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Summary 

The theory of bending of thin-walled beams of open cross-sections with the influence of 
shear, based on the classical Vlasov theory of thin-walled beams of open cross-sections, is 
developed for cross-sections with one and two axes of symmetry. It is proved that the beam is 
subjected to bending with the influence of shear caused by forces in the plane of symmetry 
and in addition to tension/compression due to shear in the case of cross-sections with one axis 
of symmetry, and to bending with the influence of shear caused by forces in the plane of 
symmetry in the case of two axes of symmetry. A new shear factor with respect to bending 
and tension/compression is given. The principal cross-section axes are defined in accordance 
with the classical theory of thin-walled beams of open sections. Illustrative examples are 
given, as well as comparisons with the finite element method. 

Key words: bending of thin-walled beams, influence of shear, open sections, single and 
 double symmetrical sections, analytic, FEM 

1. Introduction 

The Euler-Bernoulli beam theory as well as the Vlasov thin-walled beam theory [1] do 
not take into account shear deformations due to shear forces. The shear effect, as well as 
Poisson’s effect, can be included by methods of theory of elasticity [2,3], but in that case the 
problem is no longer one-dimensional.  

Thus, approximate methods to include the shear effect are developed; particularly in the 
analyses of displacements [4], by deriving an adequate stiffness matrix [5,6]. The concept of 
shear factors, first introduced by Timoshenko [7,8], was used as the ratio of the maximum 
shear stress to the average shear stress over a cross-section. Recent approaches to the problem 
are based on geometric assumptions [9-17] or shear energy relations [5,6]. Numerical 
examples comparing results obtained by different approaches can be found in [18-20]. 

In this paper, approximate analytical solutions for stresses along the beam cross-section 
contour as well as for stresses and displacements along the beam length are given. Beams 
with cross-sections with one and two axes of symmetry are considered.  
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Poisson’s effect is ignored. Its influence on both the stresses and the displacements in 
the case of common open cross-sections is small, even for extremely low ratios of beam 
length to cross section contour dimensions [5].  The warping effect, defined by the “non-
uniform warping bending theory” [21], is also ignored. This effect remains very localised 
close to the clamped ends, where by the non-uniform warping theories warping due to shear is 
restricted. 

2. Strains and displacements 

The displacement of an arbitrary point ( , )S x s  at the middle line in the case of bending 
of thin-walled beams of open sections with one axis of symmetry can be expressed as 

0

d
d

d

s

S x
wu z u s
x      , (1) 

where ( )w w x  is the displacement in the z-direction, i.e. the displacement of the cross-
section middle line as a rigid line in the plane of symmetry, ( )z z s  is the rectangular 
coordinate, ( )u u x  is the displacement of the cross-section middle line as a rigid line in the 

x-direction, ( , )x x x s    is the shear strain in the middle surface, s is the curvilinear 

coordinate of the middle line,   is the tangential axis on the curvilinear coordinate s; Oxyz is 
the orthogonal coordinate system, where the z-axis is the axis of symmetry (Fig. 1). 

Eq. (1) may be expressed as 

0
d

s

S xu z u s     ,  (2) 

where d / dw x    is the angular displacement of the middle line as rigid line with respect to 
the y-axis, orthogonal to the z-axis. 

It is assumed that the middle line rotates with respect to the y-axis as rigid line, expressed  by the first 
member of Eq. (2), as in the case of the ordinary theory of bending.,  In addition, it is assumed that the middle 
line is displaced due to shear, expressed by the second and third members of Eq. (2)  . 

 

   
 Fig. 1  Cross-section middle-line Fig. 2  The equilibrium of the element of the wall 

The displacements can be separated as follows: 

b aw w w  ,     au u , (3) 

where ( )b bw w x  is the displacement of the cross-sections as plane sections in the z-

direction, as in the case of the ordinary theory of bending, ( )a aw w x  is additional 

displacement due to shear in the z-direction, ( )a au u x  is the additional displacement due to 

shear in the x-direction.  
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Then, 

b a    ,    d db bw x   ,    d da aw x   . (4) 

The strain in the beam longitudinal direction may then be expressed as 

2

2 0

d d
d

d d

s x
x

u w uz s
x x x x





    
  . (5) 

3. Stresses and displacement 

Hooke’s law may be simplified as 

x xE       x xG   , (6) 

where E is the modulus of elasticity and G is the shear modulus.  

Thus, 
2

2 0

d d
d

d d

s x
x

w u EE z E s
x x G x





   

 . (7) 

From the equilibrium of a differential portion of the beam wall (Fig. 2), it may be 
written 

0

( )1
d ( )

s x
x

t s f x
t x

       ,     M(M) ( ,M) ( )xf t x T x   , (8) 

where ( )t t s  is the wall thickness and M is the starting point of the curvilinear coordinate s. 

If .x x const   , referring to (7), one has 

3 2

3 2

1 d d
( ) ( )

d dx M y
w uT E S s A s

t x x
  

    
  

, 
0

( ) d
s

zS s y A  , 
0

( ) d
s

A s A  , d dA t s . (9) 

Eq. (9) may be rewritten as  

3 2

3 2

d d

d dx y
E w uS A
t x x   

   
 

, dy s
S z A



   ,  d
s

A A


   ,  d dA t s  ,  d ds s   ;(10) 

where ( )y yS S s  is the moment of the cut-off portion of area with respect to the y-axis, 

( )A A s  is the cut-off portion of the beam wall area with respect to the y-axis, s  is the 

curvilinear coordinate of the cut-off portion of the beam wall area, from the free edge, i.e. 
where 0x  . 

It is assumed that the normal stress given by Eq. (7) and the shear stress given by Eqs. 
(9) and (10) are constant across the wall thickness. 

4. Equilibrium equations 

It is assumed that the beam loads are reduced to loads ( )z zq q x  in the beam plane of 

symmetry  

dz zL
q p s  , (11) 
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where ( , )z zp p x s are the surface loads with respect to the z-axis and L is the cross-section 

middle line length. 

For a portion of the beam wall, the following equilibrium equations can be written 

 
d d 0x

x
L

t
F x s

x


 
  ,  

 
sin d d d 0

x
z z

L

t
F x s q x

x





  
  . (12) 

Eqs. (12) can be rewritten as 

 
d d 0x

L

t
x s

x



 ,     

 
d 0

x
z

L

t
z q

x


 
 ,    

d
sin

d

z
s

  . (13) 

By integrating by parts one has 

 
d d 0x

L

t
x s

x



 ,     

   2

1

d 0

e
x x

z
Le

t t
z z s q

x s x
    

   
    

  (14) 

where 1e and 2e  are the boundaries, where 0x  . 

Thus, 

d 0x

L

A
x



 ,      

d 0
x

z
L

t
z s q

x s
 

  
   

 , (15) 

By substituting Eqs. (7) and (9) one has  

3 2

3 2

d d
0

d d
y

w uES EA
x x

   ,     
4 3

4 3

d d

d d
y y z

w uEI ES q
x x

  , (16) 

where 

d
A

A A  ,     dy
A

S z A  ,     2dy A
I z A  , (17) 

If y is the centroid coordinate, when 0yS  , Eqs. (16) take the following simple form: 

2

2

d
0

d

u
x

 ,     
4

4

d

dy z
wEI q

x
 . (18) 

5. Internal forces and stresses 

Integration of the shear stress components x  over the cross-sections gives 

s in dx z
A

A Q   , (19) 

where ( )z zQ Q x  is the shear force with respect to the z-axis. 

Substitution of Eq. (10) into Eq. (18) gives 

3

3

d
0

d

u
x

 ,     
3

3

d

dz y
wQ EI

x
  , (20) 
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where 

sin d sin d dA t s t z   ,  d d 0yL A
A z z A S     , 2d dy yL A

S z z A I    . 

Referring to  Eqs. (18) and (20), one has 

d

d
z

z
Q q
x
  . (21) 

Thus, by substituting Eqs.(20) into (10), the shear stress component x is 

z y
x

y

Q S
I t



 . (22) 

Integration of the normal stress over the cross-section gives 

dy xA
M z A  ,     

d 0xA
A  , (23) 

where ( )y yM M x  is the bending moment with respect to the y-axis. 

By substituting Eq.(7) into Eqs. (23), the following equation can be obtained: 

2

2

d

d
z

y y y
wM EI M
x

   ,     
d

0
d

zuEA N
x
  , (24) 

where  

0
d d

s xz
y A

EM z A s
G x


 

   ,     
0

d d
s xz

A

EN A s
G x


 

  , (25) 

i.e. referring to Eq. (22) 

0
d d

s yz z
y A

y

SEqM z A s
GI t



   ,     
0

d d
s yz z

A
y

SEqN A s
GI t



   , (26) 

i.e.  

2

dyz z
y A

y

SEqM A
GI t

 
   

 
 ,     dyz z

L
y

A SEqN s
GI t

 

   (27) 

Referring to Eqs. (20) and (24), the following equations can be written: 

3

3

d dd
0

d d d

z
y y

y z

M MwEI Q
x x x

     ,     
2

2

dd
0

d d

zNuEA
x x

  , (28) 

and according to Eq. (18) 

24

4 2

dd d

d d d
y z

y z

Mw QEI q
x x x

     ,     
3

3

d
0

d

u
x

 , (29) 

It is assumed that zq const ; if zq const , Eqs. (29) give only an approximate solution 

to the problem.  
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The normal stress given by Eq. (7), referring to Eqs. (22) and (24), can be expressed as 

0
d

z z sy y yz
x

y y y

M M SN E qz z s
I I A G I t




      . (30) 

The internal forces given by Eq. (27) can also be written as 

yz
y zz z

EI
M q

GA
 ,     z

s xz z
EN L q
G

 , (31) 

where 

2

2
dy

zz A
y

SA A
I t


 

   
 

 ,     2

1
dy

xz A
y s

A S
A

I L t


 

   (32) 

are the shear factors with respect to the w -displacements and to the u-displacements during 
the w -displacements, respectively; sL is an arbitrary length of the middle line. 

Hence, the normal stress given by (30) can also be written as 

0
d

sy yxzzz
x z s z z

y y

M SEE Ez q z L q q s
I GA GA GI t




     . (33) 

6. Differential equations with separated displacements 

Eqs. (24), according to Eqs. (27) and (32), can be expressed as 
2

2

d

d
y zz

z
y

Mw q
x EI GA


   ,     

d

d
s xz

z
Lu q

x GA


 . (34) 

Eqs. (34), referring to Eqs. (3), can be separated as 

2

2

d

d
yb

y

Mw
EIx

  , (35) 

and 

2

2

d

d
a zz

z
w q

GAx


  ,     
dd

d d
a s xz

z
u Lu q

x x GA


  . (36) 

Integration of Eqs. (36), taking into account Eq. (21), gives 

d

d
a z zz

a
w Q
x GA

   ,     z s xz
a

Q Lu
GA


   (37) 

where the integration constants are ignored; it is assumed that the angular displacement 

a and additional linear displacement au do not depend on the boundary conditions. 

Eq. (35) is the well known equation of the classical theory of bending of thin-walled 
beams, where 

3

3

dd

dd
yb

y z
MwEI Q
xx

    , 
24

4 2

dd d

dd d
yb z

y z
Mw QEI q

xx x
     , 

d

d
b

b
w
x

  . (38) 
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Eqs. (36) and (37) take into account the displacement due to shear. The integration of 
the first equation of Eqs. (36) gives  

zz
a y ww M C

GA


  , (39) 

where wC  is the integration constant with respect to the w-displacements. 

Eqs. (39) can also be written as 

y
a w

s

M
w C

GA
  , (40) 

where s zzA A   is the shear area with respect to the w-displacements.  

The normal stress may then be written as 

0
d

sy ys xz
x z z z

y s y

M SELE Ey q z q q s
I GA GA GI t




     . (41) 

7. Shear strain energy 

According to Hooke’s law, taking into account Eq. (6) and the first equation of Eqs. 
(37), the average shear stresses with respect to the displacements can be expressed as 

, ,
dw

d
a zz

x av x av zG G G Q
x A 

    , (42) 

where ,x av  is the average shear strain with respect to the displacement aw . 

The average shear stresses can also be expressed as 

,x av z sQ A  . (43) 

The shear energy of the beam element may be expressed as 

2d
d d

2 xA

xU A
G   , (44) 

i.e. 

2
2

2

d
d d

2
yz

A
y

Sx QU A
G tI

 
   

 
 . (45) 

The shear energy can also be written by average shear deformations as 

  ,
d d

d
2 2a z x av z
x xU Q Q    . (46) 

i.e. taking into account Eq. (42) 

2d
d

2
zz

z
xU Q
G A


 . (47) 
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The shear factor zz  can be obtained by equating (47) and (45). The result is equal to 

the obtained shear factor. 

8. Boundary conditions 

Boundary conditions can be defined as follows, at the starting section A, 

0aw  , (48) 

hence, referring to Eq. (40), 

yA
w

s

M
C

GA
  , (49) 

where yAM is the bending moment at Ax x . 

The total displacements then are: 

y yA
b

s

M M
w w

GA


  ,     z s xz
a

Q Lu
GA


  . (50) 

For the hinged sections it may be written: 

0
A A

bx x x x
w w

 
  ,    

2

2

d
0

d
A

b

x x

w
x



      0yAM  ; 

0
B Bbx x x x

w w
 

  ,    
2

2

d
0

d
B

b

x x

w
x



      0yBM  . (51) 

For the clamped sections: 

0
A Abx x x x

w w
 

  ,    d
0

d
A

b

x x

w
x 

       0b
A  ; 

2 2

2 2

1 d d
0

d dB B

B A

b b
b y yx x x x

s x x x x

w ww w EI EI
GA x x 

 

 
     

 
 

, d
0

d
B

b

x x

w
x 

    0b
B  . (52) 

For the free section: 

2

2

d
0

d
A

b

x x

w
x



       0yAM  ,     
3

3

d
0

d
A

b

x x

w
x



       0zAQ  . (53) 

9. Double symmetrical cross-section 

For double symmetrical cross-sections the normal stress given by Eq. (41) becomes 

0
d

sy y
x z z

y s y

M SE Ez q q s
I GA GI t




    , (54) 

where due to symmetry  

0xz  , (55) 
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i.e. referring to the second equation of Eqs. (32) 

2
d 0y

A

A S
A

t

 

 . (56) 

The total displacements become 

y yA
b

s

M M
w w

GA


  ,     0au  . (57) 

10. Illustrative examples 

The I-section with two axes of symmetry (Fig. 3.a) and the symmetrical U-section (Fig. 
3.b) are considered.  

 
Fig. 3  Analysed cross-sections: a) double symmetrical I-section; b) symmetrical U-section 

The shear factors for the double symmetrical I-section, according to Eqs. (32) and (55) 
are: 

   
 

3 2 2

2

6 2 30 10 5
,

5 12 8
zz

   


  

   


   
     0xz  , (58) 

where: 1 1 0 0 0 1 0, , , , , 2sA bt A bt A A b h L h h h       . 

The shear factors for the symmetrical U-section, according to Eqs. (32), are: 

   

   

32 3 4 5 2

2 2

3 2 8 55 140 160 80 16 5 1 2

20 1 2 2
zz

      


  

        
 

 

 
  

21 1 2

4 1 2 2xz
 


 

 


 
, (59) 

where: 1 1 0 0 0 1, , , , sA bt A ht A A b h L h      , (1 2 ) ,Th h   3 (1 6 )Ph h   . 

Shear factors given by (58) and (59) for the double symmetrical I-section and the 
symmetrical U-section beam (b = h = 1000 mm, t1 = t0) are compared with those presented in 
[12] as shown in Table 1.   
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Table 1  Comparison of the shear factor 

 Presented theory Senjanović [12] 

I - section 380,3zz  380,3)0(
1

0

 zzk
  

U - section 95,1zz  95,1)0(
1

0

 zzk
  

A comparison of the normalised maximal vertical displacements at the free end of the 
cantilevered I-, T- and U-section beam ( 20/,2/ 01 htthb  ) subjected to the end 

concentrated force F with material properties E = 200 GPa and ν = 0 is given in Table 2. 

Table 2  Comparison of the normalised vertical displacements max,max bww  

 Presented theory El Fatmi [21] 
I - section 1,353 1,329 
T - section 1,181 1,171 
U - section 1,146 1,142 

A series of examples have been analysed by applying the FEM using Autodesk Algor 
Simulation Pro in order to compare the results with those obtained analytically with the 
presented theory (BIS – Bending with Influence of Shear). Membrane elements with 2 DOF 
are used. The mesh was generated with square elements with sides of 40h . 

Due to symmetry, only one half of the beam is modelled. Fig. 4 shows the boundary 
conditions that are used: at the simply supported end and at / 2x l  (Fig. 4.a), at the clamped 
end and at / 2x l  (Fig. 4.b). The sign  means that certain displacement, translation T or 
rotation R, is constrained. 

The beams under uniformly distributed load per unit length qz were analysed, where: 

3,0,GPa210,40/,,mm400 021  Ehttthbh . 

 

Fig. 4 The boundary conditions: a) a simply supported beam; b) a clamped beam 

Some results, compared also with the FEM analysis, are presented in Table 3 and in 
Figs 5 and 6. 

The normal stresses in the x-direction at a selected point of the beam cross-section are 
normalised as: ,max

b
x x  , ,max

FEM b
x x  , where x  is the normal stress in the x-direction at 

the selected point obtained analytically by Eq. (41), or Eq. (54) for the double symmetrical 
section, FEM

x  is the maximal normal stress in the x-direction at that point obtained by 

applying the FEM, and ,max
b
x is the maximal normal stress in the x-direction at a certain 

point/wall of the beam cross-section obtained by applying the ordinary bending theory (the 
Euler-Bernoulli bending theory – EBBT). 
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Table 3  Normalised maximal normal stresses 

 Double symm. I-section (point B, Fig. 3.a) Symm. U-section (point A, Fig. 3.b) 

L/h 
Simply supported Clamped Simply supported Clamped 

BIS FEM BIS FEM BIS FEM BIS FEM 

3 1,171 1,170 1,512 1,498 1,116 1,113 1,347 1,323 

5 1,061 1,061 1,184 1,184 1,042 1,042 1,125 1,124 

 

Fig. 5  Normalised normal stresses at the clamped beam midspan (L=3h): a) at the top flange of the I-section, b) 
at the horizontal wall of the U-section 

The normalised vertical displacements are expressed as: ,max
b

P Pw w , ,max
FEM b
P Pw w , 

where Pw  is the total vertical displacement of the pole P obtained analytically by the first 

equation of Eqs. (50), or Eq. (57) for the double symmetrical section, FEM
Pw  is the vertical 

displacement of the point B obtained by applying the FEM, and ,max
b
Pw  is the vertical 

displacement of the pole P according to the ordinary theory of bending. 

 

Fig. 6  Normalised vertical displacements at the clamped beam (L=3h): a) I-section, b) U-section 

11. Conclusion 

A theory of bending of thin-walled beams with the influence of shear for sections with 
one and two axes of symmetry is developed. The theory is based on the classical Timoshenko 
bending theory. The shear factor with respect to the bending in the beam plane of symmetry is 
given in an analytical form. It is proved that the beam with a single symmetrical section, 
loaded in the plane of symmetry, is subjected also to tension/compression due to shear.  
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Thus, a new factor of shear is given, with respect to tension/compression due to shear. 
In the case of a double symmetrical section this factor vanishes: the beam is subjected to 
bending with the influence of shear only. 

For various types of cross-sections with one and two axes of symmetry, the shear 
factors are given in the parametric forms. 

Stresses can be obtained in the analytical form both along the cross-section middle line 
and the beam length. Various boundary conditions and loadings are considered.  

Several examples are analyzed in comparison with the finite element method. Excellent 
agreements of the results for displacements are obtained, as well as for stresses. Some 
discrepancies for normal stresses are noticed at beam ends in the case of clamped ends, as a 
result of different boundary conditions, both in the presented theory and the finite element 
method. Corresponding cross-section functions are given in the appendix. 
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Appendix: Cross-section functions 

 
Fig. A1  Double symmetrical I-section: Cross-section functions 

Cross-section functions for the double symmetrical I-section (Fig. A1) are: 

*
12

bA s t   
 

,  *
12 2y

h bS t s    
 

,     * 2
1 0

00

6

4 24

s
yS h A Ahds s b s

t t


     0
2

bs   
 

 

*
1 02

hA bt s t    
 

, 
2

* 20
12 2 4y

th hS A s
 

   
 

,  
*

2 201

00

3 4
2 24

s
yS thAsds h s

t t
        0

2

hs   
 

 

 
Fig. A2  Symmetrical U-section: Cross-section functions 

Cross-section functions for the symmetrical U-section (Fig. A2) are: 
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