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About the kernel of the augmentation of finitely
generated Z-modules

Marc Conrad∗

Abstract. Let M be a free finitely generated Z-module with basis
B and ∆M the kernel of the homomorphism M → Z which maps B to
1. A basis of ∆M can be easily constructed from the basis B of M . Let
further R be a submodule of M such that N = M/R is free. The subject
of investigation is the module ∆N = (∆M + R)/R. We compute the
index [N : ∆N ] and construct bases of ∆N with the help of a basis of
N . Finally, the results are applied to a special class of modules which is
connected with the group of cyclotomic units.
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1. Introduction

Well known in the context of group rings is the augmentation of a group ring element
which is the homomorphism obtained by mapping the group elements to 1. The
augmentation defines the augmentation ideal of the group ring which denotes the
kernel of the augmentation [3]. Similarly, in a free Z-module M each basis B defines
a homomorphism aug : M → Z,

∑
b∈B αbb �→ ∑

b∈B αb. We denote the kernel of
aug by ∆M . We consider further the module N = M/R where R is a submodule
of M such that N is free, and let ∆N = (∆M +R)/R. In the following we assume
that the module M is finitely generated. It is easy to see that the index [M : ∆M ]
is infinite. In Theorem 1. we identify the index [N : ∆N ] as the greatest common
divisor of the augmentation of the elements of R.

It can be seen straightforwardly that for a fixed b0 ∈ B the set

B0 = {b− b0; b ∈ B, b �= b0} (1)

is a basis of ∆M . A similar result is obtained for ∆N in Theorem 2. In Section 4.
we will apply this result to a class of modules which is connected to the group of
cyclotomic units. This group plays an important role in the theory of cyclotomic
fields [4].
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2. The index of ∆N

We use in the following the notation of the introduction.

Theorem 1. We have [N : ∆N ] = gcd aug(R) where the greatest common divisor
of {0} is defined as ∞.

Proof. Let b0 ∈ B. Because b ≡ b0 mod ∆M for all b ∈ B we see that N/∆N
is cyclic and generated by b0. The index is the smallest positive number such that
mb0 ∈ R+∆M . Note that aug(mb0) = m for m ∈ Z.

In the case R ⊆ ∆M we have augR = {0}. From mb0 �∈ ∆M for all m �= 0 we
see [N : ∆N ] = ∞ as it was claimed in the Theorem.

For R �⊆ ∆M there exists an element r ∈ R with minimal positive augmentation
ρ. Noting that ρb0 ≡ r mod ∆M , it follows [N : ∆N ] ≤ ρ.

On the other hand, if we have k ∈ Z and r′ ∈ R such that kb0 ≡ r′ mod ∆M , it
follows ρ ≤ k = aug(r′) because of the minimality of ρ, and we obtain [N : ∆N ] = ρ.

It remains to show that ρ = gcd aug(R). Suppose there exists r′ ∈ R such
that ρ is not a divisor of ρ′ = aug(r′). Then by computing δ = gcd(ρ, ρ′) we find
numbers α, β ∈ Z with δ = αρ+ βρ′. But αr+ βr′ ∈ R is an element with positive
augmentation δ < ρ which is a contradiction to the minimality of ρ. ✷

We show in the next lemma how the index [N : ∆N ] can be explicitly computed.

Lemma 1. If E ⊆ R generates R, then gcd aug(R) = gcd aug(E).

Proof. For [N : ∆N ] = ∞ there is nothing to show. In the case when ρ = [N :
∆N ] < ∞, the claim follows from the existence of r ∈ R and αe ∈ Z such that
ρ = aug(r) =

∑
e∈E αe aug(e). With this we obtain

gcd aug(R) = ρ = gcd(aug(E) ∪ {ρ}) = gcd aug(E). (2)

✷

Remark 1. Similarly to ∆M , we can identify ∆N as a kernel of a homomor-
phism. With k = [N : ∆N ] for a finite and k = 0 for an infinite index we have a
homomorphism

aug : N → Z/kZ, a+R �→ aug(a) + kZ (3)

and ∆N = kerN aug.

3. Construction of a basis of ∆N

In the following, let C ⊆ M induce a basis of N , i. e. let {c+R; c ∈ C} be a basis
of N . We assume that there exist γ ∈ Z such that aug(c) = γ for all c ∈ C. Note
that this is no restriction to the module N . In Algorithm1 we will show how such
a basis can be constructed from an arbitrary basis of N .

Let ρ = [N : ∆N ]. In the case ρ = ∞ it is easy to see that similarly to (1) for
a fixed c0 ∈ C, the set C0 = {c − c0; c ∈ C, c �= c0} is a basis of ∆N . We assume
in the following ρ < ∞ and show in the next Lemma and the subsequent Theorem
how to construct bases of ∆N in this case.
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Lemma 2. Let c1 ∈ C. Then

C1 = {c− c1; c ∈ C, c �= c1} ∪ {ρc1} (4)

induces a basis of ∆N .

Proof. We show that the elements b−b0 with b, b0 ∈ B are modulo R generated
by C1. Because C is a basis of N , we have αc, β ∈ Z such that

b− b0 = r + βc1 +
∑

c∈C, c �=c1

αc(c− c1). (5)

The application of aug to (5) and reducing modulo ρ gives βγ ≡ 0 mod ρ. We show
in the rest of the proof that gcd(γ, ρ) = 1. Then we have ρ|β and the claim of the
Lemma follows.

We can write any b ∈ B as b = c + r with c ∈ 〈C〉 and r ∈ R. This gives
1 = aug(c) + aug(r) = νγ + µρ with ν, µ ∈ Z which leads to gcd(γ, ρ) = 1. ✷

Compared with the basis B0 of ∆M in (1), the basis C1 from (4) has the extra
element ρc1 added to the expected elements c − c1. In the next theorem we give a
basis which looks more similar to B0.

Theorem 2. Let c0 ≡ c′ mod R such that c′ ∈ 〈C〉 and aug(c′) = (1− ρ)γ. Then

C0 = {c− c0; c ∈ C} (6)

induces a basis of ∆N .

Proof. Let c1 be as in Lemma2. and C′ = {c − c1; c ∈ C, c �= c1} such that
C1 = C′ ∪ {ρc1} induces a basis of ∆N . Because of c1 − c′ ≡ ρc1 mod 〈C′〉 we
can replace ρc1 by c1 − c′ in C1. By replacing the other elements of C1 using the
relation c − c′ = c− c1 + (c1 − c′) for c ∈ C we obtain {c− c′; c ∈ C} as a basis of
∆N . With c0 ≡ c′ mod R we get the claim. ✷

Remark 2. If we choose c0 = c′ + γr with r ∈ R such that aug(r) = ρ we obtain
aug(c0) = γ and therefore C0 ⊆ ∆M . So, with C0, we directly obtain a basis of
∆M/(∆M ∩R) (which is of course isomorphic to ∆N).

In Lemma2. and Theorem 2. we assume that there is a basis C ⊆ M of N with
aug(c) = γ for all c ∈ C. We give here an Euclidean-like algorithm which shows
how to construct such a basis from an arbitrary basis.

Algorithm 1 . Let C ⊆ M induce a basis of N . The algorithm leads to aug(c) = γ
for all c ∈ C by successively replacing elements of C.

If aug(c) = 0 for all c ∈ C, there remains nothing to be done. Otherwise, we
choose first c′ with aug(c′) �= 0 and replace each c ∈ C \ {c′} by c+ λc′ with λ ∈ Z
such that aug(c) > 0. If aug(c′) < 0, we also have to replace c′ by −c′. After that
we perform the following steps.

1. If all elements of C have the same augmentation, the algorithm is finished.

2. Pick c, c′ ∈ C such that aug(c) < aug(c′) and replace c′ by c′ − c.

3. Go to Step 1.

The algorithm terminates because
∑

c∈C aug(c) ∈ N decreases in every run of
Step 2.
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4. A special class of modules

For a finite set A we denote by ΣA the sum
∑

a∈A a in the free module 〈A〉 gen-
erated by A. For i = 1, . . . , r let Ai be a finite set with an involution σ operating
nontrivially on each element. So we have sets Hi such that Bi = Hi ∪ σHi and
Hi ∩ σHi = ∅ for i = 1, . . . , r. We define further the module

Z = 〈B1〉/〈ΣB1〉 ⊗ · · · ⊗ 〈Br〉/〈ΣBr〉. (7)

The involution on Bi defines an involution on Z and we may interpret Z also as a
Z[σ]-module. The subject of investigation is the module N = Z/ kerZ(σ + 1).

Remark 3. The module N is directly connected with the group of cyclotomic units
C(n). Let εn be a primitive nth root of unity. Then C(n) is defined as the multi-
plicative subgroup of D(n) which are units of Z[εn]. The group D(n) is generated by
the elements 1 − εa

n with 1 ≤ a < n modulo torsion. With Ĉ(n) = C(n)/L(n) where
L(n) =

∏
d|n, d �=n C(d) we have for n = p1 · · · pr an odd, square free and not a prime

isomorphism N ∼= Ĉ(n) when we choose Bi = {1, . . . , pi−1}. For general n we have
similar isomorphisms (see [1]).

Let M = 〈B1 × · · · ×Br〉 and let S be the module generated by the sums

si(a1, . . . , ar) =
∑
b∈Bi

(a1, . . . , ai−1, b, ai+1, . . . , ar), i = 1, . . . , r (8)

where aj ∈ Bj for j = 1, . . . , r. By [2] we have then for r even

N ∼= M/(S + (1− σ)M) (9)

and for r odd
N ∼= M/(S + (1 − σ)M + 〈e〉) (10)

with e = Σ(H1 × · · · ×Hr).

Theorem 3. For i = 1, . . . , r let βi = |Bi|, the number of elements of Bi, and
β = gcd(β1, . . . , βr). Then we have for ρ = [N : ∆N ] that

ρ =




β/2, if r = 1 or
r odd and βi ≡ 2 mod 4 for i = 1, . . . , r,

β, else.

Proof. The claim follows for r even and r = 1 from Lemma1. and the isomor-
phisms (9) and (10). For r odd we additionally use aug(e) =

∏r
i=1(βi/2). ✷

A basis of N can be constructed with weak σ-bases according to [1]. We get the
following result.

Lemma 3. For each i = 1, . . . , r we fix hi ∈ Hi. Let H�
i = Hi \ {hi} and A�

i =
Ai \ {hi}. Then we obtain C = F 0 ∪ F+ as a basis of N where

F 0 =
r⋃

i=1

{h1} × · · · × {hi−1} ×H�
i ×B�

i+1 × · · · ×B�
r (11)
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and

F+ =
{ ∅, for r odd,

{h1} × · · · × {hr}, for r even. (12)

We see here that the basis C can be chosen as a subset of B = B1×· · ·×Br. So,
all elements of C have augmentation 1, and we may apply Theorem 2. with γ = 1
and c0 = (1 − ρ)c, where c is any element of C. This leads to a basis of ∆N as in
(6).

However, we might ask a stronger question: Can we find a basis C ⊆ B of N
such that we can choose c0 ∈ B? Up to now there is no general answer to this.
We will discuss in the rest of this section some special cases where the answer is
affirmative.

In the following, we call a basis C0 of ∆N which has the form C0 = {c− c0; c ∈
C} with C ⊆ B and c0 ∈ B a handsome basis of ∆N .

Theorem 4. If there exists a j ∈ {1, . . . , r} such that βj = ρ, then ∆N has a
handsome basis.

Proof. In the case F0 �= ∅, we rearrange the sets Bi such that j = r. Let
(a1, . . . , ar−1, ar) be any element of F 0. Then (a1, . . . , ar−1, b) ∈ F 0 for b �= hr. So,
we may choose in Theorem 2. c′ = −∑

b∈B�(a1, . . . , ar−1, b), and the claim follows
with c0 = (a1, . . . , ar−1, hr). In the case F0 = ∅, we take c0 = (h1, . . . , hr−1, σhr).
✷

The converse of Theorem 2. is not true. Even if a basis of the form C = F 0∪F+

as in Lemma 3. cannot be used for the construction of a handsome basis we may
have more success when starting with a different basis. We will give an example in
the next Lemma.

Lemma 4. Let B1 = {a, b, σa, σb} and B2 = {a, b, c, σa, σb, σc} be two sets of four
respectively six elements with σ acting nontrivially on B1 and B2. The module N is
as in (9) given as the free module M generated over B = B1×B2 modulo (1−σ)M
and the relations described in (8). With

C = {(a, b), (b, c), (σb, a), (σb, b), (σb, c), (a, σa), (a, σb), (σa, c)}
and c0 = (a, a) we obtain {c− c0; c ∈ C} as a basis of ∆N .

Proof. We show first that C is a basis of N . By Lemma3. we obtain rankN =
8 = |C| and it is sufficient to show that C generates N . Because of c ≡ σc mod (1−
σ)M we see that σC is generated by C. The elements of B \ (C ∪ σC) can then be
generated by C ∪ σC directly by relations of S.

Theorem 1. gives [N : ∆N ] = 2. We will now apply Theorem 2. in order to
construct a basis of ∆N . Let c′ = c0 + r with

r =
∑

x∈B1

(x, c)−
∑

y∈B2

(a, y)− (1− σ)(σa, c). (13)

Because c′ satisfies the conditions in Theorem 2. the claim follows. ✷

Without going into details, we note that a construction as in Lemma4. can be
generalized to more complicated cases. However, the problem of giving a general
algorithm for the construction of a handsome basis remains open.
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