The property of Kelley in nonmetric continua

IVAN LONČAR*

Abstract. The main purpose of this paper is to study the property of Kelley in nonmetric continua using inverse systems and limits.

Key words: the property of Kelley, inverse systems and limits

AMS subject classifications: 54B35, 54C10, 54F15

Received April 26, 1999 Accepted October 25, 1999

1. Introduction

For any topological space X the set of all closed subsets of X is denoted by 2^X . The Vietoris topology on 2^X is the topology with a base

$$\langle U_1, U_2, ..., U_n \rangle = \{ F : F \in 2^X, F \subset \bigcup_{i=1}^n U_i, F \bigcap U_i \neq \emptyset, i = 1, ..., n \},$$

where $U_1, ..., U_n$ are open subsets of X [5, p. 162]. If $f : X \to Y$ is a continuous mapping, then we define a mapping $2^f : 2^X \to 2^Y$ by $2^f(F) = Cl_Y(f(F)), F \in 2^X$. If X is compact, then $2^f(F) = f(F), F \in 2^X$. For a continuum X, C(X) will denote the subspace of 2^X of all subcontinua of X. If $f : X \to Y$ is a continuous mapping, then c(f) will denote the restriction $2^f|C(X): C(X) \to C(Y)$. Similarly, $C^2(X)$ will denote C(C(X)) and $c^2(f)$ will denote c(c(f)) for a mapping $f : X \to Y$.

We say that $\mathbf{X} = \{X_a, p_{ab}, A\}$ is σ -directed if for each sequence $a_1, a_2, ..., a_k, ...$ of members of A, there is an $a \in A$ such that $a \ge a_k$, for each $k \in \mathbb{N}$. For each directed set (A, \le) we define

 $A_{\sigma} = \{ \Delta : \emptyset \neq \Delta \subset A, \, card(\Delta) \leq \aleph_0 \quad \text{and } \Delta \text{ is directed by } \leq \}.$

Then A_{σ} is σ - directed by inclusion [14, Lemma 9.3]. If $\Delta \in A_{\sigma}$, let $\mathbf{X}^{\Delta} = \{\mathbf{X}_{b}, \mathbf{p}_{bb'}, \Delta\}$ and $\mathbf{X}_{\Delta} = \lim \mathbf{X}^{\Delta}$. If $\Delta, \Gamma \in A_{\sigma}$ and $\Delta \subseteq \Gamma$, let $\mathbf{p}_{\Delta\Gamma} \colon \mathbf{X}_{\Gamma} \to \mathbf{X}_{\Delta}$ denote the map induced by the projections $\mathbf{p}_{\delta}^{\Gamma} \colon \mathbf{X}_{\Gamma} \to \mathbf{X}_{\delta}, \delta \in \Delta$, of the inverse system \mathbf{X}^{Γ} . Now, we have the following theorem.

Theorem 1. [14, Theorem 9.4] If $\mathbf{X} = \{X_a, p_{ab}, A\}$ is an inverse system, then $\mathbf{X}_{\sigma} = \{X_{\Delta}, p_{\Delta\Gamma}, A_{\sigma}\}$ is a σ - directed inverse system and lim \mathbf{X} and lim \mathbf{X}_{σ} are canonically homeomorphic.

^{*}Faculty of Organization and Informatics, Varaždin, Pavlinska 2, HR-42000 Varaždin, Croatia, e-mail: iloncar@foi.hr

In the sequel we will need the following theorem.

Theorem 2. Let X be a compact space. There exists a σ - directed inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ of compact metric spaces X_a and surjective bonding mappings p_{ab} such that X is homeomorphic to lim \mathbf{X} .

Proof. Apply [12, pp. 152, 164] and *Theorem 1*. \Box

Theorem 3. [12, p. 163, Theorem 2.] If X is a locally connected compact space, then there exists an inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ such that each X_a is a metric locally connected compact space, each p_{ab} is a monotone surjection and X is homeomorphic to lim \mathbf{X} . Conversely, the inverse limit of such a system is always a locally connected compact space.

Theorem 4. [7, Corollary 3] Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be a σ - directed inverse system of hereditarily locally connected continua X_a . Then $X = \lim \mathbf{X}$ is hereditarily locally connected.

2. The property of Kelley

The following definition is well known [13, p. 538].

Definition 1. A metric continuum X is said to have the property of Kelley provided that given any $\epsilon > 0$ there exists $\delta = \delta(\epsilon) > 0$ such that if $a, b \in X$, $d(a, b) < \delta$ and $a \in A \in C(X)$, then there exists $B \in C(X)$ such that $b \in B$ and $H(A, B) < \epsilon$.

Remark 1. Each locally connected metric continuum has the property of Kelley [13, Example (6.11), p. 538].

In nonmetric continua we shall use the following generalization of the property of Kelley [2].

Definition 2. A continuum X has the property of Kelley if for each a in X, each A in C(X) such that $a \in A$, and each open V in C(X) containing A there exists an open set W such that $a \in W$ and if $b \in W$, then there exists a $B \in C(X)$ such that $b \in B$ and $B \in V$.

A continuum X has the *property of Kelley hereditarily* provided that each one of its subcontinua has the property of Kelley.

3. The mapping α_X

Definition 3. Let X be a continuum. For each $a \in X$, let $\alpha_X(a) = \{A \in C(X), a \in A\}$.

If X is a metric continuum, then $\alpha_X(a)$ is a continuum of C(X) [19, p. 292]. This implies that we have a mapping $\alpha_X : X \to C^2(X)$.

Lemma 1. If X is a nonmetric continuum, then $\alpha_X(x)$ is a continuum (in C(X)) for each $x \in X$, and there exists a mapping $\alpha_X : X \to C^2(X)$.

Proof. By virtue of *Theorems 1*. and *3*. there exists a σ - directed inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ of metric continua X_a such that X is homeomorphic to lim \mathbf{X} . Each $\alpha_{X_a}(p_a(\mathbf{x}))$ is a continuum of $C(X_a)$ [19, p. 292]. It is clear that

$$c(p_{ab})[\alpha_{X_b}(p_b(x))] \subseteq \alpha_{X_a}(p_a(x)) \tag{1}$$

since for each continuum K of X_b containing $p_b(x)$ the image $p_{ab}(K)$ is a subcontinuum of X_a which contains $p_a(x)$. Consider the inverse system $C(\mathbf{X}) = \{C(X_a), c(p_{ab}), A\}$. From [5, p. 465, 6.3.22.(f)] it follows that C(X) is homeomorphic to $\lim C(\mathbf{X})$. Now, $\mathbf{Y} = \{\alpha_{X_a}(p_a(x)), c(p_{ab}) | \alpha_{X_b}(p_b(x)), A\}$ is an inverse system of continua. Moreover, $C = \lim \mathbf{Y}$ is a subcontinuum of $\lim C(\mathbf{X})$ [5, Theorem 6.1.18.], i.e. C is a subcontinuum of C(X). It remains to prove that $C = \alpha_X(x)$. Let us prove

$$C \subseteq \alpha_X(x). \tag{2}$$

Each point c of C is a thread (C_a) in **Y**, where C_a is a subcontinuum of X_a such that $p_{ab}(C_b) = C_a$, $a \leq b$. We have again an inverse system of continua whose limit K is a subcontinuum of X containing the point x. This means that $K \in \alpha_X(x)$. Hence, (2) is proved. Arguing similarly one can prove the reverse inclusion

$$C \supseteq \alpha_X(x). \tag{3}$$

We infer that $\alpha_X(x) \in C^2(X)$. Thus, we have the mapping $\alpha_X : X \to C^2(X)$. \Box

A mapping F assigning to each point y of a topological space Y a closed subset F(y) of a topological space X is *lower (upper) semicontinuous* if for every open set $U\subseteq X$ the set $\{y: F(y) \cap U \neq \emptyset\}$ (the set $\{y: F(y) \subseteq U\}$) is open in Y ([5, p. 89, 1.7.17.], [9, p. 181]).

We infer that a mapping $f: X \to 2^X$ is upper semicontinuous at a point $x \in X$ if for every open set V (in 2^X) containing f(x) there is an open set U containing x such that $f(y) \subset V$, for all $y \in U$.

Lemma 2. The mapping $\alpha_X : X \to C^2(X)$ is upper semicontinuous at each $x \in X$.

Proof. Suppose that α_X is not upper semicontinuous at some point $a \in X$. This means that there exists a neighborhood V of $\alpha_X(a)$ (in C(X)) such that for each neighborhood U_{μ} , $\mu \in M$, of a there exists a point $b_{\mu} \in U_{\mu}$ such that $\alpha_X(b_{\mu}) \not\subseteq V$. Hence, for each $\mu \in M$ there exists a point $B_{\mu} \in \alpha_X(b_{\mu}) \subseteq C(X)$ such that $B_{\mu} \in C(X) \setminus V$. By compactness of C(X), the net $\{B_{\mu} : \mu \in M\}$ has a subnet $\{B_{\mu\nu} : \mu_{\nu} \in M\}$ which converge to some point $B \in C(X) \setminus V$ [8, p. 71, Theorem 6; p. 136, Theorem 2]. Let us recall that B_{μ} is a subcontinuum of X which contains b_{μ} . Since $b_{\mu\nu} \in B_{\mu\nu}$ for each ν , and $\{b_{\mu} : \mu \in M\}$ converges to a, we have $a \in B$. This means that $B \in \alpha_X(a)$. This is impossible since $B \in C(X) \setminus V$ and $\alpha_X(a) \subseteq V$.

The proof of the next theorem is the same as the proof of Theorem 2.2 in [19].

Theorem 5. The mapping $\alpha_X : X \rightarrow C^2(X)$ is continuous if and only if X has the property of Kelley.

4. Confluent mappings

A mapping $f : X \rightarrow Y$ is *confluent* provided every component of the inverse image $f^{-1}(C)$ of a continuum $C \subseteq Y$ is mapped onto C. Each monotone mapping is confluent.

In the sequel we shall frequently consider the diagram

The diagram (4) commutes if and only if

$$f(\alpha_X(x)) = \alpha_Y(f(x)).$$

From the continuity of f there follows the following relation.

$$\{c(f)(A) : A \in \alpha_X(x)\} \subseteq \{B : B \in \alpha_Y(f(x))\}.$$

Lemma 3. The diagram (4) commutes if and only if given $B \in \alpha_Y(f(x))$ there exists $A \in \alpha_X(x)$ such that c(f)(A) = B.

Lemma 4. The diagram (4) commutes if and only if $f: X \rightarrow Y$ is a confluent mapping.

Proof. See the proof of [19, Theorem 4.2].

Theorem 6. [19, Theorem 4.3] Let $f: X \rightarrow Y$ be a confluent mapping. If X has the property of Kelley, then Y has the property of Kelley.

Corollary 1. Let $f: X \rightarrow Y$ be a monotone mapping. If X has the property of Kelley, then Y has the property of Kelley.

Corollary 2. Let $f: X \rightarrow Y$ be an open mapping. If X has the property of Kelley, then Y has the property of Kelley.

Corollary 3. If a product space has the property of Kelley, then each factor space has the property of Kelley.

Now we consider inverse systems of continua with the property of Kelley.

Lemma 5. [3, Corollary 4] Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of continua and confluent bonding mappings. Then the projections p_a , $a \in A$, are confluent.

Theorem 7. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of continua and confluent bonding mappings. If each X_a has the property of Kelley, then $X = \lim \mathbf{X}$ has the property of Kelley.

Proof. By virtue of [5, Theorem 6.1.18] $X = \lim X$ is a continuum. Let x be any point of X and K any subcontinuum of X such that $x \in K$. Let $V = \langle V_1, V_2, ..., V_n \rangle$ be any basis neighborhood of K in C(X). It remains to prove that there exists a neighborhood W of x such that for each point $y \in W$ there exists a continuum L such that $y \in L$ and $L \in V$ in C(X). The proof is broken into several steps. **Step 1.** For every neighborhood U of x there exists an $a \in A$ and an open set U_a containing $p_a(x) = x_a$ such that $x \in p_a^{-1}(U_a) \subset U$. This follows from the definition of the basis of X.

Step 2. For each open set $W \subset X$ and each $a \in A$ there exists an open set $W_a \subset X_a$ such that $W = \bigcup \{p_a^{-1}(W_a) : a \in A\}$. For each $a \in A$ we define $W_a = \bigcup \{O_a : O_a \text{ to} be \text{ open in } X_a \text{ and } p_a^{-1}(O_a) \subset W\}$. Then W_a is open in X_a . It is clear that $W \supset \bigcup \{p_a^{-1}(W_a) : a \in A\}$. On the other hand, if $x \in W$, then by Step 1., there exists an $a \in A$ and an open set W_a^* containing $p_a(x) = x_a$ such that $x \in p_a^{-1}(W_a^*) \subset W$. It is clear that $W_a^* \subset W_a$. Hence $x \in p_a^{-1}(W_a)$. This means that $W \subset \bigcup \{W_a : a \in A\}$. From this relation and $W \supset \bigcup \{p_a^{-1}(W_a) : a \in A\}$ we infer that $W = \bigcup \{p_a^{-1}(W_a) : a \in A\}$.

Step 3. For the neighborhood $V = \langle V_1, V_2, ..., V_n \rangle$ of K (in C(X)) there exists a $b \in A$ such that for each $c \in A$, $c \geq b$, there exist open subsets $V_1(c), ..., V_n(c)$ of X_c such that $\langle V_1(c), ..., V_n(c) \rangle$ is an open set in $C(X_c)$ containing $p_c(K)$. By virtue of Step 2. for each set V_i , i = 1, ..., n, and each $a \in A$ there exists an open set $V_i(a)$, i = 1, ..., n, such that $V_i = \cup \{p_a^{-1}(V_i(a)) : a \in A\}$, i = 1, ..., n. The family $\{p_a^{-1}(V_i(a)) \cap K : a \in A, i = 1, ..., n\}$ is an open cover of K. By virtue of the compactness of K there exists a finite subcover $\{p_{a_1}^{-1}(V_i(a_1)), ..., p_{a_k}^{-1}(V_i(a_k))\}$ of $\{p_a^{-1}(V_i(a)) \cap K : a \in A, i = 1, ..., n\}$. There exists $b \geq a_i$, i = 1, ..., n, since A is directed. Now, for each $c \geq b$ we have a finite family of sets $V_i(c)$, i = 1, ..., n, such that $K \subset \cup \{p_c^{-1}(V_i(c)) : i = 1, ..., n\}$. It is clear that $\langle V_1(c), ..., V_n(c) \rangle$ is an open set in $C(X_c)$ containing $p_c(K)$.

Step 4. The space $X = \lim X$ has the property of Kelley. By virtue of Steps 1 - 3 one can obtain a d∈A and open sets $V_i(d)$, i = 1, ..., n, such that $K \subset \cup \{p_d^{-1}(V_i(d))$: $i = 1, ..., n\} = V$. For the continuum $K_d = p_d(K)$ which contains $p_d(x) = x_d$ and for $\langle V_1(d), ..., V_n(d) \rangle$ there exists a neighborhood W_d of x_d such that if $y_d \in W_d$, then there exists a continuum L_d containing y_d and such that $L_d \in \langle V_1(c), ..., V_n(c) \rangle$ (since X_d has the property of Kelley). Let $W = p_d^{-1}(W_d)$. It is clear that W is a neighborhood of x. If y is any point of W, then $p_d(y) = y_d$ is in W_d . This means that there exists a continuum L_d containing y_d and such that $L_d \in \langle V_1(c), ..., V_n(c) \rangle$. It is clear that $y \in p_d^{-1}(L_d)$. Let Q be a component of $p_d^{-1}(L_d)$ which contains y. By *Theorem 5.* it follows $p_d(Q) = L_d$. Let us prove that Q is in V (in C(X)). Suppose that $Q \notin V$ (in C(X)). Then there exists $p_d^{-1}(V_i(d))$ in $\{p_d^{-1}(V_i(d))$: $i = 1, ..., n\}$ such that $p_d^{-1}(V_i(d)) \cap Q = \emptyset$. Hence $V_i(d) \cap p_d(Q) = \emptyset$. This is impossible since $p_d(Q) = L_d$, $L_d \subset \cup \{V_i(d) : i = 1, ..., n\}$ and $L \cap V_i(d) \neq \emptyset$, i = 1, ..., n. Finally, the required neighborhood W of x is defined.

Remark 2. For another proof of Theorem 7. for inverse sequence of metric continua see [1].

We say that a mapping $f : X \rightarrow Y$ is hereditarily confluent (monotone) [11, p. 17] if f|K is confluent (monotone) for every subcontinuum K of X.

Theorem 8. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of continua and hereditarily confluent bonding mappings. If each X_a has the property of Kelley hereditarily, then $X = \lim \mathbf{X}$ has the property of Kelley hereditarily.

Proof. Let K be any subcontinuum of X. For each $a \in A$ we have the continuum $K_a = p_a(K)$. Each mapping $q_{ab} = p_{ab}|K_b$ is confluent. Now we have the inverse

system $\mathbf{K} = \{\mathbf{K}_a, \mathbf{q}_{ab}, \mathbf{A}\}$ of continua and confluent bonding mappings. Using *Theorem 7.* we complete the proof.

Lemma 6. If X is a continuum which has the property of Kelley hereditarily and if $f: X \rightarrow Y$ is confluent, then Y has the property of Kelley hereditarily.

Proof. Let K be any subcontinuum of Y. Then $L = f^{-1}(K)$ is a subcontinuum of X which has the property of Kelley since X is hereditarily of Kelley. The restriction g = f|L is confluent g:L \rightarrow K. Applying *Theorem 6*. we infer that K has the property of Kelley. The proof is completed.

Theorem 9. Each locally connected continuum has the property of Kelley.

Proof. If X is a metric locally connected continuum, then it has the property of Kelley [19]. Suppose that X is a nonmetric locally connected continuum. By virtue of *Theorems 1.* and *3.* there exists a σ - directed inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ of metric spaces X_a such that X is homeomorphic to $\lim \mathbf{X}$ and the bonding mappings p_{ab} are monotone surjection. Each X_a has the property of Kelley since each X_a is a locally connected metric continuum (as a continuous image of the locally connected continuum X). By virtue of *Theorem 7.* X has the property of Kelley.

Any metric continuum has the property of Kelley at each point of a dense G_{δ} -set. It is natural to ask the following question.

QUESTION. Is it true that each nonmetric continuum has the property of Kelley at some point?

A continuum X is said to be *hereditarily locally connected* if each subcontinuum of X is locally connected.

Theorem 10. (see [6]) A metric continuum X is hereditarily locally connected if and only if X has the property of Kelly hereditarily and is hereditarily arcwise connected.

Now we shall prove the following generalization of this Theorem.

Theorem 11. A locally connected nonmetric continuum X is hereditarily locally connected if and only if X has the property of Kelley hereditarily and is hereditarily arcwise connected.

Proof. a) Let X be a locally connected continuum X which is hereditarily Kelley and hereditarily arcwise connected, i.e. for every subcontinuum K of X and for every pair x,y of points of K there exists an arc L (possibly nonmetric) such that x and y are end-points of L and L \subseteq K. Let us prove that X is hereditarily locally connected. By virtue of *Theorems 1*. and *3*. there exists a σ - directed inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ such that each X_a is a metric locally connected continuum, each p_{ab} is monotone and X is homeomorphic to lim**X**. Let us prove that each X_a is hereditarily locally connected. By virtue of *Theorem 10*. it suffices to prove that X_a is hereditarily of Kelley and hereditarily arcwise connected. Let us prove that X_a is hereditarily of Kelley. It is known that the projections p_a are monotone and, consequently, confluent. From *Lemma 6*. it follows that X_a is hereditarily of Kelley. Let us prove that X_a is hereditarily arcwise connected. Let K_a be a subcontinuum of X_a . Let x_a, y_a be a pair of the points of K_a . Now $p_a^{-1}(K_a) = K$ is a subcontinuum of X since p_a is monotone. There exists a pair x,y of the points in K such that $x_a = p_a(x)$ and $y_a = p_a(y)$. There exists an arc L such that $x, y \in L$ and $L \subset K$. It is clear that $x_a, y_a \in p_a(L) \subset K_a$. Moreover, $p_a(L)$ is arcwise connected as a continuous image of the arc L [17, Theorem 9.]. Hence X_a is hereditarily locally connected. By virtue of *Theorem 4.*, X is hereditarily locally connected.

b) Let X be hereditarily locally connected. Now, X is hereditarily arcwise connected since X is a continuous image of an arc (see [15] and [17]). In order to complete the proof it remains to prove that X is hereditarily of Kelley. Let K be any subcontinuum of X. Clearly K is hereditarily locally connected. By *Theorem 9.* we infer that K has the property of Kelley. \Box

Theorem 12. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of hereditarily locally connected continua and hereditarily confluent bonding mappings. Then $X = \lim \mathbf{X}$ is hereditarily locally connected if and only if X is hereditarily arcwise connected.

Proof. If X is hereditarily locally connected, then X is hereditarily arcwise connected as a continuous image of an arc (see [15] and [17]). Conversely, if X is hereditarily arcwise connected, then X is hereditarily locally connected since it is hereditarily of Kelley (*Theorem 11.*). \Box

5. The property of Kelley and smoothness of continua

A continuous mapping $f: X \to Y$ is said to be monotone relative to a point $p \in X$ if for each subcontinuum Q of Y such that $f(p) \in Q$ the inverse image $f^{-1}(Q)$ is connected [1, p. 184].

Theorem 13. [3, Theorem 1.] Let $\mathbf{X} = \{X^{\lambda}, f^{\lambda\mu}, \Lambda\}$ be an inverse system with the limit X. If there exists a thread $p = \{p^{\lambda}\}$ such that for each $\lambda \in \Lambda$ with $\alpha \leq \lambda$ the bonding mapping $f^{\alpha\lambda}$ is monotone relative to p^{λ} , then the projection π^{α} is monotone relative to p.

We say that a Hausdorff continuum X is smooth at the point $p \in X$ [16](for metric continua [10, p. 81]) if for each convergent net $\{x_n, n \in D\}$ of points of X and for each subcontinuum K of X such that $p,x \in K$, where $x = \lim\{x_n : n \in D\}$, there exists a net $\{K_i, i \in E\}$ of subcontinua of X such that each K_i contains p and some x_n and $\lim K_n = K$.

Theorem 14. [16, Proposition 1.] Let p be an arbitrary point of a continuum X. The following are equivalent:

(i) X is smooth at p,

(ii) for each subcontinuum N of X such that $p \in N$ and for each open set V which contains N there exists an open connected set K such that $N \subseteq K \subseteq V$.

A continuum X is locally connected at the point p if X is smooth at the point p.

Lemma 7. [10, Corollary 3.4] A continuum X is locally connected if and only if it is smooth at each of its points.

The proof of the following theorem is similar to the proof of *Theorem 7*.

Theorem 15. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of continua and monotone projections $p_a : \lim \mathbf{X} \to X_a$. If each X_a is smooth, then $X = \lim \mathbf{X}$ is smooth.

Proof. A straightforward modification of the proof of *Theorem 7.* using (ii) of *Theorem 14.* instead of the definition of the property of Kelley. \Box

Let p be a fixed point of a continuum X. For each point $x \in X$ consider the family $\{K : K \in C(X), p, x \in K\}$ of all subcontinua K of X containing both p and x [1, p. 185]. We define

$$F[X, p](x) = \{K : K \in C(X), p, x \in K\}.$$

If X is a metric continuum, then for each $x \in X F[X,p](x)$ is a compact and arcwise connected subset of C(X), i.e. F[X,p](x) is an element of $C^2(X)$ [1, p. 185]. If X is a nonmetric continuum, then (as in the proof of *Theorem 1.*) one can prove that F[X,p](x) is a continuum, i.e. F[X,p](x) is an element of $C^2(X)$ Thus, we have the mapping $F[X,p](x) : X \rightarrow C^2(X)$.

Lemma 8. The mapping F[X,p] is continuous if and only if the continuum X is smooth at the point p.

Proof. The proof is the same as the proof of Proposition 2. of [1]. \Box

Lemma 9. Let a continuous surjection $f: X \to Y$ and points $p \in X$ and $q \in Y$ with q = f(p) be given. If $F_1 = F[X,p]$ and $F_2 = F[Y,q]$, then the diagram

commutes if and only if f is monotone relative to p.

Proof. The proof is the same as the proof of Proposition 3. of [1]. \Box

The following Theorem for inverse sequences of metric continua was proved in the paper [1].

Theorem 16. [1, Theorem 1.] Let $\{X^i, f^i\}_{i=1}^{\infty}$ be an inverse sequence such that, for each i=1,2,... (a) the continuum X^i is smooth at a point $p^i;(b) f^i(p^{i+1})=p^i;(c)$ f^i is monotone relative to p^{i+1} . Then the inverse limit continuum $X = \lim\{X^i, f^i\}$ is smooth at the thread $p=\{p^i\}_{i=1}^{\infty}$.

The proof given there works in the general situation. Hence, we have the following theorem.

Theorem 17. Let $\mathbf{X} = \{X_a, f_{ab}, A\}$ be an inverse system such that, for each $a \in A$:

- 1. The continuum X_a is smooth at a point p_a ;
- 2. $p = (p_a:a \in A)$ is a thread;
- 3. f_{ab} is monotone at p_b .

Then the inverse limit $X = \lim \mathbf{X}$ is smooth at the thread p.

A topological space X is said to be *rim-metrizable* if X admits a basis of open sets whose boundaries are metrizable.

Theorem 18. Let X be a rim-metrizable continuum. There exists an inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ such that $X_a, a \in A$, are metric continua, p_{ab} are monotone surjections and X is homeomorphic to lim \mathbf{X} .

Proof. By *Theorem 2.* there exists an inverse system $\mathbf{Y} = \{\mathbf{Y}_a, \mathbf{q}_{ab}, \mathbf{A}\}$ of metric spaces \mathbf{Y}_a such that X is homeomorphic to $\lim \mathbf{Y}$. Let $\mathbf{q}_a : \mathbf{X} \to \mathbf{Y}_a$ be the natural projection, $a \in \mathbf{A}$. By the monotone-light factorization of \mathbf{q}_a we obtain a space \mathbf{X}_a , a monotone mapping $\mathbf{q}'_a : \mathbf{X} \to \mathbf{X}_a$ and a light mapping $\mathbf{q}''_a : \mathbf{X}a \to \mathbf{Y}_a$ such that $\mathbf{q}_a = \mathbf{q}''_a \mathbf{q}'_a$. Moreover, by Lemma 8. of [12], for each $a, b \in \mathbf{A}$, there exists a monotone mapping $\mathbf{p}_{ab} : \mathbf{X}_b \to \mathbf{X}_a$. Hence, we have an inverse system $\mathbf{X} = \{\mathbf{X}_a, \mathbf{p}_{ab}, \mathbf{A}\}$. It is readily seen that X is homeomorphic to $\lim \mathbf{X}$. Moreover, by Theorem 3.2 of [18] it follows that \mathbf{X}_a is rim-metrizable. Finally, by Theorem 1.2. of [18] we have $\mathbf{w}(\mathbf{X}_a) = \mathbf{w}(\mathbf{Y}_a) = \aleph_0$, i.e. \mathbf{X}_a is a metric continuum. \Box

A *dendroid* is an arcwise connected and hereditarily unicoherent continuum. If a metric dendroid has the property of Kelley, then it is smooth [4, Corollary 5.].

Theorem 19. If a rim-metrizable dendroid X has the property of Kelley, then X is smooth.

Proof. By *Theorem 18.* there exists a σ -directed inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ of metric continua X_a and monotone bonding mappings p_{ab} such that X is homeomorphic to lim **X**. Every X_a is hereditarily unicoherent since p_{ab} are monotone surjections. Moreover, every X_a is arcwise connected. Namely, let x_a, y_a be a pair of points of X_a . There exists a pair x,y of points in X such that $x_a = p_a(x)$ and $y_a = p_a(y)$. There exists an arc L such that $x, y \in L$ and $L \subset X$. It is clear that $x_a, y_a \in p_a(L) \subset X_a$. Moreover, $p_a(L)$ is arcwise connected as a continuous image of the arc L [17, Theorem 9.]. Hence X_a is arcwise connected. By *Theorem 6*. X_a has the property of Kelley. From [4, Corollary 5.] it follows that every X_a is smooth. \Box

From the proof of *Theorem 19.* the following theorem follows.

Theorem 20. Every rim-metrizable nonmetric dendroid is homeomorphic to the inverse limit of a σ -directed inverse system of metric dendroids.

QUESTION 2. Is it true that every dendroid with the property of Kelley is smooth?

QUESTION 3. Is every nonmetric dendroid homeomorphic to the limit of an inverse system of metric dendroids (to the limit of a σ -directed inverse system of metric dendroids)?

References

 W. J. CHARATONIK, Inverse limits of smooth continua, Commentationes Math. Univ. Carolinae 23(1982), 183–191.

- [2] W. J. CHARATONIK, A homogeneous continuum without the property of Kelley, Topology Atlas Abstracts Document, The 1997 Spring Topology and Dynamics Conference, April 10 - 12, 1997, Lafayette, Lousiana.
- J. J. CHARATONIK, W. J. CHARATONIK, On projections and limiting mappings of inverse systems of compact spaces, Topology and its Applications 16(1983), 1–9.
- [4] S. T. CZUBA, On dendroids with Kelley's property, Proc. Amer. Math. Soc. 102(1988), 728–730.
- [5] R. ENGELKING, General Topology, PWN, Warszawa, 1977.
- [6] G. A. GARCIA, A. ILLANES, Continua which have the property of Kelley hereditarily, Topology Atlas Abstracts Document, The 1997 Spring Topology and Dynamics Conference, April 10 - 12, 1997, Lafayette, Lousiana.
- [7] G. R. GORDH, JR., S. MARDEŠIĆ, Characterizing local connectedness in inverse limits, Pacific Journal of Mathematics 58(1975), 411–417.
- [8] J. L. KELLEY, General Topology, D. van Nostrand company, New York, 1955.
- [9] K. KURATOWSKI, Topologija I, Mir, Moskva, 1966.
- [10] T. MAĆKOWIAK, On smooth continua, Fund. Math. 85(1974), 79–95
- [11] T. MAĆKOWIAK, Continuous mappings on continua, Dissertationes Math. 158, PWN 1979.
- [12] S. MARDEŠIĆ, Locally connected, ordered and chainable continua, Rad JAZU 33(4)(1960), 147–166.
- [13] S. B. NADLER, *Hyperspaces of sets*, Marcel Dekker, Inc., New York, 1978.
- [14] J. NIKIEL, H. M. TUNCALI, E. D. TYMCHATYN, Continuous images of arcs and inverse limit methods, Mem. Amer. Math. Soc. 104(1993), 1–80.
- [15] J. NIKIEL, The Hahn Mazurkiewicz theorem for hereditarily locally connected continua, Topology and Applications 32(1989), 307–323.
- [16] Z. M. RAKOWSKI, Monotone decompositions of hereditarily smooth continua, Fund. Math. 114(1981), 119–125.
- [17] L. B. TREYBIG, Arcwise connectivity in continuous images of ordered compacta, Glasnik Matematički 21(41)(1986), 201–211.
- [18] H. M. TUNCALI, Concerning continuous images of rim-metrizable continua, Proc. Amer. Math. Soc. 113(1991), 461–470.
- [19] R. W. WARDLE, On a property of J.L. Kelley, Houston J. Math. 3(1977), 291– 299.