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The property of Kelley in nonmetric continua
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Abstract. The main purpose of this paper is to study the property
of Kelley in nonmetric continua using inverse systems and limits.
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1. Introduction

For any topological space X the set of all closed subsets of X is denoted by 2X . The
Vietoris topology on 2X is the topology with a base

〈
U1, U2, ..., Un

〉
=

{
F : F ∈ 2X , F ⊂

n⋃

i=1

Ui , F
⋂
Ui �= ∅, i = 1, ..., n

}
,

where U1, ..., Un are open subsets of X [5, p. 162]. If f : X→Y is a continuous
mapping, then we define a mapping 2f : 2X →2Y by 2f(F) = ClY (f(F)), F∈2X . If
X is compact, then 2f (F) = f(F), F∈2X . For a continuum X, C(X) will denote the
subspace of 2X of all subcontinua of X. If f : X→Y is a continuous mapping, then
c(f) will denote the restriction 2f |C(X): C(X)→C(Y). Similarly, C 2(X) will denote
C(C(X)) and c 2(f) will denote c(c(f)) for a mapping f : X→Y.
We say that X = {Xa, pab, A} is σ-directed if for each sequence a1,a2,...,ak,...

of members of A, there is an a∈A such that a≥ak, for each k∈IN . For each directed
set (A,≤) we define

Aσ = {∆ : ∅ �= ∆ ⊂ A, card(∆) ≤ ℵ0 and ∆ is directed by ≤}.

Then Aσ is σ - directed by inclusion [14, Lemma 9.3]. If ∆ ∈Aσ, let X∆ = {Xb,
pbb′ , ∆} and X∆ = limX∆. If ∆, Γ ∈Aσ and ∆ ⊆ Γ, let p∆Γ: XΓ →X∆ denote
the map induced by the projections pΓ

δ : XΓ →Xδ, δ ∈ ∆, of the inverse system XΓ.
Now, we have the following theorem.

Theorem 1. [14, Theorem 9.4] If X = {Xa, pab, A} is an inverse system, then
Xσ = {X∆, p∆Γ, Aσ} is a σ - directed inverse system and limX and limXσ are
canonically homeomorphic.
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In the sequel we will need the following theorem.

Theorem 2. Let X be a compact space. There exists a σ - directed inverse system
X = {Xa, pab, A} of compact metric spaces Xa and surjective bonding mappings
pab such that X is homeomorphic to limX.

Proof. Apply [12, pp. 152 , 164] and Theorem 1. ✷

Theorem 3. [12, p. 163, Theorem 2.] If X is a locally connected compact space,
then there exists an inverse system X = {Xa, pab, A} such that each Xa is a
metric locally connected compact space, each pab is a monotone surjection and X is
homeomorphic to limX. Conversely, the inverse limit of such a system is always a
locally connected compact space.

Theorem 4. [7, Corollary 3] Let X = {Xa, pab, A} be a σ - directed inverse system
of hereditarily locally connected continua Xa. Then X = limX is hereditarily locally
connected.

2. The property of Kelley

The following definition is well known [13, p. 538 ].

Definition 1. A metric continuum X is said to have the property of Kelley provided
that given any ε >0 there exists δ = δ(ε) >0 such that if a,b∈X, d(a,b)< δ and
a∈A∈C(X), then there exists B∈C(X) such that b∈B and H(A,B)< ε.

Remark 1. Each locally connected metric continuum has the property of Kelley
[13, Example (6.11), p. 538].

In nonmetric continua we shall use the following generalization of the property of
Kelley [2].

Definition 2. A continuum X has the property of Kelley if for each a in X, each
A in C(X) such that a∈A, and each open V in C(X) containing A there exists an
open set W such that a∈W and if b∈W, then there exists a B∈C(X) such that b∈B
and B∈V.

A continuum X has the property of Kelley hereditarily provided that each one of its
subcontinua has the property of Kelley.

3. The mapping αX

Definition 3. Let X be a continuum. For each a∈X, let αX(a) = {A∈C(X), a∈A}.

If X is a metric continuum, then αX(a) is a continuum of C(X) [19, p. 292]. This
implies that we have a mapping αX : X→C 2(X).

Lemma 1. If X is a nonmetric continuum, then αX(x) is a continuum (in C(X))
for each x∈X, and there exists a mapping αX : X→C 2(X).
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Proof. By virtue of Theorems 1. and 3. there exists a σ - directed inverse system
X = {Xa, pab, A} of metric continua Xa such that X is homeomorphic to limX.
Each αXa(pa(x)) is a continuum of C(Xa) [19, p. 292]. It is clear that

c(pab)[αXb
(pb(x))] ⊆ αXa(pa(x)) (1)

since for each continuum K of Xb containing pb(x) the image pab(K) is a subcon-
tinuum of Xa which contains pa(x). Consider the inverse system C(X) = {C(Xa),
c(pab), A}. From [5, p. 465, 6.3.22.(f)] it follows that C(X) is homeomorphic to
limC(X). Now, Y = {αXa(pa(x)), c(pab)|αXb

(pb(x)), A} is an inverse system of
continua. Moreover, C = limY is a subcontinuum of limC(X) [5, Theorem 6.1.18.],
i.e. C is a subcontinuum of C(X). It remains to prove that C = αX(x). Let us
prove

C ⊆ αX(x). (2)

Each point c of C is a thread (Ca) in Y, where Ca is a subcontinuum of Xa such
that pab(Cb) = Ca, a≤b. We have again an inverse system of continua whose limit
K is a subcontinuum of X containing the point x. This means that K∈ αX(x).
Hence, (2) is proved. Arguing similarly one can prove the reverse inclusion

C ⊇ αX(x). (3)

We infer that αX(x) ∈C 2(X). Thus, we have the mapping αX : X→C 2(X). ✷

A mapping F assigning to each point y of a topological space Y a closed subset
F(y) of a topological space X is lower (upper) semicontinuous if for every open set
U⊆X the set {y: F(y)⋂U�= ∅} (the set {y: F(y)⊆U}) is open in Y ([5, p. 89,
1.7.17.], [9, p. 181]).
We infer that a mapping f : X→2X is upper semicontinuous at a point x∈X if

for every open set V (in 2X) containing f(x) there is an open set U containing x
such that f(y)⊂V, for all y∈U.
Lemma 2. The mapping αX : X→C 2(X) is upper semicontinuous at each x∈X.

Proof. Suppose that αX is not upper semicontinuous at some point a∈X.
This means that there exists a neighborhood V of αX(a) (in C(X)) such that
for each neighborhood Uµ, µ ∈M, of a there exists a point bµ ∈Uµ such that
αX(bµ)�⊆V. Hence, for each µ ∈M there exists a point Bµ ∈ αX(bµ)⊆C(X) such
that Bµ ∈C(X)\V. By compactness of C(X), the net {Bµ : µ ∈M} has a subnet
{Bµν : µν ∈M} which converge to some point B∈C(X)\V [8, p. 71, Theorem 6; p.
136, Theorem 2 ]. Let us recall that Bµ is a subcontinuum of X which contains bµ.
Since bµν ∈Bµν for each ν, and {bµ : µ ∈M} converges to a, we have a∈B. This
means that B∈ αX(a). This is impossible since B∈C(X)\V and αX(a)⊆V. ✷

The proof of the next theorem is the same as the proof of Theorem 2.2 in [19].

Theorem 5. The mapping αX : X→C 2(X) is continuous if and only if X has the
property of Kelley.

4. Confluent mappings

A mapping f : X→Y is confluent provided every component of the inverse image
f−1(C) of a continuum C⊆Y is mapped onto C. Each monotone mapping is conflu-
ent.
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In the sequel we shall frequently consider the diagram

X
f−→ Y	 αX

	 αY

C2(X)
c2(f)−→ C2(Y )

(4)

The diagram (4) commutes if and only if

f(αX(x)) = αY (f(x)).

From the continuity of f there follows the following relation.

{c(f)(A) : A ∈ αX(x)} ⊆ {B : B ∈ αY (f(x))}.

Lemma 3. The diagram (4) commutes if and only if given B∈αY (f(x)) there exists
A∈ αX(x) such that c(f)(A) = B.

Lemma 4. The diagram (4) commutes if and only if f : X→Y is a confluent map-
ping.

Proof. See the proof of [19, Theorem 4.2]. ✷

Theorem 6. [19, Theorem 4.3] Let f: X→Y be a confluent mapping. If X has the
property of Kelley, then Y has the property of Kelley.

Corollary 1. Let f: X→Y be a monotone mapping. If X has the property of Kelley,
then Y has the property of Kelley.

Corollary 2. Let f: X→Y be an open mapping. If X has the property of Kelley,
then Y has the property of Kelley.

Corollary 3. If a product space has the property of Kelley, then each factor space
has the property of Kelley.

Now we consider inverse systems of continua with the property of Kelley.

Lemma 5. [3, Corollary 4] Let X = {Xa, pab, A} be an inverse system of continua
and confluent bonding mappings. Then the projections pa, a∈A, are confluent.

Theorem 7. Let X = {Xa, pab, A} be an inverse system of continua and confluent
bonding mappings. If each Xa has the property of Kelley, then X = limX has the
property of Kelley.

Proof. By virtue of [5, Theorem 6.1.18] X = limX is a continuum. Let x be
any point of X and K any subcontinuum of X such that x∈K. Let V = <V1, V2, ...,
Vn > be any basis neighborhood of K in C(X). It remains to prove that there exists
a neighborhood W of x such that for each point y∈W there exists a continuum L
such that y∈L and L∈V in C(X). The proof is broken into several steps.
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Step 1. For every neighborhood U of x there exists an a∈A and an open set Ua

containing pa(x) = xa such that x∈p−1
a (Ua)⊂U. This follows from the definition of

the basis of X.
Step 2. For each open set W⊂X and each a∈A there exists an open set Wa ⊂Xa

such that W= ∪{p−1
a (Wa) : a∈A}. For each a∈A we define Wa= ∪{Oa : Oa to

be open in Xa and p−1
a (Oa )⊂W}. Then Wa is open in Xa. It is clear that W

⊃ ∪{p−1
a (Wa) : a∈A}. On the other hand, if x∈W, then by Step 1., there exists

an a∈A and an open set W∗
a containing pa(x) = xa such that x∈p−1

a (W∗
a)⊂W. It is

clear that W∗
a ⊂Wa. Hence x∈p−1

a (Wa). This means that W ⊂ ∪{Wa:a∈A}. From
this relation and W ⊃ ∪{p−1

a (Wa) : a∈A} we infer that W = ∪{p−1
a (Wa) : a∈ A}.

Step 3. For the neighborhood V = <V1, V2, ..., Vn > of K (in C(X)) there
exists a b∈A such that for each c∈A, c≥b, there exist open subsets V1(c), ..., Vn(c)
of Xc such that <V1(c), ..., Vn (c)> is an open set in C(Xc) containing pc(K). By
virtue of Step 2. for each set Vi, i = 1, ..., n, and each a∈A there exists an open
set Vi(a), i = 1, ..., n, such that Vi = ∪{p−1

a (Vi(a)) : a∈A}, i = 1, ..., n. The
family {p−1

a (Vi(a))∩K : a∈A, i = 1, ..., n} is an open cover of K. By virtue of the
compactness of K there exists a finite subcover {p−1

a1
(Vi(a1)), ..., p−1

ak
(Vi(ak))} of

{p−1
a (Vi(a))∩K : a∈A, i = 1, ..., n}. There exists b≥ai, i = 1, ..., n, since A is

directed. Now, for each c≥b we have a finite family of sets Vi(c), i = 1, ..., n, such
that K⊂ ∪{p−1

c (Vi(c)) : i = 1, ..., n}. It is clear that <V1(c), ..., Vn(c)> is an
open set in C(Xc) containing pc(K). The proof of this Step is completed.

Step 4. The space X = limX has the property of Kelley. By virtue of Steps 1 - 3
one can obtain a d∈A and open sets Vi(d), i = 1, ..., n, such that K⊂ ∪{p−1

d (Vi(d))
: i = 1, ..., n}= V. For the continuum Kd = pd(K) which contains pd(x) = xd and
for <V 1(d), ..., Vn(d)> there exists a neighborhood Wd of xd such that if yd ∈Wd,
then there exists a continuum Ld containing yd and such that Ld ∈<V 1(c), ...,
Vn(c)> (since Xd has the property of Kelley). Let W = p−1

d (Wd). It is clear that
W is a neighborhood of x. If y is any point of W, then pd(y) = yd is in Wd. This
means that there exists a continuum Ld containing yd and such that Ld ∈<V 1(c),
..., Vn(c)>. It is clear that y∈p−1

d (Ld). Let Q be a component of p−1
d (Ld) which

contains y. By Theorem 5. it follows pd(Q) = Ld. Let us prove that Q is in V (in
C(X)). Suppose that Q �∈V (in C(X)). Then there exists p−1

d (Vi(d)) in {p−1
d (Vi(d))

: i = 1, ..., n} such that p−1
d (Vi(d))

⋂
Q = ∅. Hence Vi(d)

⋂
pd(Q) = ∅. This is

impossible since pd(Q) = Ld, Ld ⊂ ∪{Vi(d) : i = 1, ..., n} and L
⋂
Vi(d)�= ∅, i = 1,

..., n. Finally, the required neighborhood W of x is defined. ✷

Remark 2. For another proof of Theorem7. for inverse sequence of metric con-
tinua see [1].

We say that a mapping f : X→Y is hereditarily confluent (monotone) [11, p. 17] if
f|K is confluent (monotone) for every subcontinuum K of X.

Theorem 8. Let X = {Xa, pab, A} be an inverse system of continua and hereditar-
ily confluent bonding mappings. If each Xa has the property of Kelley hereditarily,
then X = limX has the property of Kelley hereditarily.

Proof. Let K be any subcontinuum of X. For each a∈A we have the continuum
Ka = pa(K). Each mapping qab = pab|Kb is confluent. Now we have the inverse
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system K = {Ka, qab, A} of continua and confluent bonding mappings. Using
Theorem 7. we complete the proof. ✷

Lemma 6. If X is a continuum which has the property of Kelley hereditarily and
if f : X→Y is confluent, then Y has the property of Kelley hereditarily.

Proof. Let K be any subcontinuum of Y. Then L = f−1(K) is a subcontinuum of
X which has the property of Kelley since X is hereditarily of Kelley. The restriction
g = f|L is confluent g:L→K. Applying Theorem 6. we infer that K has the property
of Kelley. The proof is completed.

Theorem 9. Each locally connected continuum has the property of Kelley.

Proof. If X is a metric locally connected continuum, then it has the property of
Kelley [19]. Suppose that X is a nonmetric locally connected continuum. By virtue
of Theorems 1. and 3. there exists a σ - directed inverse system X = {Xa, pab, A} of
metric spaces Xa such that X is homeomorphic to limX and the bonding mappings
pab are monotone surjection. Each Xa has the property of Kelley since each Xa is a
locally connected metric continuum (as a continuous image of the locally connected
continuum X). By virtue of Theorem 7. X has the property of Kelley. ✷

Any metric continuum has the property of Kelley at each point of a dense Gδ-set.
It is natural to ask the following question.
QUESTION. Is it true that each nonmetric continuum has the property of Kelley
at some point?
A continuum X is said to be hereditarily locally connected if each subcontinuum

of X is locally connected.

Theorem 10. (see [6]) A metric continuum X is hereditarily locally connected
if and only if X has the property of Kelly hereditarily and is hereditarily arcwise
connected.

Now we shall prove the following generalization of this Theorem.

Theorem 11. A locally connected nonmetric continuum X is hereditarily locally
connected if and only if X has the property of Kelley hereditarily and is hereditarily
arcwise connected.

Proof. a) Let X be a locally connected continuum X which is hereditarily Kelley
and hereditarily arcwise connected, i.e. for every subcontinuum K of X and for every
pair x,y of points of K there exists an arc L (possibly nonmetric) such that x and y
are end-points of L and L⊆K. Let us prove that X is hereditarily locally connected.
By virtue of Theorems 1. and 3. there exists a σ - directed inverse system X =
{Xa, pab, A} such that each Xa is a metric locally connected continuum, each
pab is monotone and X is homeomorphic to limX. Let us prove that each Xa is
hereditarily locally connected. By virtue of Theorem 10. it suffices to prove that
Xa is hereditarily of Kelley and hereditarily arcwise connected. Let us prove that
Xa is hereditarily of Kelley. It is known that the projections pa are monotone and,
consequently, confluent. From Lemma6. it follows that Xa is hereditarily of Kelley.
Let us prove that Xa is hereditarily arcwise connected. Let Ka be a subcontinuum
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of Xa. Let xa,ya be a pair of the points of Ka. Now p−1
a (Ka) = K is a subcontinuum

of X since pa is monotone. There exists a pair x,y of the points in K such that xa =
pa(x) and ya =pa(y). There exists an arc L such that x,y∈L and L⊂K. It is clear
that xa,ya ∈ pa(L) ⊂Ka. Moreover, pa(L) is arcwise connected as a continuous
image of the arc L [17, Theorem 9.]. Hence Xa is hereditarily locally connected. By
virtue of Theorem 4., X is hereditarily locally connected.

b) Let X be hereditarily locally connected. Now, X is hereditarily arcwise
connected since X is a continuous image of an arc (see [15] and [17] ). In order to
complete the proof it remains to prove that X is hereditarily of Kelley. Let K be
any subcontinuum of X. Clearly K is hereditarily locally connected. By Theorem 9.
we infer that K has the property of Kelley. ✷

Theorem 12. Let X = {Xa, pab, A} be an inverse system of hereditarily locally
connected continua and hereditarily confluent bonding mappings. Then X = limX
is hereditarily locally connected if and only if X is hereditarily arcwise connected.

Proof. If X is hereditarily locally connected, then X is hereditarily arcwise
connected as a continuous image of an arc (see [15] and [17]). Conversely, if X is
hereditarily arcwise connected, then X is hereditarily locally connected since it is
hereditarily of Kelley (Theorem 11.). ✷

5. The property of Kelley and smoothness of continua

A continuous mapping f : X→Y is said to be monotone relative to a point p∈X if for
each subcontinuum Q of Y such that f(p)∈Q the inverse image f−1(Q) is connected
[1, p. 184].

Theorem 13. [3, Theorem 1.] Let X = {Xλ, fλµ, Λ} be an inverse system with the
limit X. If there exists a thread p = {pλ} such that for each λ ∈ Λ with α ≤ λ the
bonding mapping fαλ is monotone relative to pλ, then the projection πα is monotone
relative to p.

We say that a Hausdorff continuum X is smooth at the point p∈X [16](for metric
continua [10, p. 81]) if for each convergent net {xn, n∈D} of points of X and for
each subcontinuum K of X such that p,x∈K, where x = lim{xn : n ∈ D}, there
exists a net {Ki,i∈E} of subcontinua of X such that each Ki contains p and some
xn and LimKn = K.

Theorem 14. [16, Proposition1.] Let p be an arbitrary point of a continuum
X.The following are equivalent:

(i) X is smooth at p,
(ii) for each subcontinuum N of X such that p∈N and for each open set V which

contains N there exists an open connected set K such that N⊆K⊆V.

A continuum X is locally connected at the point p if X is smooth at the point p.

Lemma 7. [10, Corollary3.4] A continuum X is locally connected if and only if it
is smooth at each of its points.

The proof of the following theorem is similar to the proof of Theorem 7.
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Theorem 15. Let X = {Xa, pab, A} be an inverse system of continua and monotone
projections pa : limX→Xa. If each Xa is smooth, then X = limX is smooth.

Proof. A straightforward modification of the proof of Theorem 7. using (ii) of
Theorem 14. instead of the definition of the property of Kelley. ✷

Let p be a fixed point of a continuum X. For each point x∈X consider the family
{K : K∈C(X), p,x∈K} of all subcontinua K of X containing both p and x [1, p.
185]. We define

F [X, p](x) = {K : K ∈ C(X), p, x ∈ K}.
If X is a metric continuum, then for each x∈X F[X,p](x) is a compact and arcwise
connected subset of C(X), i.e. F[X,p](x) is an element of C 2(X) [1, p. 185]. If X
is a nonmetric continuum, then (as in the proof of Theorem 1.) one can prove that
F[X,p](x) is a continuum, i.e. F[X,p](x) is an element of C 2(X) Thus, we have the
mapping F[X,p](x) : X→C 2(X).

Lemma 8. The mapping F[X,p] is continuous if and only if the continuum X is
smooth at the point p.

Proof. The proof is the same as the proof of Proposition 2. of [1]. ✷

Lemma 9. Let a continuous surjection f : X→Y and points p∈X and q∈Y with q
= f(p) be given. If F1 = F[X,p] and F2 = F[Y,q], then the diagram

X
f−→ Y	 F1

	 F2

C2(X)
c2(f)−→ C2(Y )

(5)

commutes if and only if f is monotone relative to p.

Proof. The proof is the same as the proof of Proposition 3. of [1]. ✷

The following Theorem for inverse sequences of metric continua was proved in
the paper [1].

Theorem 16. [1, Theorem 1.] Let {X i,f i}∞i=1 be an inverse sequence such that,
for each i=1,2,... (a) the continuum Xi is smooth at a point pi;(b) f i(pi+1)=pi;(c)
f i is monotone relative to pi+1.Then the inverse limit continuum X = lim{X i,f i}
is smooth at the thread p={pi}∞i=1.

The proof given there works in the general situation. Hence, we have the following
theorem.

Theorem 17. Let X = {Xa,fab,A} be an inverse system such that, for each a∈A:

1. The continuum Xa is smooth at a point pa;

2. p = (pa:a∈A) is a thread;

3. fab is monotone at pb.
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Then the inverse limit X = limX is smooth at the thread p.

A topological space X is said to be rim-metrizable if X admits a basis of open sets
whose boundaries are metrizable.

Theorem 18. Let X be a rim-metrizable continuum. There exists an inverse sys-
tem X = {Xa, pab, A} such that Xa, a∈A, are metric continua, pab are monotone
surjections and X is homeomorphic to limX.

Proof. By Theorem 2. there exists an inverse systemY = {Ya, qab, A} of metric
spaces Ya such that X is homeomorphic to limY. Let qa : X→Ya be the natural
projection, a∈A. By the monotone-light factorization of qa we obtain a space Xa,
a monotone mapping q ′

a : X→Xa and a light mapping q ′′
a : Xa→Ya such that qa

= q ′′
a q ′

a. Moreover, by Lemma 8. of [12], for each a,b∈A, there exists a monotone
mapping pab : Xb →Xa. Hence, we have an inverse system X = {Xa, pab, A}. It is
readily seen that X is homeomorphic to limX. Moreover, by Theorem 3.2 of [18] it
follows that Xa is rim-metrizable. Finally, by Theorem 1.2. of [18] we have w(Xa)
= w(Ya) = ℵ0, i.e. Xa is a metric continuum. ✷

A dendroid is an arcwise connected and hereditarily unicoherent continuum. If
a metric dendroid has the property of Kelley, then it is smooth [4, Corollary 5.].

Theorem 19. If a rim-metrizable dendroid X has the property of Kelley, then X
is smooth.

Proof. By Theorem 18. there exists a σ-directed inverse system X = {Xa, pab,
A} of metric continua Xa and monotone bonding mappings pab such that X is
homeomorphic to limX. Every Xa is hereditarily unicoherent since pab are monotone
surjections. Moreover, every Xa is arcwise connected. Namely, let xa,ya be a pair
of points of Xa. There exists a pair x,y of points in X such that xa = pa(x) and ya

=pa(y). There exists an arc L such that x,y∈L and L⊂X. It is clear that xa,ya ∈
pa(L) ⊂Xa. Moreover, pa(L) is arcwise connected as a continuous image of the arc
L [17, Theorem 9.]. Hence Xa is arcwise connected. By Theorem 6. Xa has the
property of Kelley. From [4, Corollary 5.] it follows that every Xa is smooth. Using
Theorem 17. we infer that X is smooth. ✷

From the proof of Theorem 19. the following theorem follows.

Theorem 20. Every rim-metrizable nonmetric dendroid is homeomorphic to the
inverse limit of a σ-directed inverse system of metric dendroids.

QUESTION 2. Is it true that every dendroid with the property of Kelley is
smooth?
QUESTION 3. Is every nonmetric dendroid homeomorphic to the limit of an
inverse system of metric dendroids (to the limit of a σ-directed inverse system of
metric dendroids)?
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[7] G.R.Gordh, Jr., S.Mardešić, Characterizing local connectedness in in-
verse limits, Pacific Journal of Mathematics 58(1975), 411–417.

[8] J. L.Kelley, General Topology, D. van Nostrand company, New York, 1955.

[9] K.Kuratowski, Topologija I, Mir, Moskva, 1966.
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