∣∣p .

Integrating both sides with respect to θ from −π to π, we get∫ π

−π

∣∣∣ ei(θ+α) f ′(eiθ)− ei(n−1)θ f ′(e−iθ)
∣∣∣p dθ ≤ np

∫ π

−π

∣∣f(eiθ)∣∣p dθ.

Since the above inequality is true for every α in [0, 2π], integrating both sides with
respect to α and changing the order of integration, we get∫ π

−π

∫ 2π

0

∣∣∣ ei(θ+α) f ′(eiθ)− ei(n−1)θ f ′(e−iθ)
∣∣∣p dα dθ ≤ 2πnp

∫ π

−π

∣∣f(eiθ)∣∣p dθ.

(46)
The left-hand side of the inequality (46) is∫ π

−π

∫ 2π

0

∣∣∣ ei(θ+α) f ′(eiθ)− ei(n−1)θ f ′(e−iθ)
∣∣∣p dα dθ

=

∫ 0

−π

∫ 2π

0

∣∣ f ′(eiθ)
∣∣p ∣∣∣∣1− ei(n−2)θ−iα f ′(e−iθ)

f ′(eiθ)

∣∣∣∣p dα dθ

+

∫ π

0

∫ 2π

0

∣∣ f ′(e−iθ)
∣∣p ∣∣∣∣1− ei(2−n)θ+iα f ′(eiθ)

f ′(e−iθ)

∣∣∣∣p dα dθ

≥ 2

∫ 0

−π

∣∣f ′(eiθ)
∣∣p dθ

∫ 2π

0

∣∣1 + eiα
∣∣p dα. (47)
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Inequality (47) follows from the fact that∣∣f ′(e−iθ)/f ′(eiθ)
∣∣ ≥ 1 for − π ≤ θ ≤ 0,∣∣f ′(eiθ)/f ′(e−iθ)
∣∣ ≥ 1 for 0 ≤ θ ≤ π,

and ∫ 2π

0

|1 + reiγ |pdγ ≥
∫ 2π

0

|1 + eiγ |pdγ for every |r| ≥ 1 and p ≥ 1.

Also, for f ∈ P∨
n , |f(e−iθ)| = |f(eiθ)| for 0 ≤ θ ≤ π. From (46) and (47) we conclude

that ∫ 0

−π

|f ′(eiθ)|p dθ ≤ np Cp

∫ 0

−π

|f(eiθ)|p dθ,

where Cp is as given in (11).

Proof of Corollary 2. Let f be a polynomial in P∨
n such that |f(e−iθ)| ≤ M for

0 ≤ θ ≤ π. Since |f(e−iθ)| = |f(eiθ)| for every f in P∨
n , it implies that |f(eiθ)| ≤ M

for −π ≤ θ ≤ π. We also observe that g(z) ≡ znf(1/z̄) = f(z̄). Then from inequality
(32) in Lemma 4, for z = eiθ

|f ′(eiθ)|+ |g′(eiθ)| = |f ′(e−iθ)|+ |f ′(eiθ)| ≤ nM, −π ≤ θ ≤ π. (48)

From Theorem 1, |f ′(e−iθ)| ≤ |f ′(eiθ)| for 0 ≤ θ ≤ π. So, from (48) we get

2|f ′(e−iθ)| ≤ |f ′(e−iθ)|+ |f ′(eiθ)| ≤ nM, 0 ≤ θ ≤ π. (49)

The result follows from (49). It is easy to verify that the equality holds for f(z)
= (z2 + 1)

n
2 , when n is even and f(z) = (z + 1)n, when n is odd.

3.2. Proof of Theorem 6 and its corollaries

Let {zν}, ν = 1, 2, . . . be the zeros of f other than 0 in {z ∈ C : ℜz ≥ 0,ℑz ≥ 0}.
The number of such zeros can be finite or infinite. Besides, to each zero zν there
corresponds a zero −zν . A zero of f at the origin, if there is any, must be of even
multiplicity, say 2k. For these reasons, the Hadamard factorization of f takes the
form

f(z) = cz2keiτz/2
∏
ν

(
1− z2

z2ν

)
,

where c is a constant and k is a non-negative integer. Now, let us write

xν = ℜzν and yν = ℑzν

so that xν ≥ 0 and yν ≥ 0.
Case 1. f has only real zeros

In this case, for any real x different from 0 that is not a zero of f , we have

f ′(x)

f(x)
=

2k

x
+
∑
ν

(
1

xν + x
− 1

xν − x

)
+ i

τ

2
.
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The real part of f ′(x)/f(x) is clearly an odd function of x and so

f ′(−x)

f(−x)
= −

(
2k

x
+
∑
ν

(
1

xν + x
− 1

xν − x

))
+ i

τ

2
.

From the definition of the class F∨
τ it is clear that |f(−x)| = |f(x)| for any real x.

Hence |f ′(−x)| = |f ′(x)|. Since it holds for any x such that f(x) ̸= 0, by continuity
it also holds for those values for x for which f(x) = 0.
Case 2. The zeros of f are not all real

In this case, for any real x different from 0 that is not a zero of f , we have

f ′(x)

f(x)
= Af (x) + i

(τ
2
+Bf (x)

)
,

where

Af (x) :=
2k

x
+
∑
ν

(
xν + x

(xν + x)2 + y2ν
− xν − x

(xν − x)2 + y2ν

)
and

Bf (x) := 4x
∑
ν

(
xνyν

((xν + x)2 + y2ν)((xν − x)2 + y2ν)

)
.

Consequently, for any real x ̸= 0 such that f(x) ̸= 0 we have∣∣∣∣f ′(x)

f(x)

∣∣∣∣ =
√

(Af (x))2 +
(
Bf (x) +

τ

2

)2
.

Now note that Bf (x) is an odd function that is positive for x > 0. Hence∣∣∣Bf (−x) +
τ

2

∣∣∣ < ∣∣∣Bf (x) +
τ

2

∣∣∣ , x > 0, f(x) ̸= 0.

Since |f(−x)| = |f(x)|, we find that |f ′(−x)| ≤ |f ′(x)| for any positive x if f(x) ̸= 0.
However, by continuity, the same must also hold for those values of x for which
f(x) = 0. The proof of Theorem 6 is thus complete.

Proof of Corollary 3. Let p ≥ 1 be any real number. From the interpolation
formula (29) given in Lemma 1, we get∣∣∣∣eiγf ′(x) + eiτxf ′(−x)

τ

∣∣∣∣p ≤
∞∑

n=−∞

cn
τ

∣∣∣f (x− s+
nπ

τ

)∣∣∣p .
If we integrate both sides of the above inequality with respect to x on the real line,
we have ∫ ∞

−∞
|eiγf ′(x) + eiτxf ′(−x)|pdx ≤ τp

∫ ∞

−∞
|f(x)|pdx.

The above integral is true for any 0 ≤ γ ≤ 2π, therefore by integrating both sides
with respect to γ on the interval [0, 2π] we get∫ 2π

0

∫ ∞

−∞
|eiγf ′(x) + eiτxf ′(−x)|pdxdγ ≤ 2π τp

∫ ∞

−∞
|f(x)|pdx. (50)
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The integral on the left-hand side of (50) may be written as∫ 2π

0

∫ 0

−∞
|eiγf ′(x) + eiτxf ′(−x)|pdx dγ+

∫ 2π

0

∫ ∞

0

|eiγf ′(x) + eiτxf ′(−x)|pdx dγ. (51)

The first integral
∫ 2π

0

∫ 0

−∞ |eiγf ′(x) + eiτxf ′(−x)|pdx dγ in (51), after the change of
order of integration can be written as∫ 0

−∞

∫ 2π

0

|eiγf ′(x) + eiτxf ′(−x)|pdxdγ

=

∫ 0

−∞
|f ′(x)|pdx

∫ 2π

0

∣∣∣∣1 + eiτx−iγ f
′(−x)

f ′(x)

∣∣∣∣p dγ
≥
∫ 0

−∞
|f ′(x)|pdx

∫ 2π

0

|1 + eiγ |pdγ. (52)

Inequality (52) follows because for x ≤ 0, |f ′(−x)/f ′(x)| ≥ 1 from Theorem 6 and∫ 2π

0
|1 + reiγ |pdγ ≥

∫ 2π

0
|1 + eiγ |pdγ for every |r| ≥ 1 and p ≥ 1.

Similar reasoning applied to the second integral
∫ 2π

0

∫∞
0

|eiγf ′(x)+eiτxf ′(−x)|pdxdγ
in (51) gives∫ 2π

0

∫ ∞

0

|eiγf ′(x) + eiτxf ′(−x)|pdxdγ ≥
∫ ∞

0

|f ′(−x)|pdx
∫ 2π

0

|1 + eiγ |pdγ, (53)

as once again from Theorem 6 we have |f ′(x)/f ′(−x)| ≥ 1 when x ≥ 0.

Thus from (50), (52) and (53) we get∫ 2π

0

|1+eiγ |pdγ
(∫ 0

−∞
|f ′(x)|p dx+

∫ ∞

0

|f ′(−x)|p dx

)
≤ 2πτp

∫ ∞

−∞
|f(x)|pdx. (54)

Note that ∫ 0

−∞
|f ′(x)|p dx+

∫ ∞

0

|f ′(−x)|p dx = 2

∫ 0

−∞
|f ′(x)|p dx. (55)

Also, for f ∈ F∨
τ , we have |f(x)| = |f(−x)|, and so∫ ∞

−∞
|f(x)|pdx = 2

∫ 0

−∞
|f(x)|pdx. (56)

From (54), (55), and (56) we get∫ 0

−∞
|f ′(x)|pdx ≤ τp Cp

∫ 0

−∞
|f(x)|pdx,

where Cp is as given in (11).
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Proof of Corollary 4. Let f ∈ F∨
τ such that |f(x)| ≤ M for x ≤ 0. Since f ∈ F∨

τ ,
we have |f(x)| = |f(−x)| for x ∈ R and hence |f(x)| ≤ M for −∞ < x < ∞. So
from inequality (30) in Lemma 2 we have

|f ′(x)|+ |f ′(−x)| ≤ Mτ, x ∈ R. (57)

Also, from Theorem 6, |f ′(−x)| ≥ |f ′(x)| for x ≤ 0, and (57) then gives us

|f ′(x)| ≤ Mτ

2
, x ≤ 0.

It is easy to verify that the equality holds in (22) for f(x) = M(1 + eiτz)/2.

Proof of Corollary 5. Let f satisfy the conditions given in Corollary 5. Then
according to Corollary 4, for x ≤ 0, |f ′(x)| ≤ Mτ/2. From Rahman and Tariq
([18, Lemma 3]), hf (π/2) ≤ 0. Thus we have hf ′(π/2) ≤ hf (π/2) ≤ 0 as well.

Consider the function g(z) = eiτzf(z̄). Then g(z) is an entire function of exponential
type τ and g(z) = f(−z). From Corollary 4, |g′(x)| ≤ Mτ/2 for x ≥ 0. Also,
hg′(π/2) = hf ′(−π/2) = τ . Then according to Theorem 6.2.3 ([4], page 82), for
x ≥ 0, y ≥ 0,

|g′(x+ iy)| ≤ Mτ

2
eτy.

Since g(z) = f(−z), we have for x ≤ 0, y ≤ 0,

|f ′(x+ iy)| ≤ Mτ

2
e−τy.

It is easy to see that the equality holds for the function M(1 + eiτz)/2.

3.3. Proof of Theorem 10

Let f , whose zeros lie in the first and the third quadrants, belong to F∨
τ . Let ε > 0

be an arbitrary real number. Define the function gε as follows

gε(z) = ei
ε
2 z

sin ε
2z

ε
2z

f(z). (58)

It is obvious that gε(z) is an entire function of exponential type τ + ε. Also,

ei(τ+ε)zgε(−z) = ei
ε
2 z

sin ε
2z

ε
2z

eiτzf(−z) = ei
ε
2 z

sin ε
2z

ε
2z

f(z) = gε(z).

Thus, gε(z) belongs to F∨
τ+ε.

Note that the zeros of gε(z) are the zeros of sin ε
2z or the zeros of f(z). Since the

zeros of sin z are all real, the zeros of gε(z) also lie in the first and third quadrants.
Hence, according to Theorem 6,

|g′ε(−x)| ≤ |g′ε(x)|, x ≥ 0. (59)
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Next, we will show that gε is bounded on the real line. The assumption thatMp(f) <

∞ gives us ([12, Theorem 1]), f(x) = O(|x|
1
p ) as |x| → ∞ . It means there exist a

positive real number x0 ∈ R and a real number N1 ∈ R such that |f(x)| ≤ N1 |x|
1
p

for |x| ≥ x0. Thus for |x| ≥ x0,

|gε(x)| =
∣∣∣∣ei ε2x sin ε

2x
ε
2x

f(x)

∣∣∣∣ ≤ N1

∣∣∣∣ sin ε
2x

ε
2x

∣∣∣∣ |x| 1p ≤ N1
2

ε|x|1−
1
p

≤ N1
2

ε |x0|1−
1
p

.

On the interval [−x0, x0], gε is continuous and hence bounded. So there exists a real

numberN2 such that |gε(x)| ≤ N2 for x ∈ [−x0, x0]. LetK=max(2N1/ε|x0|1−
1
p , N2).

Then |gε(x)| ≤ K for x ∈ R. Thus gε is bounded on the real line and belongs to
F∨

τ+ε. Hence Lemma 1 (with τ replaced by τ + ε), when applied to the function
gε(z), gives us for x ∈ R

−i
{
eiγg′ε(x) + ei(τ+ε)xg′ε(−x)

}
=

∞∑
n=−∞

cngε

(
x− s+

nπ

τ + ε

)
,

where

cn =
1

(s(τ + ε)− nπ)2
{1 + (−1)n} {1− (−1)n cos γ} (τ + ε), n = 0,±1,±2, . . . ,

γ is any real number, s = −γ/(τ + ε), and
∑∞

n=∞ |cn| = τ + ε.
From the above interpolation formula we have

−i
{
eiγg′ε(x) + ei(τ+ε)xg′ε(−x)

}
τ + ε

=
∞∑

n=−∞
dngε

(
x− s+

nπ

τ + ε

)
, (60)

where dn = cn/(τ + ε) and
∑∞

n=−∞ |dn| = 1. Thus right-hand side of (60) is a
convex combination of {gε (x− s+ nπ/τ + ε)}∞n=−∞. So for p ≥ 1 we get∣∣∣∣∣−i

{
eiγg′ε(x) + ei(τ+ε)xg′ε(−x)

}
τ + ε

∣∣∣∣∣
p

≤
∞∑

n=−∞
|dn|

∣∣∣∣gε(x− s+
nπ

τ + ε

)∣∣∣∣p ,
which gives us∣∣∣eiγg′ε(x) + ei(τ+ε)xg′ε(−x)

∣∣∣p ≤ (τ + ε)p
∞∑

n=−∞
|dn|

∣∣∣∣gε(x− s+
nπ

τ + ε

)∣∣∣∣p . (61)

Let T > 0 be an arbitrary real number. Then, integrating both sides of (61) with
respect to x we get

1

2T

∫ T

−T

∣∣∣eiγg′ε(x) + ei(τ+ε)xg′ε(−x)
∣∣∣p dx

≤ (τ + ε)p
1

2T

∫ T

−T

∞∑
n=−∞

|dn|
∣∣∣∣gε(x− s+

nπ

τ + ε

)∣∣∣∣p dx
= (τ + ε)p

∞∑
n=−∞

|dn|
1

2T

∫ T

−T

∣∣∣∣gε(x− s+
nπ

τ + ε

)∣∣∣∣p dx.
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We can change the order of integration in the last inequality because the series on
right-hand side of (61) is absolutely convergent and hence uniformly convergent.
Applying Lemma 4 followed by Lemma 1 given in [12] we get

lim sup
T→∞

1

2T

∫ T

−T

∣∣∣eiγg′ε(x) + ei(τ+ε)xg′ε(−x)
∣∣∣p dx

≤ (τ + ε)p
∞∑

n=−∞
|dn| lim sup

T→∞

1

2T

∫ T

−T

∣∣∣∣gε(x− s+
nπ

τ + ε

)∣∣∣∣p dx
= (τ + ε)p

∞∑
n=−∞

|dn| lim sup
T→∞

1

2T

∫ T

−T

|gε (x)|p dx = (τ + ε)pMpgε(x).

ThusMp
{
eiγg′ε(x) + ei(τ+ε)xg′ε(−x)

}
, the mean value of {eiγg′ε(x)+ei(τ+ε)xg′ε(−x)},

exists for each real number γ and ε > 0. From the definition of limit superior, for
every δ > 0 there exists a positive T0 ∈ R such that

1

2T

∫ T

−T

∣∣∣eiγg′ε(x) + ei(τ+ε)xg′ε(−x)
∣∣∣p dx < Mp{eiγg′ε(x) + ei(τ+ε)xg′ε(−x)}+ δ

≤ (τ + ε)pMpgε(x) + δ (62)

for all T ≥ T0 > 0, γ ∈ R, and ε > 0.

Since (62) is true for each γ, integrating both sides with respect to γ from 0 to 2π
and changing the order of integration which is justified by Fubini’s Theorem as the
function

∣∣eiγg′ε(x) + ei(τ+ε)xg′ε(−x)
∣∣p is continuous, we get

1

2T

∫ T

−T

∫ 2π

0

∣∣∣eiγg′ε(x) + ei(τ+ε)xg′ε(−x)
∣∣∣p dγdx < 2π{(τ + ε)pMpgε(x) + δ}. (63)

By considering the iterated integral on the left-hand side of (63), we get

∫ T

−T

∫ 2π

0

∣∣∣eiγg′ε(x) + ei(τ+ε)xg′ε(−x)
∣∣∣p dγdx

=

∫ 0

−T

∫ 2π

0

|g′ε(x)|p
∣∣∣∣1 + e−iγ+i(τ+ε)x g

′
ε(−x)

g′ε(x)

∣∣∣∣p dγdx
+

∫ T

0

∫ 2π

0

|g′ε(−x)|p
∣∣∣∣1 + eiγ−i(τ+ε)x g′ε(x)

g′ε(−x)

∣∣∣∣p dγdx
≥
∫ 2π

0

∣∣1 + eiγ
∣∣p dγ(∫ 0

−T

|g′ε(x)|pdx+

∫ T

0

|g′ε(−x)|pdx

)

= 2

∫ 2π

0

∣∣1 + eiγ
∣∣p dγ (∫ 0

−T

|g′ε(x)|pdx
)
.
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Then multiplying both sides by 1/2T , from (63) we get

2

2T

∫ 2π

0

∣∣1 + eiγ
∣∣p dγ (∫ 0

−T

|g′ε(x)|pdx
)

≤ 1

2T

∫ T

−T

∫ 2π

0

∣∣∣eiγg′ε(x) + ei(τ+ε)xg′ε(−x)
∣∣∣p dγdx

≤ 2π{(τ + ε)pMpgε(x) + δ}. (64)

Inequality (64) is true for all T ≥ T0, so taking limit superior when T → ∞, we get

lim sup
T→∞

1

T

∫ 2π

0

∣∣1 + eiγ
∣∣p dγ (∫ 0

−T

|g′ε(x)|pdx
)

≤ 2π{(τ + ε)pMpgε(x) + δ}. (65)

Since, δ is an arbitrary positive real number, letting δ → 0 we get

lim sup
T→∞

1

T

∫ 2π

0

∣∣1 + eiγ
∣∣p dγ (∫ 0

−T

|g′ε(x)|pdx
)

≤ 2π(τ + ε)p{Mpgε(x)}. (66)

Note that from (59) for every x ∈ R such that x ≥ 0, |gε(−x)| ≤ |gε(x)|, we have

Mpgε(x) = lim sup
T→∞

1

2T

∫ T

−T

|gε(x)|p dx ≤ 2 lim sup
T→∞

1

T

∫ 0

−T

|gε(x)|p . (67)

Then from (66) and (67), we get

lim sup
T→∞

1

T

∫ 0

−T

|g′ε(x)|
p
dx ≤ (τ + ε)pCp lim sup

T→∞

1

T

∫ 0

−T

|gε(x)|p , (68)

where Cp is as given in (11).
For any x ∈ R,

lim
ε→0

gε(x) = lim
ε→0

ei
ε
2x

sin ε
2x

ε
2x

f(x) = f(x), (69)

and
lim
ε→0

g′ε(x) = f ′(x). (70)

Inequality (68) is true for every ε > 0, therefore by letting ε → 0, and using (69)
and (70), we get (28).
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