A characterization of continuous images of arcs by their images of weight $\leq \aleph_1$

IVAN LONČAR*

Abstract. The main purpose of this paper is to characterize the continuous images of arcs by their images of the weight $\leq \aleph_1$. More precisely, we will show that a compact space X is the continuous image of an arc if and only if every continuous image Y = f(X) with $w(Y) \leq \aleph_1$ is a continuous image of an arc.

Key words: continuous images of arcs, inverse systems and limits

AMS subject classifications: 54B35, 54C10, 54F15

Received December 12, 1999 Accepted March 15, 2000

1. Introduction

An arc is a continuum with precisely two nonseparating points. A space X is said to be a *continuous image of an arc* if there exists an arc L and a continuous surjection $f: L \rightarrow X$. Let X be a non-degenerate locally connected continuum. A subset Y of X is said to be a *cyclic element* of X if Y is connected and maximal with respect to the property of containing no separating point of itself. A cyclic element of a locally connected continuum. Let

 $\mathbf{L}_X = \{ Y \subset X : Y \text{ is a non- degenerate cyclic element of } X \}.$

If Y is a closed subset of X, we let $\mathbf{K}(X \setminus Y)$ denote the family of all components of X \Y. Let X be a locally connected continuum. A subset Y of X is said to be a T - set if Y is closed and |Bd(J)| = 2 for each $J \in \mathbf{K}(X \setminus Y)$.

Theorem 1. [1, Theorem 1] A Hausdorff locally connected continuum S is the continuous image of an arc if and only if each cyclic element of S is the continuous image of an arc.

The following theorem is a part of Theorem 4.4 of [9].

Theorem 2. If X is a locally connected continuum, then the following conditions are equivalent:

1. X is a continuous image of an arc,

^{*}Faculty of Organization and Informatics, Varaždin, Pavlinska 2, HR-42000 Varaždin, Croatia, e-mail: iloncar@foi.hr

I. LONČAR

- 2. X is a continuous image of an ordered compactum,
- 3. for each $Y \in \mathbf{L}_X$ and any $p,q,r \in Y$ there exists a metrizable T set Z in Y such that $p,q,r \in Z$.
- For each Y∈L_X and each closed metrizable subset M of Y there exists a metrizable T - set A in Y such that M⊆A.

In this paper we shall use the notion of *inverse systems* $\mathbf{X} = \{X_a, p_{ab}, A\}$ and their limits in the usual sense [2, p. 135].

The notion of approximate inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ will be used in the sense of S. Mardešić [6]. See also [8].

Let τ be an infinite cardinal. We say that a partially ordered set A is τ -directed if for each B \subseteq A with card(B) $\leq \tau$ there is an a \in A such that a \geq b for each b \in B. If A is \aleph_0 -directed, then we will say that A is σ -directed. An inverse system $\mathbf{X} = \{\mathbf{X}_a, \mathbf{p}_{ab}, \mathbf{A}\}$ is said to be τ -directed if A is τ -directed. An inverse system $\mathbf{X} = \{\mathbf{X}_a, \mathbf{p}_{ab}, \mathbf{A}\}$ is said to be σ -directed if A is σ -directed.

Lemma 1. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate τ -directed inverse system of compact spaces with surjective bonding mappings and with the limit X. Let Y be a compact space with $w(Y) \leq \tau$. For each surjective mapping $f: X \to Y$ there exists an $a \in A$ such that for each $b \geq a$ there exists a mapping $g_b: X_b \to Y$ such that $f = g_b \circ p_b$, where p_b is the natural projection of X onto X_b .

Proof. Let \mathcal{B} be a basis of Y, $\operatorname{card}(\mathcal{B}) = \tau$ and let \mathcal{V} be the collection of all finite subfamilies of \mathcal{B} . Clearly, $\operatorname{card}(\mathcal{V}) = \tau$. We assume that τ is an initial ordinal number. Hence, $\mathcal{V} = \{\mathcal{V}_{\alpha} : \alpha < \tau\}$. For each $\mathcal{V}_{\alpha} f^{-1}(\mathcal{V}_{\alpha})$ is a covering of X. There exists an $a(\alpha) \in A$ such that for each $b \geq a(\alpha)$ there is a cover $\mathcal{V}_{\alpha b}$ of X_b such that $p_b^{-1}(\mathcal{V}_{\alpha b})$ refines $f^{-1}(\mathcal{V}_{\alpha})$, i.e. $p_b^{-1}(\mathcal{V}_{\alpha b}) < f^{-1}(\mathcal{V}_{\alpha})$. From the τ -directedness of A it follows that there is an $a \in A$ such that $a \geq a(\alpha)$, $\alpha < \tau$. Let $b \geq a$. We claim that $f(p_b^{-1}(x_b))$ for $x_b \in X_b$ is degenerate. Suppose that there exists a pair u, v of distinct points of Y such that u, $v \in f(p_b^{-1}(x_b))$. Then there exists a pair x, y of distinct points of $p_b^{-1}(x_b)$ such that f(x) = u and f(y) = v. Let U, V be a pair of disjoint open sets of Y such that $u \in U$ and $v \in V$. Consider the covering $\{U, V, Y \setminus \{u,v\}\}$. There exists a covering $\mathcal{V}_{\alpha} \in \mathcal{V}$ such that $\mathcal{V}_{\alpha} < \{U, V, X \setminus \{u,v\}\}$. We infer that there is a covering $\mathcal{V}_{\alpha b}$ of X_b such that $p_b^{-1}(\mathcal{V}_{\alpha b}) \prec f^{-1}(\mathcal{V}_{\alpha})$. It follows that $p_b(x) \neq p_b(y)$ since x and y lie in disjoint members of the covering $f^{-1}(\mathcal{V}_{\alpha})$. This is impossible since $x, y \in p_b^{-1}(x_b)$. Thus, $f(p_b^{-1}(x_b))$ is degenerate. Now we define $g_b: X_b \to Y$ by $g_b(x_b) = f(p_b^{-1}(x_b))$. It is clear that $g_b p_b = f$. Let us prove that g_b is continuous. Let U be open in Y. Then $g_b^{-1}(U)$ is open since $p_b^{-1}(g_b^{-1}(U)) = f^{-1}(U)$ is open and p_b is quotient (as a closed mapping).

The following theorem is Theorem 1.7 from [5].

Theorem 3. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be a σ - directed inverse system of compact metrizable spaces and surjective bonding mappings. Then $X = \lim \mathbf{X}$ is metrizable if and only if there exists an $a \in A$ such that $p_b: X \to X_b$ is a homeomorphism for each $b \geq a$.

2. The main theorems

We first establish the following theorem.

Theorem 4. Let X be a compact Hausdorff space. The following are equivalent: a) X is a continuous image of an arc,

b) If $f: X \to Y$ is a continuous surjection and $w(Y) \leq \aleph_1$, then Y is a continuous image of an arc.

Proof. a) \Rightarrow b) Obvious.

b) \Rightarrow **a**) If w(X) $\leq \aleph_1$, then, by b) X is a continuous image of an arc since there exists the identity $i : X \rightarrow X$ and w(X) $\leq \aleph_1$. Let w(X) $> \aleph_1$. The proof consists of several steps.

(i) There exists an \aleph_1 -directed inverse system $\mathbf{X} = \{X_{\alpha}, p_{\alpha\beta}, A\}$ such that $w(X_{\alpha}) \leq \aleph_1$ and X is homeomorphic to lim \mathbf{X} .

By [2, Theorem 2.3.23.] the space X is embeddable in $I^{w(X)}$. We identify the cardinal w(X) with an initial ordinal number Ω , i.e. with the set of all ordinal numbers of the cardinality $\langle w(X)$. Consider the set $A = \{\alpha, \operatorname{card}(\alpha) = \aleph_1\}$ of all subsets of Ω of the cardinality \aleph_1 ordered by inclusion. It is obvious that A is \aleph_1 -directed. For each α we have the cube I^{α} . It is clear that every I^{α} is a proper subcube of $I^{w(X)}$ since $w(X) > \aleph_1$. If α is a subset of β , let $P_{\alpha\beta}$ be the natural projection of I^{β} onto I^{α} . Arguing as in [2, 2.5.3. Example] we infer that $\mathbf{I} = \{I^{\alpha}, P_{\alpha\beta}, A\}$ is an inverse system with limit homeomorphic to $I^{w(X)}$. Let $P_{\alpha} : I^{w(X)} \to I^{\alpha}, \alpha \in A$, be the natural projection. For every $\alpha \in A$ put $X_{\alpha} = P_{\alpha}(X)$. Every X_{α} has the weight $\leq \aleph_1$ and is a closed subspace of I^{α} since X is a closed subset of $I^{w(X)}$. Let p_{α} be the restriction of P_{α} on X. We have the inverse system $\mathbf{X} = \{X_{\alpha}, p_{\alpha\beta}, A\}$ whose limit is homeomorphic to X. Clearly, \mathbf{X} is \aleph_1 -directed.

(ii) The space X is a locally connected continuum.

By b) each X_{α} is a continuous image of an arc since $w(X_{\alpha}) \leq \aleph_1$. This means that each X_{α} is locally connected. Hence, X is a locally connected continuum since **X** is \aleph_1 -directed and thus also σ -directed [3, Theorem 3].

(iii) There exists an \aleph_1 -directed inverse system $\mathbf{Y} = \{Y_{\alpha}, q_{\alpha\beta}, A\}$ of continuous images of arcs such that $q_{\alpha\beta}$ are monotone and X is homeomorphic to lim \mathbf{Y} .

Let $\mathbf{X} = \{X_{\alpha}, p_{\alpha\beta}, A\}$ be as in (i) and let p_{α} be the natural projection of X onto $X_{\alpha} \in \mathbf{X}$. Applying the monotone-light factorization [13] to p_{α} , we get the compact spaces Y_{α} , monotone surjection $m_{\alpha} : X \to Y_{\alpha}$ and the light surjection $l_{\alpha} : Y_{\alpha} \to X_{\alpha}$ such that $p_{\alpha} = l_{\alpha} \circ m_{\alpha}$. By [7, Lemma 8] there exists a monotone surjection $q_{\alpha\beta} : Y_{\beta} \to Y_{\alpha}$ such that $q_{\alpha\beta} \circ m_{\beta} = m_{\alpha}, \alpha \leq \beta$. It follows that $\mathbf{Y} = \{Y_{\alpha}, q_{\alpha\beta}, A\}$ is an inverse system such that X is homeomorphic to lim \mathbf{Y} . Every Y_{α} is locally connected since X is locally connected. Moreover, by [7, Theorem 1] it follows that $w(Y_{\alpha}) = w(X_{\alpha}) \leq \aleph_1$. By b) we infer that every Y_{α} is a continuous image of an arc. The proof of (iii) is completed.

In the following step we shall represent every cyclic element of X as the limit of some inverse system of cyclic elements of Y_a , $a \in A$.

(iv) For each nondegenerate cyclic element W of X there exists an \aleph_1 -directed inverse system $\mathbf{W} = \{W_a, P_{ab}, A^*\}$ such that W_a is a nondegenerate cyclic element of some X_{α} , P_{ab} are monotone and A^* is a cofinal subset of A.

By (iii) X is the limit of $\mathbf{Y} = \{Y_{\alpha}, q_{\alpha\beta}, A\}$. Let $q_{\alpha} : X \to Y_{\alpha}$ be the natural projection. Every $q_{\alpha}(W)$ is a locally connected continuum because it is the image of the locally connected continuum W [12, p. 70, Lemma 1.5]. Moreover, every $q_{\alpha}(W)$ is the image of an ordered compactum since every Y_{α} is the continuous image of an arc. By *Theorem* 2. it follows that every $q_{\alpha}(W)$ is the continuous image of an arc. It easily follows that $W = \lim\{q_{\alpha}(W), q_{\alpha\beta}|q_{\beta}(W), A\}$. Define $r_{\alpha\beta} = q_{\alpha\beta}|q_{\beta}(W)$. As in the proof of Theorem 5.1 of [9] we infer that there exists an α_0 in A and a non-degenerate cyclic element W_{α_0} of $q_{\alpha_0}(W)$. Let $A^* = \{\alpha : \alpha \ge \alpha_0\}$. For each $\alpha \ge \alpha_0$ there exists a non-degenerate cyclic element W_{α} of $q_{\alpha}(W)$ such that $r_{\alpha_0\alpha}(W_{\alpha}) \supseteq W_{\alpha_0}$ ([9, Lemma 2.3]) since the restrictions $q_{\alpha}|W : W \to q_{\alpha}(W)$ are monotone ([9, Lemma 2.2]). Let $\rho_{\alpha} : q_{\alpha}(W) \to W_{\alpha}$ be the canonical retraction [9, p. 5]. We define $P_{\alpha\beta} = \rho_{\alpha} \circ r_{\alpha\beta}$ for each pair α, β such that $\alpha_0 \le \alpha \le \beta$. As in the proof of Theorem 5.1 of [9, p. 25] it follows that $\{W_{\alpha}, P_{\alpha\beta}, A^*\}$ is an \aleph_1 -directed inverse system with monotone bonding mappings $P_{\alpha\beta}$ whose limit is W. The proof of (iv) is complete.

(v) Every non-degenerate cyclic element W of X is a continuous image of an arc.

Let x, y and z be points of W. By (3) of *Theorem 2.* it suffices to prove that there exists a metrizable T-set of W which contains x, y and z. By (iv) W is the limit of $\mathbf{W} = \{W_{\alpha}, P_{\alpha\beta}, A^*\}$. For each $\alpha \in A^*$ there exists a minimal metrizable T-set T_{α} containing $\mathbf{x}_{\alpha} = P_{\alpha}(\mathbf{x}), \mathbf{y}_{\alpha} = P_{\alpha}(\mathbf{y})$ and $\mathbf{z}_{\alpha} = P_{\alpha}(\mathbf{z})$ (*Theorem 2.*). For every $\alpha \in A^*$ consider the family $\mathcal{T}_{\alpha} = \{P_{\alpha\beta}(T_{\beta}) : \beta \geq \alpha\}$. It is clear that \mathcal{T}_{α} is \aleph_1 -directed by inclusion. Let us prove that $N_{\alpha} = \bigcup\{P_{\alpha\beta}(T_{\beta}) : \beta \geq \alpha\}$ is a compact metrizable space. This follows from the next claim.

Claim 1. Let $\mathcal{M} = \{M_{\mu} : \mu \in M\}$ be a family of compact metric subspaces M_{μ} of a space M partially ordered by inclusion \subseteq . If it is \aleph_1 -directed, then $N = \bigcup \{M_{\mu} : \mu \in M\}$ is a compact metrizable subspace of M.

Suppose that $w(N) \geq \aleph_1$. By virtue of [4] (or [10, Theorem 1.1]), for $\lambda = \aleph_1$, there exists a subspace N_{\aleph_1} of N such that $card(N_{\aleph_1}) \leq \aleph_1$ and $w(N_{\aleph_1}) \geq \aleph_1$. For each $x \in N_{\aleph_1}$ there exists an $M_{\mu}(x) \in \mathcal{M}$ such that $x \in M_{\mu}(x)$. The family $\mathcal{M}_1 = \{M_{\mu}(x) : x \in N_{\aleph_1}\}$ has the cardinality $\leq \aleph_1$. By the \aleph_1 -directedness of \mathcal{M} there exists an $M_{\nu} \in \mathcal{M}$ such that $M_{\nu} \supseteq M_{\mu}(x)$ for each $x \in N_{\aleph_1}$. This means that $N_{\aleph_1} \subseteq M_{\nu}$. We infer that $w(N_{\aleph_1}) \leq \aleph_0$ since M_{ν} is a compact metric subspace of X. This contradicts the assumption $w(N_{\aleph_1}) \geq \aleph_1$. Hence, $w(N) \leq \aleph_0$. There exists a countable dense subset $Z = \{z_n : n \in \mathbb{N}\}$ of N. For each z_n there is an $M_{\mu}(n) \in \mathcal{M}$ such that $z_n \in M_{\mu}(n)$. It is clear that $L = \bigcup \{M_{\mu}(n) : n \in \mathbb{N}\}$ is dense in N. By virtue of the \aleph_1 -directedness of \mathcal{M} there exists an $M_{\nu} \in \mathcal{M}$ such that $M_{\nu} \supseteq M_{\mu}(n)$ for each n. We infer that $M_{\nu} \supseteq L$ and, consequently, M_{ν} is dense in N. From the compactness of M_{μ} it follows that $N = M_{\mu}$. Hence, N is a compact metrizable subspace of M. The proof of *Claim 1* is complete.

It is obvious that the collection $\mathcal{N} = \{N_{\alpha}, P_{\alpha\beta} | N_{\beta}, A^*\}$ is an inverse system. Every N_{α} is a T-set in W_{α} [9, Theorem 3.1]. By [9, Theorem 3.13] $N = \lim \mathcal{N}$ is a T-set in W which contains x, y and z. It remains to prove that N is metrizable. This is established by the following *Claim* 2.

Claim 2. Let $\mathbf{Z} = \{Z_a, p_{ab}, A\}$ be an \aleph_1 -directed inverse system of compact metric spaces Z_a and surjective bonding mappings. Then $Z = \lim \mathbf{Z}$ is a compact metrizable space.

By virtue of *Theorem 3*. it suffices to prove that there exists an $a \in A$ such that $p_{ab}: Z_b \to Z_a$ is a homeomorphism for each $b \ge a$. Suppose that this is not true, i.e. that for each $a \in A$ there exists a $b \ge a$ such that $p_{ab}: Z_b \to Z_a$ is not a homeomorphism. Let a_1 be any element of A. By assumption, there exists an $a_2 \in A$ such that $a_2 \ge a_1$ and $p_{a_1a_2}$: $Z_{a_2} \to Z_{a_1}$ is not a homeomorphism. Suppose that for each ordinal number $\alpha < \beta < \omega_1$ the element a_{α} is defined. Let us define a_{β} . If there exists β - 1, then we define a_{β} so that $p_{a_{\beta-1}a_{\beta}}$: $Z_{a_{\beta}} \to Z_{a_{\beta-1}}$ is not a homeomorphism. If β is a countable limit ordinal, then there exists an a_{β} such that $a_{\beta} \ge a_{\alpha}$ for each $\alpha < \beta$ since **Z** is \aleph_1 -directed. Now, we have the transfinite sequence Ω $= \{a_{\alpha} : \alpha < \omega_1\}$ and a well-ordered inverse system $\mathbf{Z}_{\Omega} = \{Z_{\alpha}, p_{\alpha\beta}, \Omega\}$. Let Y $= \lim \mathbf{Z}_{\Omega}$. We shall prove that Y is metrizable. By virtue of the \aleph_1 -directedness of A there exists an $a \in A$ such that $a \ge a_{\alpha}$ for each $\alpha < \omega_1$. It is clear that there exists a mapping $q : X_a \to Y$ induced by the mappings $P_{a_{\alpha}a}$. This means that Y is metrizable since X_a is metrizable. By *Theorem 3*. there exists an α_0 such that $p_{a_{\beta}a_{\gamma}}$: $Z_{a_{\gamma}} \to Z_{a_{\beta}}$ is a homeomorphism, $\alpha_0 < \beta < \gamma < \omega_1$. This contradicts the construction of $\Omega = \{a_{\alpha} : \alpha < \omega_1\}$ and the well-ordered inverse system $\mathbf{Z}_{\Omega} = \{W_{\alpha},$ $P_{\alpha\beta}, \Omega$. Hence, $Z = \lim \mathbf{Z}$ is a compact metrizable space.

Finally, the proof of (v) is complete.

(vi) X is the continuous image of an arc. This follows from (v) and Theorem 1. \Box

Corollary 1. Let X be a locally connected continuum. The following are equivalent: a) X is a continuous image of an arc,

b) If $f : Z \to Y$ is a continuous surjection, where Z is a cyclic element of X and $w(Y) \leq \aleph_1$, then Y is a continuous image of an arc.

Proof. a) \Rightarrow b) If X is a continuous image of an arc, then every cyclic element Z of X is a continuous image of an arc (*Theorem 1.*). We infer that Y is a continuous image of an arc since there exists a surjection f : $Z \rightarrow Y$.

 \mathbf{b}) \Rightarrow \mathbf{a}) Let Z be any cyclic element of X. Applying *Theorem 4.* for Z, we infer that Z is a continuous image of an arc. By *Theorem 1.* we infer that X is a continuous image of an arc since every cyclic element Z of X is a continuous image of an arc. \Box

A space X is said to be *rim-finite* (*rim-countable*) if it has a basis \mathcal{B} such that $\operatorname{card}(\operatorname{Bd}(U)) < \aleph_0$ ($\operatorname{card}(\operatorname{Bd}(U)) \le \aleph_0$) for each $U \in \mathcal{B}$. Equivalently, a space X is rim-finite (rim-countable) if and only if for each pair F,G of disjoint closed subsets of X there exist a finite (countable) subset of X which separates F and G. This follows from the fact that if $\{A_s\}$ is a locally finite family of subsets of X, then [2, p. 46]

$$Bd([]A_s) \subseteq []Bd(A_s).$$

Every rim-finite continuum is a continuous image of an arc [11]. Hence, every rim-finite continuum is locally connected and hereditarily locally connected.

Lemma 2. Let $f : X \rightarrow Y$ be a monotone surjection. If X is rim-finite (rimcountable), then Y is rim-finite (rim-countable).

Theorem 5. [9, Theorem 9.9] Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be a σ -directed inverse system of rim-finite continua. Then $X = \lim \mathbf{X}$ is rim-finite.

Now we are ready to prove the following characterization theorem for rim-finite continua.

Theorem 6. Let X be a continuum. The following are equivalent:

a) X is rim-finite,

b) If $f : X \rightarrow Y$ is a monotone surjection and if Y is metrizable, then Y is rim-finite.

Proof. a) \Rightarrow b). Apply Lemma 2.

b) \Rightarrow a). By virtue of [9, Theorem 9.5] there exists a σ -directed monotone inverse system $\mathbf{X} = \{X_{\alpha}, p_{\alpha\beta}, A\}$ such that $w(X_{\alpha}) \leq \aleph_0$ and X is homeomorphic to lim**X**. From b) it follows that each X_a is rim-finite. By *Theorem 5*. we infer that X is rim-finite.

3. Applications

In this section some applications of *Theorems 4.* and *6.* are given.

Theorem 7. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate \aleph_1 -directed inverse system of continuous images of arcs. Then $X = \lim \mathbf{X}$ is the continuous image of an arc.

Proof. By Theorem 4. it suffices to prove that if $f: X \to Y$ is a continuous surjection and $w(Y) \leq \aleph_1$, then Y is a continuous image of an arc. Using Lemma 1., for $\tau = \aleph_1$, we will find an $a \in A$ and a continuous surjection $g_a: X_a \to Y$ such that $f = g_a p_a$. Hence, Y is a continuous image of an arc since X_a is a continuous image of an arc. \Box

Corollary 2. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an \aleph_1 -directed inverse system of continuous images of arcs. Then $X = \lim \mathbf{X}$ is the continuous image of an arc.

Remark 1. Let us observe that mappings p_{ab} in Theorem 7. and Corollary 2. are not necessarily monotone.

Theorem 8. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate σ -directed inverse system of rim-finite continua. Then $X = \lim \mathbf{X}$ is a rim-finite continuum.

Proof. By *Theorem 6.* it suffices to prove that if f: $X \rightarrow Y$ is a monotone surjection onto a metrizable space Y, then Y is rim-finite. By *Lemma 1.* there exists an $a \in A$ and a continuous mapping $g_a : X_a \rightarrow Y$ such that $f = g_a p_a$. It follows that g_a is monotone since f is monotone. From *Lemma 2.* it follows that Y is rim-finite. Hence, X is rim-finite (*Theorem 6.*).

Acknowledgement. The author wishes to express his gratitude to the referee for his help and suggestions.

References

- J. L. CORNETTE, Image of a Hausdorf arc is cyclically extensible and reducible, Trans. Amer. Math. Soc. 199(1974), 253–267.
- [2] R. ENGELKING, General Topology, PWN, Warszawa, 1977.

- [3] G. R. GORDH, JR., S. MARDEŠIĆ, Characterizing local connectedness in inverse limits, Pacific Journal of Mathematics 58(1975), 411–417.
- [4] A. HAJNAL, I. JUHÁSZ, Having a small weight is determined by the small subspaces, Proc. Amer. Soc. 79(1980), 657–658.
- [5] I. LONČAR, Inverse limit of continuous images of arcs, Zbornik radova Fakulteta organizacije i informatike Varaždin 2(23)(1997), 47–60.
- [6] S. MARDEŠIĆ, On approximate inverse systems and resolutions, Fund. Math. 142(1993), 241–255.
- [7] S. MARDEŠIĆ, Locally connected, ordered and chainable continua, Rad JAZU 33(1960), 147–166.
- [8] S. MARDEŠIĆ, T. WATANABE, Approximate resolutions of spaces and mappings, Glasnik Matematički 24(3)(1989), 587–637.
- [9] J. NIKIEL, H. M. TUNCALI, E. D. TYMCHATIN, Continuous images of arcs and inverse limit methods, Mem. Amer. Math. Soc. 104(1993), 1–80.
- [10] M. G. TKAČENKO, Cepi i kardinaly, Dokl. Akad. Nauk SSSR 279(1978), 546– 549.
- [11] L. E. WARD, The Hahn-Mazurkiewicz theorem for rim-finite continua, General Topology and its Applications 6(1976), 183–190.
- [12] R. L. WILDER, Topology of manifolds, Amer. Math. Soc. 32(1979), p.70.
- [13] G. T. WHYBURN, Analytic Topology, Amer. Math. Soc. 28(1963), 141–143.