A generalization of the butterfly theorem

Vladimir Volenec*

Abstract

In this paper a new generalization of the well-known butterfly theorem is given using the complex coordinates.

Key words: butterfly theorem
AMS subject classifications: 51M04
Received May 25, $2000 \quad$ Accepted October 20, 2000

Let us prove the following theorem.
Theorem 1. Let A, B, C, D be four points on a circle \mathcal{K} with the centre O and let M be the orthogonal projection of the point O onto the given straight line \mathcal{M}. If M is the midpoint of two points $E=\mathcal{M} \cap A B$ and $F=\mathcal{M} \cap C D$, then M is the midpoint of the points $G=\mathcal{M} \cap A C$ and $H=\mathcal{M} \cap B D$ and the midpoint of the points $K=\mathcal{M} \cap A D$ and $L=\mathcal{M} \cap B C$.

Figure 1
If $G=H=M$ and \mathcal{M} is a chord of \mathcal{K}, then we obtain a well-known butterfly theorem (cf. [1] and [2]).

[^0]If \mathcal{M} is a chord of \mathcal{K}, then we have Klamkin's generalization of the butterfly theorem (cf. [3]).

If $G=H=M$, then we obtain a Sledge's generalization of the butterfly theorem (cf. [4]).

We shall prove the Theorem using the complex coordinates of the points in a Gauss plane of complex numbers. If a point Z has a complex coordinate z, then we write $Z=(z)$. Let \bar{z} be the conjugated complex number of z. We shall need a lemma.

Lemma 1. Any straight line \mathcal{M} has an equation of the form

$$
\begin{equation*}
z+t \bar{z}=s \tag{1}
\end{equation*}
$$

where $Z=(z)$ is any point of this line, $S=(s)$ is the point symmetric to the origin O with respect to the line \mathcal{M}, and t is a unimodular number, i.e. $|t|=1$ or $t \bar{t}=1$ holds.

Figure 2
Proof. If $O \notin \mathcal{M}$ (Figure 2), then we have the equality $|z-s|=|z|$, i.e. the number $\frac{z-s}{z}=\tau$ is unimodular. Therefore, we have $\frac{\bar{z}-\bar{s}}{\bar{z}}=\frac{1}{\tau}$. Multiplying these two equalities we obtain $(z-s)(\bar{z}-\bar{s})=z \bar{z}$, i.e. $\bar{s} z+s \bar{z}=s \bar{s}$. But, this is equation (1) if we put

$$
\begin{equation*}
t=\frac{s}{\bar{s}} . \tag{2}
\end{equation*}
$$

Obviously $t \bar{t}=1$. If $O \in \mathcal{M}$, then let $P=(p)$ and $Q=(-p)$ be two points symmetrical with respect to the origin O and with respect to the straight line M (Figure 3). Then we have the equality $|z-p|=|z+p|$, i.e. the number $\frac{z-p}{z+p}=\tau$ is unimodular. Therefore, $\frac{\bar{z}-\bar{p}}{\bar{z}+\bar{p}}=\frac{1}{\tau}$. Multiplying these two equalities we obtain $(z+p)(\bar{z}+\bar{p})=(z-p)(\bar{z}-\bar{p})$, i.e. $\bar{p} z+p \bar{z}=0$. If we put $t=\frac{p}{\bar{p}}$, then we have equation (1) again, but now $s=0$ holds.

Figure 3
Proof of Theorem. Let \mathcal{K} be the unit circle with the centre in the origin O and let $a, b, c, d, e, f, g, h, k, l$ be the complex coordinates of the points A, B, C, D, E, F, G, H, K, L. The equation

$$
\begin{equation*}
z+a b \bar{z}=a+b \tag{3}
\end{equation*}
$$

is the equation of a straight line \mathcal{L} because $|a b|=|a| \cdot|b|=1$. According to $a \bar{a}=1$ and $b \bar{b}=1$, we obtain $a+a b \bar{a}=a+b$ and $b+a b \bar{b}=a+b$, i.e. $A, B \in \mathcal{L}$. Therefore, (3) is the equation of the straight line $A B$. Now, let \mathcal{M} have equation (1). Substracting equations (1) and (2) we obtain $(t-a b) \bar{z}=s-a-b$. Therefore, for the point $E=\mathcal{M} \cap A B$ the first of two equalities

$$
\begin{equation*}
\bar{e}=\frac{s-a-b}{t-a b}, \quad \bar{f}=\frac{s-c-d}{t-c d} \tag{4}
\end{equation*}
$$

holds, and analogously the second equality (4) holds for the point $F=\mathcal{M} \cap C D$. The point $S=(s)$ is symmetrical to the point $O=(0)$ with respect to the line \mathcal{M}. Therefore, the points E and F have the midpoint M if and only if $e+f=s$, i.e. $\bar{e}+\bar{f}=\bar{s}$. This condition can be written in the form

$$
\begin{equation*}
(t-c d)(s-a-b)+(t-a b)(s-c-d)=\bar{s}(t-a b)(t-c d) \tag{5}
\end{equation*}
$$

because of (4). According to (2), i.e. the equality $\bar{s} t=s$ (which is satisfied in the case $s=0$, too), equality (5) can be transformed in the form

$$
s t-(a+b+c+d) t+a b c+a b d+a c d+b c d-a b c d \bar{s}=0,
$$

which is symmetrical with respect to the coordinates a, b, c, d. Therefore, we obtain the same condition for $\bar{g}+\bar{h}=\bar{s}$ and for $\bar{k}+\bar{l}=\bar{s}$. Q.E.D.

References

[1] H. Eves, A survey of geometry, Allyn and Bacon, Boston, 1963., p. 171.
[2] H. S. M. Coxeter, Projective geometry, Blaisdell, New York, 1964., p. 78.
[3] M. S. Klamkin, An extension of the butterfly theorem, Math. Mag. 38(1965), 206-208.
[4] J. Sledge, A generalization of the butterfly theorem, J. of Undergraduate Math. 5(1973), 3-4.

[^0]: *Department of Mathematics, University of Zagreb, Bijenička c. 30, HR-10 000 Zagreb, Croatia, e-mail: volenec@cromath.math.hr

