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Distribution of random quadratic forms arising in
singular-spectrum analysis

ValentinaG.Moskvina
∗

Abstract. We derive explicit expressions for the coefficients of cer-
tain quadratic forms arising in the singular-spectrum analysis, a novel
technique of time series analysis. We also derive expressions for the
first two moments of these quadratic forms under the assumption that
the time series is a sum of a linear trend and white noise.
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1. Introduction

One of the methods of time series analysis, that has recently attracted a lot of
attention, is the so-called singular-spectrum analysis (SSA), see Elsher and Tsonis
(1996) for an introduction and Golyandina, Nekrutkin and Zhigljavsky (2001) for
a detailed description of the methodology and theory.

Let y1, y2, . . . be a time series. SSA is based on the singular-value decomposition
of the so-called “trajectory matrix”

X = (xij)
M,K
ij=1 =



y1 y2 y3 . . . yK

y2 y3 y4 . . . yK+1

...
...

...
. . .

...
yM yM+1 yM+2 . . . yN


 (1)

where N is the number of observations, M is an integer called “lag parameter”
(M ≤ N/2), K = N −M + 1 and xij = yi+j−1 for all i = 1 . . . ,M, j = 1 . . . ,K.

In many cases performing a singe or double centring of the trajectory matrix
is recommended, see Golyandina, Nekrutkin and Zhigljavsky (2001). Denote by Z
the matrix obtained from X after a centring operation is performed.

Single centring means that the row averages are subtracted from each element
of the matrix X; that is, the elements of Z are

zij = xij − 1
M

M∑
i=1

xij . (2)
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If we subtract the row and column averages from xij and add the general mean,
then we obtain double centring of the trajectory matrix. The resultedM×K-matrix
Z = (zij)

M,K
ij=1 has the elements

zij = xij − 1
M

M∑
i=1

xij − 1
K

K∑
j=1

xij +
1
MK

M∑
i=1

K∑
j=1

xij . (3)

Obviously, we could use the formulae (2) and (3) to compute the values zij for
j > K; this corresponds to the use of yt with t > N .

The following sum of squares

SSp,q =
M∑
i=1

q∑
j=p+1

z2ij (4)

is of high importance in the theory of SSA in relation to the problems of de-
tection of structural heterogeneities in time series, see Chapter 3 in Golyandina,
Nekrutkin and Zhigljavsky (2001), Moskvina and Zhigljavsky (2000) and the Web-
site http://www.cf.ac.uk/maths/stats/changepoint/ . Here p and q are arbitrary in-
tegers, 0 ≤ p < q.

The case when p = 0 and q = K is of a particular interest. Another important
case is when p ≥ K; in this case the sum of squares is computed for the subseries
that contain points lying outside the interval [1, N ].

We will demonstrate that the sum of squares SSp,q can be represented as a
quadratic form

SSp,q = eTBe, (5)

where e = (e1, . . . , eq+M−1)T is some vector that can often be associated with the
observation noise in the original series y1, y2, . . . and B is a (q+M−1)× (q+M−1)
matrix.

In Section 2 we consider the most difficult case of double centring. We assume
that yt = a+ bt+ et (t = 1, 2, . . .), where a and b are unknown parameters and et
is noise.

If b is known (and we thus can assume b = 0), then there is no need to do double
centring of the trajectory matrix X to achieve independence of a, the subtraction
of the row averages would suffice. This case is considered in Section 3.

In the simplest case, when both a and b are known (we thus can assume a =
b = 0), we do not need to do centring at all to achieve independence of a and b.
We thus have zij = xij = yi+j−1 in the formula for SSp,q; the case of no centring
is considered in Section 4.

In all three cases we shall compute the matrix B and the first two moments under
the assumption that et are independent normal random variables with Eet = 0 and
var(et) = σ2 = const.

To compute the moments, we will use the results on distributions of quadratic
forms of random variables, see e.g. Section 3.2 in Mathai and Provost (1992) and
Section 2.5 in Searle (1971). These results imply that

E(eTBe) = σ2trB , (6)
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var(eTBe) = 2σ4trB2 (7)

Note that the proof of (6) does not require normality of et and that both properties
(6) and (7) can be easily generalized to the case when the components of e are
dependent (e.g. to the case when et is an autoregressive process).

2. Double centring

2.1. Notation

Assume that yt = a+ bt+et (t = 1, 2, . . .), where a and b are unknown parameters
and et is noise. Consider the case of double centring, when the elements of the
matrix Z are defined by (3).

An important observation about the matrix Z is that its elements zij do not
depend on the actual values of the parameters a and b. Indeed, we can write
xij = a+b(i+j−1)+εij, where εij = ei+j−1, and therefore we obtain

zij = a+ b(i+ j − 1) + εij +
1

KM

M∑
i=1

K∑
j=1

(a+ b(i+ j − 1) + εij)

− 1
M

M∑
i=1

(a+ b(i+ j − 1) + εij)− 1
K

K∑
j=1

(a+ b(i+ j − 1) + εij)

= εij − ε.j − εi. + ε.. ,

where

εi. =
1
K

K∑
k=1

εik, ε.j =
1
M

M∑
i=1

εij , ε.. =
1
MK

M∑
i=1

K∑
k=1

εik (8)

Denote Q = q−p. To formulate the results, we shall need the function wM,p,q(t)
which is defined as follows (see also Figure 1):
if M ≤ Q,

wM,p,q(t) =



t− p, for p < t ≤ p+M
M, for p+M < t ≤ q
q +M − t, for q < t ≤ q +M
0, otherwise

(9)

and, if 0 < Q ≤M ,

wM,p,q(t) =



t− p, for p < t ≤ q
Q, for q < t ≤M + p
q +M − t, forM + p < t ≤M + q
0, otherwise.

(10)
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Figure 1. Function wM,p,q(t)

We shall also need six matrices B1, . . . , B6 that are defined as follows.
Matrix B1 is the diagonal matrix of size (M+Q−1)× (M+Q−1); its elements are

b
(1)
ij =

{
wM,0,Q(i), if i = j
0, otherwise. (11)

Matrix B2 is presented in Figure 2. It is an (M+Q−1)× (M+Q−1)-matrix with
A=min{M,Q}. The elements of B2 are

b
(2)
ij =



wi,0,A(j), 1 ≤ i < A
wA,0,A(j), A ≤ i < max{M,Q}
wM+Q−i,i−A,i(j), max{M,Q} ≤ i ≤M+Q−1.

(12)

Matrix B3 is the matrix V of Figure 2; its size is (M+K−1)× (M+K−1) and the
parameters are A=M, v1=v2= K and a =M−1. The elements of B3 are

b
(3)
ij =



wi,0,K(j), if 1 ≤ i < M
wM,0,K(j), if M ≤ i < K
wM+K−i,i−K,i(j), if K ≤ i ≤M +K − 1.

(13)

Matrix B4 is the matrix U of Figure 2 with A = B =M and u1=u2=K−M+1.
Its size is (M+K−1)× (M+K−1) and its elements are

b
(4)
ij = wM,0,K(i)× wM,0,K(j), (14)

where 1 ≤ i, j ≤ K+M−1.
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1 2 … B … B … 2 1 1 1 … 1 1
2 4 … 2B … 2B … 4 2 1 2 … 2 1 a

… … … … …

… … …

=
A 2A … AB … AB … 2A A 1 2 … A … A … 2 1

U = …  … … …  … … … … … … …

v1

u1 =
A 2A … AB … AB 2A A 1 2 … A … A … 2 1

… … … … …

… …

… … …

v1

A-1

=

2 4 … 2B … 2B … 4 2  a 1 2 … 2 1
1 2 … B … B … 2 1 1 1 … 1 1

u2 a v2

1 1 … 1
1 2 .. 2 1

A-1

B-1

… …

… … …

B 2 =
1 2 … A … 2 1

B 2 =
… … …

…

… …
B 2 =

1 2 … A … 2 1
B 2 =

A
… … …

… … A1 2 … 2 1
1 … 1 1

A

A

0

0

0

0

Figure 2. Matrices U , V and B2.

Matrix B5 is an (M+K−1) × (M+Q−1)-matrix V (see Figure 2) with A =
min{M,Q}, v1==K, v1==Q, and a =M−1. The elements are

B5 = b(5)ij =



wi,0,Q(j), if 1 ≤ i ≤M
wM,0,Q(j), if M ≤ i ≤ K
wM+K−i,i−K,Q+i−K (j), if K ≤ i ≤M +K − 1.

Matrix B6 is the matrix U with A = M, B = min{M,Q}, u1 = K−M+1 and
u2 =| Q−M | +1. Its size is (M +K−1) × (M +Q−1) and the elements are
b
(6)
ij = wM,0,K(i)× wM,0,Q(j) for 1≤ i≤K+M−1, 1≤j≤Q+M−1.

Finally, as an addition to (8), we define

ε̃i. =
1
Q

q∑
j=p+1

εij , ε̃.. =
1
MQ

M∑
i=1

q∑
j=p+1

εij (15)

2.2. The quadratic form

Theorem 1. Let yt = a+ bt+ et for all t = 1, 2, . . . and some a and b. Then the
sum of squares SSp,q can be represented as a quadratic form

SSp,q = eTBe ,
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where e = (e1, . . . , eq+M−1)T and

B =
(

0 0
0 B1

)
− 1
M

(
0 0
0 B2

)
+
Q

K2

(
B3 0
0 0

)
− Q

K2M

(
B4 0
0 0

)

− 1
K

[(
0 B5

0 0

)
+

(
0 0

BT
5 0

)]
+

1
KM

[(
0 B6

0 0

)
+

(
0 0

BT
6 0

)]
The structure of the matrix B is represented in Figure 3, where zero is coded

by white and different patterns in right bottom, left top, and left bottom corners
correspond to the matrices B1 − 1

MB2,
Q

K2B3 − Q
K2MB4 and − 1

KB5 + 1
KMB6,

respectively.

Q+M-1

M-1

M-1

M

M-1

M-1 MM-1 M

M

K-M+1

p-TT Q+M-1

Q-M-1

M-1M-1

T

p-T

M-1

Q-M+1

Q-M+1

K-M+1

Q-M-1

Figure 3. Matrix B

Proof of Theorem 1. According to the notations of (8) and (15) and the definition
of the sum of squares (4), we have

SSp,q =
M∑
i=1

q∑
j=p+1

(εij − ε.j − εi. + ε..)2 .
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Expanding the square and simplifying separately each term in the sum, we obtain

SSp,q = S1 −MS2 +QS3 −MQS4 − 2QS5 + 2MQS6 , (16)

where

S1 =
M∑
i=1

q∑
j=p+1

ε2ij , S2 =
q∑

j=p+1

ε2.j , S3 =
M∑
i=1

ε2i. ,

S4 = ε2.. , S5 =
M∑
i=1

ε̃i.εi. , S6 = ε̃..ε..

To see how the simplification is made, consider the three most difficult terms:

M∑
i=1

q∑
j=p+1

εi.ε.j =
M∑
i=1

εi.

q∑
j=p+1

ε.j =


 M∑

i=1

1
K

K∑
j=1

εij





 q∑

j=p+1

1
M

M∑
i=1

εij


=Mε..Qε̃.. ,

M∑
i=1

q∑
j=p+1

εijε.j =M
q∑

j=p+1

ε.j

[
1
M

M∑
i=1

εij

]
=M

q∑
j=p+1

ε2.j ,

M∑
i=1

q∑
j=p+1

εijεi. = Q
M∑
i=1

εi.


 1
Q

q∑
j=p+1

εij


 = Q

M∑
i=1

εi.ε̃i. .

Consider separately each sum in (16).
It is easy to see from (11) and (16) that

S1 = eT
(

0 0
0 B1

)
e .

Consider S2 and replace ε.j by the corresponding expression from (8). Using the
notation εij = ei+j−1 and e = (ep+1 . . . , eq+M−1)T we have

S2 =
q∑

j=p+1

(
1
M

M∑
i=1

εij)2 =
1
M2

q∑
j=p+1

M∑
i=1

M∑
i′=1

ei+j−1ei′+j−1 .

We now change the indices by the formula{
t = i+ j − 1
t′ = i′ + j − 1

Since i, i′ = 1, . . . ,M , j = p+1, . . . , q we have t, t′ = p+1, . . . , q+M−1. Therefore,

S2 =
1
M2




p+M∑
t=p+1

p+M∑
t′=p+1

etet′ +
p+M+1∑
t=p+2

p+M+1∑
t′=p+2

etet′ + . . .+
q+M−1∑

t=q

q+M−1∑
t′=q

etet′

︸ ︷︷ ︸
q − p



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=
1
M2

e


(

1M 0M,Q−1

0Q−1,M 0Q−1,Q−1

)
+


 01,1 01,M 01,Q−2

0M,1 1M 0M,Q−2

0Q−2,1 0Q−2,M 0Q−2,Q−2




+ . . .+


 0Q−2,Q−2 0Q−2,M 0Q−2,1

0M,Q−2 1M 0M,1

01,Q−2 01,M 01,1


 +

(
0Q−1,Q−1 0Q−1,M

0M,Q−1 1M

)
 eT

where 1M is the M × M -matrix of ones and 0u,v is the u × v-matrix of zeros.
Summing the matrices above we obtain the matrix B2, see (12), and

MS2 =
1
M
eT

(
0 0
0 B2

)
e

Matrix B3, see (13), is built from the sum of squares S3 analogously to the
construction of B2 from S2. In this case we use the substitution{

t = i+ k − 1
t′ = i+ k′ − 1

where i = 1, . . . ,M, k, k′ = 1, . . . ,K and t, t′ = 1, . . . ,K+M−1. This gives

QS3 =
Q

K2
eT

(
B3 0
0 0

)
e .

The sum of squares S4 gives us the matrix 1
K2M2B4; this can be easily seen if

we consider B4 as a square of the (M+K−1)× (M+K−1)-matrix with elements
wM,0,K(i), if i = j, and 0, otherwise. Thus,

MQS4 =
Q

K2M
eT

(
B4 0
0 0

)
e

We can obtain the matrix B5 similarly to the case of B3 using the similarity
between the sums of squares S3 and S5. In view of the differences in the number
of terms in the sums ε̃i. and εi., see (8) and (15), we obtain different sizes and
multipliers. We thus have

2QS5 =
1
K
eT

[(
0 B5

0 0

)
+

(
0 0

BT
5 0

)]
e .

Finally, B6 is an (M+K−1)×(M+Q−1)-matrix which can be obtained similarly
to B4.

2MQS6 =
1
KM

eT
[(

0 B6

0 0

)
+

(
0 0

BT
6 0

)]
e .

This completes the proof. ✷

2.3. Computation of trB and trB2

As a corollary of Theorem 1, we can derive the expressions for trB and trB2 in
several particular cases, depending on the values of parameters p and q.
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Case 1: p ≥ N . We have

trB =
Q(M − 1)(3K2 +M + 1)

3K2

trB2 =
(2K2+Q2)(M2−1)(2M2+7)

45K4
+

Q(M−1)(M2−M−1)

3M
− (M−1)(2M2−M−3)

6
.

Case 2: p = 0, q = K. In this case

SSp,q =
M∑
i=1

K∑
k=1

(εik − ε.k − εi. + ε..)2 =

=
M∑
i=1

K∑
k=1

ε2ik −K
M∑
i=1

ε2i. −M
K∑

k=1

ε2.k +MKε2.. = e
TBe

implying Q = K, B3 = B5 = BT
5 and B4 = B6 = BT

6 ; therefore, the matrix B has
the form

B = B1 − 1
M
B2 +

1
K
B3 − 1

MK
B4 .

For i ≤ j and i+ j ≤ K +M we have

bij =




i(i+MK−M−K)
MK , if i = j, 1 ≤ i ≤M − 1

M − 1, if i = j,M ≤ i ≤ M+K
2

j−i
M − 1, if M ≤ j, j −M + 1 ≤ i ≤ j
− i(M+K−j)

MK , if 1 ≤ i < j ≤M − 1
i(M+K−j)

MK , if K + 1 �= K +M − 1, 1 ≤ i ≤ j −K
− (M−i)(j−K)

MK , if K + 1 ≤ j �= K + i, 1 ≤ i ≤M − 1
0, otherwise

and bij = bji, bM+K−i, M+K−j = bij for 1 ≤ i ≤ M +K − 1, 1 ≤ j ≤M +K − 1.
This yields

trB =
(M − 1)(3K2 −M − 1)

3K
,

trB2 =
(M2−1)(2M2+7)

45K2
+

K(M−1)(3M2−M−1)

3M
− (M2−1)(2M−3)

6
+

(M2−1)(2−3M2)

15KM
.

3. Single centring

Consider the case of single centring. Using the notation εij = ei+j−1 and (8) and
(15) we obtain

SSp,q =
M∑
i=1

q∑
j=p+1

(εij − εi.)2 =
M∑
i=1

q∑
j=p+1

ε2ij +Q
M∑
i=1

ε2i. − 2Q
M∑
i=1

ε̃i.εi.

This yields that the sum of squares SSp,q can again be represented as a quadratic
form eTBe, where the matrix B has the form

B =
(

0 0
0 B1

)
+
Q

K2

(
B3 0
0 0

)
− 1
K

[(
0 B5

0 0

)
+

(
0 0

BT
5 0

)]
.
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Here the matrices B1, B3, B5 are described as above and 0 is the zero-matrix of
suitable size.

Let us compute trB and trB2 in the two particular cases as in Section 2.
Case 1: p ≥ N . We have

trB =
MQ(K + 1)

K
;

trB2 = M2Q − M(M2 − 1)

3

+
Q2

K4
[(K − M + 1)2M2 − M(M − 1)

6
(5M2 − 8KM − 7M + 4K)]

+
2

K2
[(K − M + 1)(Q − M + 1)M2

−M(M − 1)

6
(5M2 − 4M(K + Q) − 7M + 2(K + Q))]

Case 2: p = 0, q = K. We have

eTBe = SSp,q =
M∑
i=1

K∑
j=1

(εij − εi.)2 =
M∑
i=1

K∑
j=1

ε2ij −K
M∑
i=1

ε2i. ,

implying Q = K, B3 = B5 = BT
5 . Therefore, the matrix B has the form

B = B1 − 1
K
B3;

its elements are

bij =




K−1
K wM,O,K(j), if i = j

− 1
Kwi, 0, K(j), if i �= j, 1 ≤ i ≤M

− 1
KwM, 0, K(j), if i �= j, M ≤ i ≤ K

− 1
KwM+K−i, i−K, i(j), if i �= j K ≤ i ≤M +K − 1.

The expressions for trB and trB2 are

trB =M(K − 1), trB2 =M2K − M(M2 − 1)
3

−M2 +
M2(M2 − 1)

6K2
.

4. No centring

The case without averaging is the easiest. In this case we have

SSp,q =
M∑
i=1

q∑
j=p+1

ε2ij = eTBe, where B =
(

0 0
0 B1

)
,

trB =
∑

t

wM,p,q(t) =
∑

t

wM,0,Q(t) =MQ
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and

trB2 =
∑

t

w2
M,p,q(t) =

{
1
3M

(
3MQ+ 1−M2

)
, if Q ≥M

1
3Q

(
3MQ+ 1−Q2

)
, if Q ≤M .

In particular, for p = 0 and q = K we have B = B1,

trB =MK and trB2 =M2K − M(M2 − 1)
3

.
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