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Abstract. By using the method of investigation of differential equations with piecewise
constant argument and some integral inequalities of Gronwall type we obtain some results of
asymptotic equivalence of the stable solutions of some differential equations with piecewise
constant argument. Our results generalize and improve some recent results.
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1. Introduction

Differential equations with piecewise constant argument (EPCA) describe hybrid
dynamical systems. These equations combine the properties of both differential and
difference equations. A systematic study of theoretical and practical problems of
scalar EPCA of type

u′ = g(t, u(t), u(γ(t))) (1)

with γ(t) some step function was initiated by Cooke, Wiener and Shah in the early
80’s of the last century [10,20,22]. Since then, EPCAs have attracted great attention
from the researchers in mathematics, biology, engineering and other fields (see e.g.
[3, 6, 7, 9, 12,17,23] and references therein).

In this paper, we study the asymptotic equivalence of stable solutions of the
following EPCAs:

x′(t) = A(t)x(t) +B(t)x(γ(t)), (2)

y′(t) = A(t)y(t) + f(t, y(t), y(γ(t))), (3)

where x(t), y(t) ∈ Cn, A(t), B(t) are n × n complex continuous matrixes on I ,
[0,∞), γ(t) is a step function of general type which was introduced by Akhmet [2],
and f : I × Cn × Cn → Cn is a continuous function such that f(·, 0, 0) ∈ L1(I) and
for t ∈ I, x1, x2, y1, y2 ∈ Cn,

∥f(t, x1, y2)− f(t, x2, y2)∥ ≤ λ1(t)∥x1 − x2∥+ λ2(t)∥y1 − y2∥, (4)
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where λ1, λ2 ∈ L1(I) are positive on I.
The study of asymptotic behavior of equations is an important topic in the theory

of differential equations, which could date back to 1948 Levinson [15]. Especially, to
the asymptotic equivalence of the stable solutions of (2) and (3), some results are
presented in [18] for the case when B(t) = 0 and λ1(t) = λ2(t). If, in addition, A(t)
and λ1(t) = λ2(t) are constant, the same problem was studied in [1]. So our results
can be regarded as an extension of the results in [1,18]. For more results concerning
the asymptotic behavior of equations, we refer the readers to [5,8,11,13,14,16,19,21].

The main purpose of this paper is to obtain a theorem of asymptotic equivalence
of the stable solutions of equations (2) and (3) by using some integral inequalities of
Gronwall type and the method of investigation of EPCA introduced by Akhmet [2–4].
Our results generalize and improve some results (see Remark 1).

The paper is organized as follows. In Section 2, we give some integral inequal-
ities of Gronwall type and some preliminary results including a theorem for the
asymptotic behavior of the general equation of the form (1) (see Theorem 1). The
main theorem of the asymptotic equivalence of equations (2) and (3) is presented in
Section 3.

2. Preliminary results

Throughout this paper, N and C denote the sets of all natural and complex numbers,
respectively. Denote by ∥ · ∥ the Euclidean norm in Cn. Fix two real valued non-
negative sequences {ti}, {ξi}, i ∈ N such that ti < ti+1, ti ≤ ξi ≤ ti+1 and ti → ∞
as i → ∞. Denote I−1 = [0, t0), Ii = [ti, ti+1), i ∈ N and I =

∪∞
i=−1 Ii. The

step function γ in (2) and (3) is defined by γ : I → I, γ(t) = t, t ∈ I−1 and
γ(t) = ξi, t ∈ Ii, i ∈ N.

To study (2) and (3), we first study the following general equation:

u′ = g(t, u(t), u(γ(t))), (5)

where g : I × Cn × Cn → Cn is a continuous function satisfying g(t, 0, 0) ∈ L1(I)
and for t ∈ I, x1, x2, y1, y2 ∈ Cn,

∥g(t, x1, y1)− g(t, x2.y2)∥ ≤ η1(t)∥x1 − x2∥+ η2(t)∥y1 − y2∥ (6)

with positive functions η1, η2 ∈ L1(I) such that∫ ξi

ti

(η1(s) + η2(s))ds ≤ v < 1 for some v > 0, i ∈ N. (7)

In the sequel, we denote

η(t) = η1(t) +
η2(t)

1− v
, t ∈ I. (8)

The integrable condition f(t, 0, 0) ∈ L1(I) for (3) can be reduced to f(t, 0, 0) ≡ 0.
In fact, as in [18], we may add f(t, 0, 0) to the right-hand side of (2) and translate
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f in (3) to f − f(t, 0, 0). Then the same discussions can be done. Similar reduction
can be taken for g in (5). So in the sequel we always assume that

f(t, 0, 0) = 0, g(t, 0, 0) = 0.

Definition 1. A solution of (5) is a continuous function u on I such that

(i) The derivative u′(t) exists at each point t ∈ I with the possible exception of the
points ti, i ∈ N, where the one-side derivatives exist;

(ii) (5) is satisfied for u on each interval (ti, ti+1), i ∈ N, and it holds for the right
derivative at the points ti, i ∈ N.

The solution of (2) and (3) can be defined similarly.

Definition 2. (2) and (3) are called equivalent if there exists a homeomorphism
between the sets of solutions x(t) and y(t); and (2) and (3) are called asymptotically
equivalent if, in addition, x(t)− y(t) → 0 as t → ∞.

By an argument similar to the proof of [18, Lemma 1], we can get the following
result of inequalities of Gronwall type, and we omit the details of the proof.

Lemma 1. Let u, η1, η2 : I → I be functions such that u is continuous, η1, η2 are
locally integrable and satisfy (7), and

u(t) ≤ u(τ) +

∫ t

τ

(η1(s)u(s) + η2(s)u(γ(s)))ds, t ∈ Iτ , [τ,∞), τ ∈ I.

Then for t ∈ Iτ ,

u(t) ≤ u(τ) exp

(∫ t

τ

η(s)ds

)
, u(γ(t)) ≤ u(τ)

1− v
exp

(∫ t

τ

η(s)ds

)
.

Now we give the existence and uniqueness result of the solution for (5).

Lemma 2. Assume that (6) and (7) hold. Then for every (τ, u0) ∈ I × Cn there
exists a unique solution u = u(t, τ, u0), t ∈ Iτ of (5) such that u(τ) = u0. Moreover,
the solution of (5) is stable.

Proof. Let u1 and u2 be two solutions of (5) on Iτ . By (6),

∥u1(t)− u2(t)∥ ≤∥u1(τ)− u2(τ)∥

+

∫ t

τ

(η1(s)∥u1(s)− u2(s)∥+ η2(s)∥u1(γ(s))− u2(γ(s))∥)ds.

Then it follows from Lemma 1 that the solution of (5) is stable and u1(t) ≡ u2(t) if
u1(τ) = u2(τ).

To prove the existence of the solution of (5) on Iτ , we first prove the local result,
namely, for (τ, u0) ∈ Īi × Cn, there exists a unique solution u = u(t, τ, u0) of (5) on
Īi.
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If τ ∈ I−1, by the theory of ordinary differential equations (see e.g [14]), we can
get the existence of the solution of (5) on I−1. For i ≥ 0, decompose Īi = I+i + I−i
in the advanced part I+i = [ti, ξi] and in the delayed part I−i = [ξi, ti+1]. Assume
that τ ∈ Īi. Let u0(t) ≡ u0 and

uk+1(t) = u0 +

∫ t

τ

g(s, uk(s), uk(γ(s)))ds, k ≥ 0, t ∈ Īi.

We declare that for k ≥ 0,

∥uk+1(t)− uk(t)∥ ≤


∥u0∥

(k + 1)!

(∫ t

ti

(η1(s) + η2(s))ds

)k+1

, τ, t ∈ I−i ,

vk+1, τ, t ∈ I+i .

(9)

In fact, by (6) and (7), it is easy to check that (9) holds for k = 0. Suppose that (9)
holds for k = n. Then by (6), for τ, t ∈ I−i ,

∥un+2(t)−un+1(t)∥

≤
∫ t

τ

(η1(s)∥un+1(s)− un(s)∥+ η2(s)∥un+1(γ(s))− un(γ(s))∥)ds

≤ ∥u0∥
(n+ 1)!

∫ t

τ

(
η1(s)

(∫ s

ti

(η1(r) + η2(r))dr

)n+1

+η2(s)

(∫ γ(s)

ti

(η1(r) + η2(r))dr

)n+1
 ds

≤ ∥u0∥
(n+ 1)!

∫ t

τ

(η1(s) + η2(s))

(∫ s

ti

(η1(r) + η2(r))dr

)n+1

ds

=
∥u0∥

(n+ 2)!

((∫ t

ti

(η1(s) + η2(s))ds

)n+2

−
(∫ τ

ti

(η1(s) + η2(s))ds

)n+2
)

≤ ∥u0∥
(n+ 2)!

(∫ t

ti

(η1(s) + η2(s))ds

)n+2

.

Meanwhile, if τ, t ∈ I+i , by (6) and (7),

∥un+2(t)− un+1(t)∥

≤
∫ t

τ

(η1(s)∥un+1(s)− un(s)∥+ η2(s)∥un+1(γ(s))− un(γ(s))∥)ds

≤
∫ t

τ

(η1(s)v
n+1 + η2(s)v

n+1)ds ≤ vn+2.

Therefore, (9) holds for k = n+1, and then (9) is true for all k ≥ 0. It follows from
(9) that u(t) =

∑∞
k=0(uk+1(t)− uk(t)) is well defined on Īi and is a solution of the

integral equation

u(t) = u0 +

∫ t

τ

g(s, u(s), u(γ(s)))ds.



Asymptotic equivalence of differential equations 483

This implies that u(t) is a solution of (5) on Ii with u(τ) = u0.
Now the global existence of the solution u(t) of (5) on Iτ follows from the above

local one immediately since I =
∪∞

−1 Ii. The proof is complete.

Denote by U the set of all stable solutions u(t, τ, u0) of (5) on Iτ . Then we have
the following result.

Theorem 1. Assume that (6) and (7) hold. Then there exists a bijective mapping
φ : U → Cn, u 7→ u∞ such that

u(t) = u∞ + ∥u(τ)∥o
(
exp

(∫ ∞

t

η(s)ds

)
− 1

)
→ u∞ as t → ∞. (10)

Moreover, φ is an asymptotic equivalence for τ big enough.

Proof. It follows from the proof of Lemma 2 that the mapping φ1 : U → Cn,
u(t, τ, u0) 7→ u0 is a homeomorphism. From (6),

∥u(t)∥ ≤ ∥u0∥+
∫ t

τ

(η1(s)∥u(s)∥+ η2(s)∥u(γ(s))∥)ds, t ∈ Iτ .

Together with Lemma 1 this implies that u(t) is bounded on Iτ and

g(t, u(t), u(γ(t))) ∈ L1(Iτ ).

Define φ2 : Cn → Cn, u0 7→ u∞ by

u∞ = u0 +

∫ ∞

τ

g(s, u(s), u(γ(s)))ds. (11)

Then for t ∈ Iτ ,

u(t) = u∞ −
∫ ∞

t

g(s, u(s), u(γ(s)))ds.

It is clear that φ2 is bijective. Then φ = φ2φ1 is bijective. By (6), (8) and Lemma 1,∥∥∥∥∫ ∞

t

g(s, u(s), u(γ(s)))ds∥

≤
∫ ∞

t

(η1(s)∥u(s)∥+ η2(s)∥u(γ(s))∥)ds

≤
∫ ∞

t

(
η1(s)∥u(τ)∥ exp

(∫ s

τ

η(r)dr

)
+

η2(s)

1− v
∥u(τ)∥ exp

(∫ s

τ

η(r)dr

))
ds

= ∥u(τ)∥
∫ ∞

t

η(s) exp

(∫ s

τ

η(r)dr

)
ds

= ∥u(τ)∥
(
exp

(∫ ∞

τ

η(s)ds

)
− exp

(∫ t

τ

η(s)ds

))
= ∥u(τ)∥o

(
exp

(∫ ∞

t

η(s)ds

)
− 1

)
as t → ∞. (12)
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This leads to (10). Moreover, let α(t) = exp(
∫∞
τ

η(s)ds) − exp(
∫ t

τ
η(s)ds). For

ui
0 ∈ Cn, i = 1, 2 and ui = ui(t, τ, u

i
0), as in (12), we can get that∥∥∥∥∫ ∞

τ

[g(s, u1(s), u1(γ(s)))− g(s, u2(s), u2(γ(s)))]ds

∥∥∥∥ ≤ ∥u1(τ)− u2(τ)∥α(τ). (13)

If τ is so large that α(τ) < 1, from (11) and (13), it is easy to obtain that

(1− α(τ))∥u1
0 − u2

0∥ ≤ ∥u1
∞ − u2

∞∥ ≤ ∥u1
0 − u2

0∥(1 + α(τ)),

which implies that φ2 is a homeomorphism. Then φ is an asymptotic equivalence
for τ big enough.

3. Asymptotic equivalence

Let X(t, s) be the fundamental matrix solution of

z′(t) = A(t)z(t)

such that X(t, t) = J , the identity matrix. We also denote X(t) = X(t, τ) for t ∈ Iτ .
Let

Mi(t) = X(t, ξi) +

∫ t

ξi

X(t, s)B(s)ds, t ∈ Īi, i ≥ 0.

We need the following assumption:

(A1) Functions η1(t) = 0, η2(t) = ∥X−1(t)∥∥B(t)∥∥X(γ(t))∥) ∈ L1(I) satisfy (7).

Lemma 3. Assume (A1). Then (2) has a unique solution x(t) = x(t, τ, x0) on Iτ
for each (τ, x0) ∈ I × Cn. Moreover, x(t) is stable and

det[Mi(t)] ̸= 0, t ∈ Īi, i ≥ 0. (14)

Proof. Noticing that A(t), B(t) are n × n complex continuous matrixes on I, by
[3, Theorem 2.1] (We note that the system in [3, Theorem 2.1] is real; however,
this does not affect the applicability of [3, Theorem 2.1] for complex system), we
have the following assertion: (2) has a unique solution x(t) = x(t, τ, x0) for each
(τ, x0) ∈ I × Cn if and only if (14) holds. So it is sufficient to prove that (2) has
a unique solution x(t) = x(t, τ, x0) for each (τ, x0) ∈ I × Cn and x(t) is stable. In
fact, if we make x(t) = X(t)u(t) in (2), u satisfies

u′(t) = g̃(t, u(t), u(γ(t))), (15)

where g̃(t, u(t), u(γ(t))) = X−1(t)B(t)X(γ(t))u(γ(t)). Then

∥g̃(t, u1(t), u1(γ(t)))− g̃(t, u2(t), u2(γ(t)))∥ ≤ η̄2(t)∥u1(γ(t))− u2(γ(t))∥. (16)

It is easy to see that x(t) = X(t)u(t) is a solution of (2) if and only if u(t) is a solution
of (15). Therefore, by (A1), (16) and Lemma 2, for each (τ, x0) ∈ I × Cn, (2) has a
unique solution x(t) = x(t, τ, x0), and it is stable. The proof is complete.
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If (A1) holds, by Lemma 3 and the theory in [3, Chapter 2], we can get the
expression of the fundamental matrix Y (t) of the solution of (2): for τ ∈ Īi, t ∈
Īl, l > i,

Y (t) = Ml(t)
i+1∏
k=l

(M−1
k (tk)Mk−1(tk))M

−1
i (τ).

The following assumption is needed:

(A2) The functions η1(t), η2(t) given below satisfy (7):

η1(t) = ∥Y −1(t)∥(λ1(t)∥Y (t)∥+ ∥B(t)∥∥Y (γ(t))∥) ∈ L1(I),

η2(t) = ∥Y −1(t)∥λ2(t)∥Y (γ(t))∥ ∈ L1(I).

Now we are in a position to give our main result, where η is the one in (8) with
η1, η2 given in (A2) and we denote η̄(t) = λ1(t)∥Y (t)∥+(∥B(t)∥+λ2(t))∥Y (γ(t))∥ =
∥Y −1(t)∥−1(η1(t) + η2(t)) with λ1, λ2 given in (4).

Theorem 2. Assume that (4), (A1) and (A2) hold. Then (2) (resp. (3)) has
a unique solution x = x(t, τ, x0) (resp. y = y(t, τ, y0)) on Iτ for each (τ, x0) ∈
I ×Cn (resp. (τ, y0) ∈ I ×Cn). Furthermore, assume that τ is big enough, then (2)
and (3) are equivalent and there exists ν ∈ Cn such that

y(t) = Y (t)(ν + ϵ(t)) as t → ∞, (17)

where the error function ϵ(t) = o
(
exp

(∫∞
t

η(s)ds
)
− 1
)
. So x(= Y µ) ↔ y ↔ ν are

equivalences.
Moreover, if ϵ0(t) ,

∫∞
t

∥Y (t, s)∥η̄(s)ds → 0 as t → ∞, (2) and (3) are asymp-
totically equivalent and we have the asymptotic formula

y(t) = Y (t)ν + o(ϵ0(t)) as t → ∞, (18)

for some constant vector ν ∈ Cn. So x ↔ y ↔ ν are asymptotic equivalences.

Proof. Lemma 3 implies that (2) has a unique solution x = x(t, τ, x0) on Iτ for
each (τ, x0) ∈ I × Cn, and x is stable. Meanwhile, (14) implies that Y (t) is well
defined. As in the proof of Lemma 3, if we make y(t) = Y (t)u(t) in (3), u satisfies

u′(t) = ĝ(t, u(t), u(γ(t))), (19)

where

ĝ(t, u(t), u(γ(t))) = Y −1(t)[f(t, Y (t)u(t), Y (γ(t))u(γ(t)))−B(t)Y (γ(t))u(t)]. (20)

From (4),

∥ĝ(t, u1(t), u1(γ(t)))− ĝ(t, u2(t), u2(γ(t)))∥
≤ ∥Y −1(t)∥(λ1(t)∥Y (t)∥+ ∥B(t)∥∥Y (γ(t))∥)∥u1(t)− u2(t)∥
+ ∥Y −1(t)∥λ2(t)∥Y (γ(t))∥∥u1(γ(t))− u2(γ(t))∥

= η1(t)∥u1(t)− u2(t)∥+ η2(t)∥u1(γ(t))− u2(γ(t))∥.
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It is easy to see that y(t) = Y (t)u(t) is a solution of (3) if and only if u(t) is a solution
of (19). Then (A2) and Lemma 2 yield that (3) has a unique solution y = y(t, τ, y0)
on Iτ for each (τ, y0) ∈ I × Cn, and y is stable.

Meanwhile, by an argument similar to the first paragraph in the proof of Theorem
1, we can see that u(t) is bounded, i.e. ∥u(t)∥ ≤ M, t ∈ Iτ for some M > 0, and
ĝ(t, u(t), u(γ(t)) ∈ L1(Iτ ). Let

ν = u∞ = u0 +

∫ ∞

τ

ĝ(s, u(s), u(γ(s)))ds, ϵ(t) = −
∫ ∞

t

ĝ(s, u(s), u(γ(s)))ds.

Then
u(t) = ν + ϵ(t), t ∈ Iτ .

As in (12), we can get that∥∥∥∥∫ ∞

t

ĝ(s, u(s), u(γ(s)))ds

∥∥∥∥ ≤ ∥u0∥ exp
(∫ t

τ

η(s)ds

)(
exp

(∫ ∞

t

η(s)ds

)
− 1

)
.

This implies that ϵ(t) = o
(
exp

(∫∞
t

η(s)ds
)
− 1
)
as t → ∞, and then (17) holds.

Moreover, by (20),∥∥∥∥Y (t)

∫ ∞

t

ĝ(s, u(s), u(γ(s)))ds∥

=

∥∥∥∥∫ ∞

t

Y (t, s)[f(s, Y (s)u(s), Y (γ(s))u(γ(s)))−B(s)Y (γ(s))u(s)]ds

∥∥∥∥
≤
∫ ∞

t

∥Y (t, s)∥[(λ1(s)∥Y (s)∥+ ∥B(s)∥∥Y (γ(s))∥)∥u(s)∥

+ λ2(s)∥Y (γ(s))∥∥u(γ(s))∥]ds

≤ M

∫ ∞

t

∥Y (t, s)∥η̄(s)ds = Mϵ0(t),

which yields that (18) holds if ϵ0(t) → 0 as t → ∞.
Assume that τ is big enough. Since all the hypotheses of Theorem 1 are satisfied

with ĝ replacing g, ν ↔ u is an asymptotic equivalence by Theorem 1. Meanwhile, it
is clear that ν ↔ x(= Y ν) is a homeomorphism, and (17) implies that x ↔ y is also
a homeomorphism. Notice that x = Y ν is the unique solution of (2) with x(τ) = ν.
Thus (2) and (3) are equivalent, and x ↔ y ↔ ν are equivalences. Moreover, if
ϵ0(t) → 0 as t → ∞, (18) implies that (2) and (3) are asymptotically equivalent,
and x ↔ y ↔ ν are asymptotic equivalences. This completes the proof.

Remark 1. Theorem 2 generalizes and improves the main result of Theorem 4
in [18]. In fact, let B(t) = 0. Then Y (t) = X(t) and η1 = η2 = 0. Thus assumption
(A1) is satisfied automatically and (A2) becomes:

(A′
2) η1(t) = ∥X−1(t)∥λ1(t)∥X(t)∥ and η2(t) = ∥X−1(t)∥λ2(t)∥X(γ(t))∥ satisfy (7).

If, in addition, λ1 = λ2, the assumption (A2) is the same as (H2) in [18], and
Theorem 2 becomes [18, Theorem 4]. However, [18, Theorem 4] may not be applicable
for the case λ1 ̸= λ2 (see the example below).
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Example 1. For simplicity, assume that ξi − ti = 1, i ≥ 0. Consider the following
scalar equations:

x′(t) = −x(t), (21)

y′(t) = −y(t) + f(t, y(t), y(γ(t))), (22)

where f satisfies (4) with{
λ1(t) = peξi−t, λ2(t) = qeξi−t, t ∈ Ii, i ≥ 0,

p > (e+ 1)−1/2, 0 < q < 1 + p(1− e).

It is easy to see that X(t) = eτ−t is the fundamental solution of (21). Then for
i ≥ 0, ∫ ξi

ti

(η1(t) + η2(t))dt =

∫ ξi

ti

∥X−1(t)∥(λ1(t)∥X(t)∥+ λ2(t)∥X(γ(t))∥)dt

=

∫ ξi

ti

(peξi−t + q)dt = p(e− 1) + q < 1.

This means that assumption (A′
2) holds. So Theorem 2 is applicable to equations

(21) and (22) by Remark 1.
However, by the hypothesis on f above, we can get that f satisfies condition (H1)

in [18] with λ(t) = max{λ1(t), λ2(t)} = peξi−t, and the function η(t) in (H2) is given
by

η(t) = |X(t)||X−1(t)|(1 +X−1(t, γ(t)))λ(t) = p(eξi−t + 1).

Then

2

∫ ξi

ti

η(t)dt = 2p(e+ 1) > 1, i ≥ 0.

This implies that condition (H2) in [18] is not satisfied. Therefore, [18, Theorem 4]
is not applicable here.
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