
Mathematical Communications 4(1999), 207-218 207

Least squares fitting of conic sections with type

identification by NURBS of degree two

I. Seufer∗ and H. Späth†

Abstract. Fitting of conic sections is used in reflectometry, air-
craft industry, metrology, computer vision, astronomy and propagation
of sound waves [5]. So far numerical algorithms assume the type of the
conic section to be known in advance. We consider the problem of ad-
ditionally identifying the type during fitting, i.e. deciding whether the
given data are better fitted by an ellipse, a hyperbola or a parabola. To
solve this problem we apply a well-known descent algorithm [3, 4, 6] to
NURBS of degree two. Numerical examples will be given.

Key words: conic sections, least squares fitting

AMS subject classifications: 65D10

Received June 5, 1999 Accepted July 1, 1999

1. Introduction

Let ((xik, i = 1, . . . , `), k = 1, . . . , m ≥ 5) be given measured data points in the
plane (` = 2) or in the space (` = 3). If some conic section of unknown type should
fit the data, you need some representation where the type is not yet specified. For
` = 2 such a representation is given by the implicit form

Ax2 + 2Bxy + Cy2 + 2Dx + 2Ey + F = 0 . (1)

Putting

a = det




A B D
B C E
D E F


 , b = det

(
A B
B C

)
, c = A + C , (2)

you will get a hyperbola for b < 0, a parabola for b = 0, and an ellipse for b > 0 in
the case of a 6= 0 ; for a = 0 there are some special cases like a pair of straight lines
[1].

∗Department of Mathematics, University of Oldenburg, Postfach 2503, D-26111 Oldenburg,
Germany

†Department of Mathematics, University of Oldenburg, Postfach 2503, D-26111 Oldenburg,
Germany, e-mail: spaeth@mathematik.uni-oldenburg.de



208 I. Seufer and H. Späth

This implicit form cannot be used for a geometrical fit, where the sum of squared
(orthogonal) distances from the given data points to the conic section is minimized.
Only some parametric representation

xi = fi(t) (i = 1, ..., `)

is suitable. An example for ` = 2 is

x1 = α + p cos t , x2 = β + q sin t (0 ≤ t < 2π) ,

which represents an ellipse in the normal position with center (α, β) and axes p
and q. The only parametrization known to us, including the type of the conic as
parameter and being also valid for ` = 3, is that one by NURBS of degree two [2],
i.e. ` = 2 or ` = 3 functions

xi =
ai(1 − t)2 + 2biwt(1 − t) + cit

2

(1 − t)2 + 2wt(1 − t) + t2
, t ∈ [0, 1], i = 1, . . . , ` . (3)

Here a = (a1, . . . , a`)T , b = (b1, . . . , b`)T , c = (c1, . . . , c`)T are three defined
control points in the plane (` = 2) or in the space (` = 3) and w is a parameter
determining the type of the conic. For 0 < w < 1 equation (3) gives ellipses, for
w = 1 parabolas, and for w > 1 hyperbolas. (The case of w = 0 is not of interest to
us.) In (3) you also have to consider w > 0 and w < 0 simultaneously. For w > 0
you get that part of the conic lying in the convex hull of the control points and for
w < 0 the complementary part. In Figure 1 this is shown for an ellipse.

Figure 1. An ellipse represented by a NURB of degree 2

In the following we develop a descent algorithm similar to that one shown in
[3, 4, 5, 6]. It can be used for ` = 2 or ` = 3, i.e. for conic sections in the plane
or in the space. The control points a, b, and c, the type parameter w and the
parameter values t = (t1, . . . , tm)T , corresponding to those values tk ∈ [0, 1] where
the perpendicular through the k-th given data point onto the conic meets it, have
to be determined. As the conic consists of two parts we have to associate with each
tk some vk = w or vk = −w. Without loss of generality, we will always assume
w > 0.



Least squares fitting of conic sections 209

2. Normalization of the control points

For a given conic K you will find the NURBS parametrization as follows, see [2].
Choose two points a and c on K (together on one branch if it were hyperbola)
such that the tangents of K through these points have a finite crossing point b.
Then a, b, and c are possible control points. The corresponding value of w is easily
calculated (see [2, p. 226]). Thus some NURBS parametrization is far from being
unique (see Figure2). Only w < 1 or w = 1 or w > 1 is significant. This can also
be seen from the numerical examples in Section 5.

Figure 2. Different NURBS parametrizations of an ellipse

Depending on the given starting values for w and t the iterative method will
end up with corresponding values of a,b, c, w, and t.

In order to be able to compare results for w < 1 or w > 1 it is necessary to
normalize a,b, c, and w in some way. We will explain this for an ellipse in the
normal position in the plane, i.e. for

x2
1

p2
+

x2
2

q2
= 1 .

Defining

a =
(

0
q

)
, b =

(
−p

q

)
, c =

(
−p

0

)

we get w = ±
√

2
2 which can be verified when putting (3) into the above implicit

representation. A generalization for rotated ellipses (see Figure 3) is possible. Also
similar considerations can be done for the hyperbola and the parabola.



210 I. Seufer and H. Späth

Figure 3. An ellipse in a normalized NURBS parametrization

3. Descent algorithm

The function to be minimized for a geometrical fit is

S(a,b, c,v; t) =
∑̀

i=1

m∑

k=1

Sik(ai, bi, ci, vk; tk) (4)

where

Sik(ai, bi, ci, vk; tk) =
(

xik − ai(1 − tk)2 + 2bivktk(1 − tk) + cit
2
k

(1 − tk)2 + 2vktk(1 − tk) + t2k

)2

. (5)

Here we have vk = w or vk = −w and t ∈ [0, 1). Regarding some fixed value of
w the necessary conditions for a local minimum of (4) are

∂S

∂ai
=

∂S

∂bi
=

∂S

∂ci
= 0 for i = 1, . . . , ` (6)

and

∂S

∂tk
= 0 for k = 1, . . . , m . (7)

The conditions (6) give for each i ∈ {1, . . . , `} a linear system of three equations
with three unknowns. If we define

Nk := (1 − tk)2 + 2vktk(1 − tk) + t2k , (8)



Least squares fitting of conic sections 211

then for i ∈ {1, . . . , `} we have

∂S

∂ai
=

m∑

k=1

∂Sik

∂ai
= 0

⇔
m∑

k=1

(
xik − ai(1 − tk)2 + 2bivktk(1 − tk) + cit

2
k

Nk

)
· (1 − tk)2

Nk
= 0

⇔ ai

m∑

k=1

(1− tk)4

N2
k

+ bi

m∑

k=1

2vktk(1− tk)3

N2
k

+ ci

m∑

k=1

t2k(1− tk)2

N2
k

=
m∑

k=1

xik
(1− tk)2

Nk
.

Similar calculations for bi and ci give altogether ` systems

Azi = di (9)

with a common symmetric coefficient matrix

A =




m∑

k=1

(1− tk)4

N2
k

m∑

k=1

2vktk(1− tk)3

N2
k

m∑

k=1

t2k(1− tk)2

N2
k

m∑

k=1

2vktk(1− tk)3

N2
k

m∑

k=1

4v2
kt2k(1− tk)2

N2
k

m∑

k=1

2vkt3k(1− tk)
N2

k
m∑

k=1

t2k(1− tk)2

N2
k

m∑

k=1

2vkt3k(1− tk)
N2

k

m∑

k=1

t4k
N2

k




∈ R3×3,

and with vectors

di =




m∑

k=1

xik
(1− tk)2

Nk

m∑

k=1

xik
2vktk(1− tk)

Nk

m∑

k=1

xik
t2k
Nk




∈ R3 and zi =




ai

bi

ci


 ∈ R3.

As A = AT is a matrix of normal equations, it is nonsingular if at least two tk
are different. Thus the ` systems (9) normally are uniquely solvable. Numerically
we solve the corresponding overdetermined linear systems with the modified Gram-
Schmidt method (see [9, Subroutine MGS]).

Calculating (7) you can see that tk only appears in the k-the term of S. Thus



212 I. Seufer and H. Späth

we temporarily omit the index k and write

t := tk,

xi := xik,

v := vk,

Zi := ai(1 − t)2 + 2bivt(1 − t) + cit
2,

N := Nk,

Si :=
(

xi −
Zi

N

)2

= Sik .

Then for each k ∈ {1, . . . , m} we have

∂S

∂tk
=

∑̀

i=1

∂Si

∂t
= 0

⇔
∑̀

i=1

Si

∂Zi

∂t N − Zi
∂N
∂t

N2
=

1
N3

∑̀

i=1

(Nxi − Zi)
(

∂Zi

∂t
N − Zi

∂N

∂t

)
= 0 .

After a multiplying by N3 we get the equation

∑̀

i=1

(Nxi − Zi)
(

∂Zi

∂t
N − Zi

∂N

∂t

)
= 0 . (10)

As the functions N and Zi are polynomials of degree two, the equation (10) also is
a polynomial equation. After some lengthy calculations we get

∑̀

i=1

4∑

j=0

pijt
j =

∑̀

i=1

pi4t
4 +

∑̀

i=1

pi3t
3 +

∑̀

i=1

pi2t
2 +

∑̀

i=1

pi1t +
∑̀

i=1

pi0 = 0 (11)

where

pi4 = αi(v − 1)(2(v − 1)xi − αi + γi),
pi3 = −αi(v − 1)(2(v − 1)xi + γi) + δi(2(v − 1)xi − αi + γi),
pi2 = αi(v − 1)ai − δi(3(v − 1)xi + γi) + βiv(bi − xi),
pi1 = δi(ai − xi) + βiv(2(v − 1)xi + γi),
pi0 = v(bi − ai)(xi − ai),

and

αi := (ai − ci) , βi := (bi − ai) , γi := 2(ai − biv) , δi := αi + 2βiv.

Thus the conditions (7) are m polynomial equations of degree four. Only for vk = 1
the degree will be three. All zeros can be calculated either in closed form [1] or by
some polynomial solver like RPOLY [7]. The existence of at least one real solution
tk can be assumed [6]. In the case of several real solutions tk we select that one
that minimizes the k-th term of S. (Thus the error vectors will be perpendicular to
the actual conic.) This guarantees the descent property of the following algorithm
for a fixed value of w:



Least squares fitting of conic sections 213

Step 0. Let suitable starting values t
(0)
1 , . . . , t

(0)
m be given (see remark be-

low). Set it = 0 (number of iterations).

Step 1. Solve the linear systems (9) with tk := t
(it)
k , k = 1, . . . , m and

thus determine

a
(it+1)
i := ai , b

(it+1)
i := bi , c

(it+1)
i := ci , i = 1, . . . , ` .

Step 2. Solve the m single equations (10) with

ai := a
(it+1)
i , bi := b

(it+1)
i , ci := c

(it+1)
i , i = 1, . . . , `

and select that real solution tk that minimizes Sk := S1k+· · ·+S`k .
Set

t
(it+1)
k := tk , it := it + 1 .

If you are beyond a given maximal number of iterations or if the
unknowns or the value of S do not longer change significantly,
then stop; otherwise go back to Step 1.

Remark: A general method of estimating t
(0)
k (k = 1, . . . , m) cannot be recom-

mended. If the data indicate only some part of some conic, then choosing the t
(0)
k

equidistant in [0, 1) is one possibility whereas, when the data are indicating some
whole conic, the interval [−1, 2) was more successful for the first iteration. Also,
ordering the given data points ((xik, i = 1, . . . , `), k = 1, . . . , m) in some way and
numbering the t

(0)
k (k = 1, . . . , m) correspondingly may be a good advice. Never-

theless, different starting values may produce different local minima. Thus it is a
natural mean to vary those values corresponding to several heuristics.

4. Identification of the type of the conic section

So far the algorithm only works for a fixed value of w. To determine also w, when
minimizing S, requires to solve in addition to (6) and (7) the necessary condition

∂S

∂w
= 0 . (12)

However, as w appears in each term of S, (12) would give a polynomial equation
of degree 3m − 2, where m is the number of given points. The numerical solution
of polynomials of such high degree (m = 20 means degree 58) is not easy, but it
empirically turned out that S as a function of w for given a,b, c, and t is unimodal
within a symmetrical interval with midpoint w0, e.g. within [w0−.05, w0+.05]. Thus
it is possible to minimize S with some method that does not need the derivative of
S with respect to w. Such a method is realized, e.g. in the subroutine FMIN [8].

Consequently, our algorithm from Section 3 is supplemented by



214 I. Seufer and H. Späth

Step 3. For given values ai = a
(it)
i , bi = b

(it)
i , ci = c

(it)
i , and ti = t

(it)
i

we calculate in a suitable interval with midpoint w0 = w(it) a
minimum wmin of S. Then we put w(it+1) := wmin.

This additional step can be added after Step 1 or after Step 2 or even after both
steps. The descent property of the algorithm is preserved in any case.

5. Numerical examples

The normalization discussed in Section 2 could be inserted in each iteration, but
practically it was sufficient to realize it after stopping the algorithm. For the exam-
ples given here we always used starting values for tk which were equally distributed
in [0, 1].

At first we tested the algorithm with 10 data points lying exactly on an ellipse
(Table 1). Table 2 shows results for fixed values of w. It is clear that S cannot tend
to zero for w ≥ 1. Table 3 presents results with w not being fixed. You can see
that even for starting values w(0) ≥ 1 the algorithm finds out w < 1, i.e. the type
identification works in this case.

k 1 2 3 4 5 6 7 8 9 10

x1k -1.799 -1.703 -1.573 -1.316 -0.414 -0.123 0.011 0.531 0.404 1.193
x2k -0.849 -0.262 -0.047 0.257 0.912 1.050 1.104 1.254 1.299 1.285

Table 1. Ten given points on an ellipse (rounded)

it 1 10 100 400 1000
w=0.2 S(it) 0.05970 0.00245 0.00020 0.00005 0.00000
w=0.4 S(it) 0.03903 0.00015 0.00004 0.00000 0.00000
w=0.6 S(it) 0.03826 0.00249 0.00098 0.00051 0.00003
w=0.8 S(it) 0.04373 0.00762 0.00316 0.00300 0.00259
w=1.0 S(it) 0.05063 0.01202 0.00532 0.00532 0.00532
w=1.2 S(it) 0.05761 0.01580 0.00725 0.00716 0.00699
w=1.6 S(it) 0.07088 0.02176 0.01053 0.01003 0.00923
w=2.0 S(it) 0.08321 0.02622 0.01323 0.01236 0.01097

Table 2. Values of S(it) for fixed w

it 1 10 100 400 1000

w(it) 0.5 0.4611 0.4348 0.4218 0.4238
w(0)=0.5 S(it) 0.03732 0.00061 0.00002 0.00000 0.00000

w(it) 1.0 0.8930 0.6552 0.4301 0.4116
w(0)=1.0 S(it) 0.05063 0.00983 0.00182 0.00003 0.00000

w(it) 2.0 1.7985 1.2520 0.5718 0.3818
w(0)=2.0 S(it) 0.08322 0.02388 0.00765 0.00137 0.00000

Table 3. Values of S(it) with type identification



Least squares fitting of conic sections 215

Next we considered two sets of data points given in Tables 4 and 6 which only
differ in four points. The first set ought to be best fitted by an ellipse, the second
one by a hyperbola (see also Figure 4 and 5). Indeed, when increasing the iterations,
the values of w develop in both cases correspondingly (see Tables 5 and 7).

k 1 2 3 4 5 6 7 8 9 10
x1k -2 -3 -4 -5 -4 -3 -1 1 2 4
x2k 4 3 2 0 -1 -2 -3 -4 -3 -2

Table 4. Scattered data points (set 1)

it 1 10 100 400 1000

w 0.5 0.4611 0.2671 0.2280 0.2270
w(0)=0.5 S(it) 2.01361 1.77644 1.01452 0.88163 0.88163

w(it) 1.0 0.9183 0.5192 0.2244 0.2235
w(0)=1.0 S(it) 3.27108 2.31068 1.86630 0.88163 0.88163

w(it) 2.0 1.7600 0.8175 0.3270 0.2177
w(0)=2.0 S(it) 5.54759 2.93128 2.23468 1.42053 0.88163

Table 5. Fitting with type identification

k 1 2 3 4 5 6 7 8 9 10
x1k -2 -3 -4 -5 -4 -3 -1 1 2 4
x2k 6 4 2 0 -1 -2 -3 -4 -4 -4

Table 6. Scattered data points (set 2)

it 1 10 100 400 1000

w(it) 0.5 0.5168 0.6917 1.3854 1.5600
w(0)=0.5 S(it) 1.10691 0.79854 0.67971 0.54138 0.53791

w(it) 1.0 1.0291 1.2360 1.5341 1.5723
w(0)=1.0 S(it) 1.43181 0.57987 0.55142 0.53807 0.53791

w(it) 2.0 1.9700 1.8344 1.6855 1.6529
w(0)=2.0 S(it) 2.95856 0.54929 0.54008 0.53798 0.53791

Table 7. Fitting with type identification (hyperbola)



216 I. Seufer and H. Späth

Figure 4. A fitted ellipse in a normalized NURBS parametrization

Figure 5. A fitted hyperbola in a normalized NURBS parametrization

Finally, we remark that the algorithm is easily adapted for ` = 3. A set of 14
data points in the space is given in Table 8. The fitted ellipse is shown in Figure 6.



Least squares fitting of conic sections 217

After 148 iterations we got

w = 0.789625 , S = 0.481444,
a = (1 .265 , 2 .159 , 2 .752 )T ,
b = (0 .071 , 1 .502 , 2 .716 )T ,
c = (−0 .658 , 0 .547 , 2 .349 )T

and after normalization

w =
√

2
2

, S = 0.481444,
a = (0 .299 , 1 .499 , 2 .643 )T ,
b = (−1 .295 , 0 .208 , 2 .337 )T ,
c = (−0 .907 ,−0 .185 , 1 .971 )T .

k 1 2 3 4 5 6 7
x1k 2.10 2.29 1.55 1.40 0.85 0.54 0.31
x2k 2.52 2.23 2.25 2.16 1.84 1.69 1.35
x3k 2.59 2.38 2.88 2.76 2.65 2.70 2.91

k 8 9 10 11 12 13 14
x1k 0.07 -0.45 -0.75 -0.66 -0.77 -0.25 -0.47
x2k 1.51 0.81 0.74 0.36 0.70 0.74 -0.28
x3k 2.53 2.52 2.52 2.35 2.01 2.26 1.94

Table 8. Data points in space

Figure 6. A fitted ellipse in space



218 I. Seufer and H. Späth

References

[1] I. N.Bronstein, K. A. Semendjajew, Taschenbuch der Mathematik , Verlag
Harri Deutsch, 1987.

[2] G. Farin, Curves and Surfaces for Computer Aided Geometric Design, Aca-
demic Press, 2nd ed., 1990.

[3] I. Seufer, Orthogonale Anpassung mit speziellen ebenen Kurven, Diplomarbeit,
Universität Oldenburg, 1996.

[4] H. Späth, Least-squares fitting by circles, Computing 57(1996), 179–185.

[5] H. Späth, Orthogonal least squares fitting by conic sections, in: Recent Ad-
vances in Total Least Squares Techniques and Errors-in-Variables Modelling,
(S. vanHuffel, Ed.), SIAM, Philadelphia, 1997, 259–264.

[6] H. Späth, Least-squares fitting of ellipses and hyperbolas, Computational Statis-
tics 12(1997), 329–341.

[7] Subroutine RPOLY, From: Collected Algorithms of the ACM, Nr. 493.

[8] Subroutine FMIN, From: G.E. Forsythe, M.A.Malcolm, C. .Moler – Computer
Methods for Mathematical Computations, Prentice Hall, 1977.

[9] Subroutine MGS, From: H. Späth – Mathematical Algorithms for Linear Regres-
sion, Academic Press, 1992.


