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Least squares fitting of conic sections with type

identification by NURBS of degree two

I. Seufer∗ and H. Späth†

Abstract. Fitting of conic sections is used in reflectometry, air-
craft industry, metrology, computer vision, astronomy and propagation
of sound waves [5]. So far numerical algorithms assume the type of the
conic section to be known in advance. We consider the problem of ad-
ditionally identifying the type during fitting, i.e. deciding whether the
given data are better fitted by an ellipse, a hyperbola or a parabola. To
solve this problem we apply a well-known descent algorithm [3, 4, 6] to
NURBS of degree two. Numerical examples will be given.
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1. Introduction

Let ((xik, i = 1, . . . , `), k = 1, . . . , m ≥ 5) be given measured data points in the
plane (` = 2) or in the space (` = 3). If some conic section of unknown type should
fit the data, you need some representation where the type is not yet specified. For
` = 2 such a representation is given by the implicit form

Ax2 + 2Bxy + Cy2 + 2Dx + 2Ey + F = 0 . (1)

Putting

a = det




A B D
B C E
D E F


 , b = det

(
A B
B C

)
, c = A + C , (2)

you will get a hyperbola for b < 0, a parabola for b = 0, and an ellipse for b > 0 in
the case of a 6= 0 ; for a = 0 there are some special cases like a pair of straight lines
[1].
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This implicit form cannot be used for a geometrical fit, where the sum of squared
(orthogonal) distances from the given data points to the conic section is minimized.
Only some parametric representation

xi = fi(t) (i = 1, ..., `)

is suitable. An example for ` = 2 is

x1 = α + p cos t , x2 = β + q sin t (0 ≤ t < 2π) ,

which represents an ellipse in the normal position with center (α, β) and axes p
and q. The only parametrization known to us, including the type of the conic as
parameter and being also valid for ` = 3, is that one by NURBS of degree two [2],
i.e. ` = 2 or ` = 3 functions

xi =
ai(1 − t)2 + 2biwt(1 − t) + cit

2

(1 − t)2 + 2wt(1 − t) + t2
, t ∈ [0, 1], i = 1, . . . , ` . (3)

Here a = (a1, . . . , a`)T , b = (b1, . . . , b`)T , c = (c1, . . . , c`)T are three defined
control points in the plane (` = 2) or in the space (` = 3) and w is a parameter
determining the type of the conic. For 0 < w < 1 equation (3) gives ellipses, for
w = 1 parabolas, and for w > 1 hyperbolas. (The case of w = 0 is not of interest to
us.) In (3) you also have to consider w > 0 and w < 0 simultaneously. For w > 0
you get that part of the conic lying in the convex hull of the control points and for
w < 0 the complementary part. In Figure 1 this is shown for an ellipse.

Figure 1. An ellipse represented by a NURB of degree 2

In the following we develop a descent algorithm similar to that one shown in
[3, 4, 5, 6]. It can be used for ` = 2 or ` = 3, i.e. for conic sections in the plane
or in the space. The control points a, b, and c, the type parameter w and the
parameter values t = (t1, . . . , tm)T , corresponding to those values tk ∈ [0, 1] where
the perpendicular through the k-th given data point onto the conic meets it, have
to be determined. As the conic consists of two parts we have to associate with each
tk some vk = w or vk = −w. Without loss of generality, we will always assume
w > 0.
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2. Normalization of the control points

For a given conic K you will find the NURBS parametrization as follows, see [2].
Choose two points a and c on K (together on one branch if it were hyperbola)
such that the tangents of K through these points have a finite crossing point b.
Then a, b, and c are possible control points. The corresponding value of w is easily
calculated (see [2, p. 226]). Thus some NURBS parametrization is far from being
unique (see Figure2). Only w < 1 or w = 1 or w > 1 is significant. This can also
be seen from the numerical examples in Section 5.

Figure 2. Different NURBS parametrizations of an ellipse

Depending on the given starting values for w and t the iterative method will
end up with corresponding values of a,b, c, w, and t.

In order to be able to compare results for w < 1 or w > 1 it is necessary to
normalize a,b, c, and w in some way. We will explain this for an ellipse in the
normal position in the plane, i.e. for

x2
1

p2
+

x2
2

q2
= 1 .

Defining

a =
(

0
q

)
, b =

(
−p

q

)
, c =

(
−p

0

)

we get w = ±
√

2
2 which can be verified when putting (3) into the above implicit

representation. A generalization for rotated ellipses (see Figure 3) is possible. Also
similar considerations can be done for the hyperbola and the parabola.
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Figure 3. An ellipse in a normalized NURBS parametrization

3. Descent algorithm

The function to be minimized for a geometrical fit is

S(a,b, c,v; t) =
∑̀

i=1

m∑

k=1

Sik(ai, bi, ci, vk; tk) (4)

where

Sik(ai, bi, ci, vk; tk) =
(

xik − ai(1 − tk)2 + 2bivktk(1 − tk) + cit
2
k

(1 − tk)2 + 2vktk(1 − tk) + t2k

)2

. (5)

Here we have vk = w or vk = −w and t ∈ [0, 1). Regarding some fixed value of
w the necessary conditions for a local minimum of (4) are

∂S

∂ai
=

∂S

∂bi
=

∂S

∂ci
= 0 for i = 1, . . . , ` (6)

and

∂S

∂tk
= 0 for k = 1, . . . , m . (7)

The conditions (6) give for each i ∈ {1, . . . , `} a linear system of three equations
with three unknowns. If we define

Nk := (1 − tk)2 + 2vktk(1 − tk) + t2k , (8)
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then for i ∈ {1, . . . , `} we have

∂S

∂ai
=

m∑

k=1

∂Sik

∂ai
= 0

⇔
m∑

k=1

(
xik − ai(1 − tk)2 + 2bivktk(1 − tk) + cit

2
k

Nk

)
· (1 − tk)2

Nk
= 0

⇔ ai

m∑

k=1

(1− tk)4

N2
k

+ bi

m∑

k=1

2vktk(1− tk)3

N2
k

+ ci

m∑

k=1

t2k(1− tk)2

N2
k

=
m∑

k=1

xik
(1− tk)2

Nk
.

Similar calculations for bi and ci give altogether ` systems

Azi = di (9)

with a common symmetric coefficient matrix

A =




m∑

k=1

(1− tk)4

N2
k

m∑

k=1

2vktk(1− tk)3

N2
k

m∑

k=1

t2k(1− tk)2

N2
k

m∑

k=1

2vktk(1− tk)3

N2
k

m∑

k=1

4v2
kt2k(1− tk)2

N2
k

m∑

k=1

2vkt3k(1− tk)
N2

k
m∑

k=1

t2k(1− tk)2

N2
k

m∑

k=1

2vkt3k(1− tk)
N2

k

m∑

k=1

t4k
N2

k




∈ R3×3,

and with vectors

di =




m∑

k=1

xik
(1− tk)2

Nk

m∑

k=1

xik
2vktk(1− tk)

Nk

m∑

k=1

xik
t2k
Nk




∈ R3 and zi =




ai

bi

ci


 ∈ R3.

As A = AT is a matrix of normal equations, it is nonsingular if at least two tk
are different. Thus the ` systems (9) normally are uniquely solvable. Numerically
we solve the corresponding overdetermined linear systems with the modified Gram-
Schmidt method (see [9, Subroutine MGS]).

Calculating (7) you can see that tk only appears in the k-the term of S. Thus
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we temporarily omit the index k and write

t := tk,

xi := xik,

v := vk,

Zi := ai(1 − t)2 + 2bivt(1 − t) + cit
2,

N := Nk,

Si :=
(

xi −
Zi

N

)2

= Sik .

Then for each k ∈ {1, . . . , m} we have

∂S

∂tk
=

∑̀

i=1

∂Si

∂t
= 0

⇔
∑̀

i=1

Si

∂Zi

∂t N − Zi
∂N
∂t

N2
=

1
N3

∑̀

i=1

(Nxi − Zi)
(

∂Zi

∂t
N − Zi

∂N

∂t

)
= 0 .

After a multiplying by N3 we get the equation

∑̀

i=1

(Nxi − Zi)
(

∂Zi

∂t
N − Zi

∂N

∂t

)
= 0 . (10)

As the functions N and Zi are polynomials of degree two, the equation (10) also is
a polynomial equation. After some lengthy calculations we get

∑̀

i=1

4∑

j=0

pijt
j =

∑̀

i=1

pi4t
4 +

∑̀

i=1

pi3t
3 +

∑̀

i=1

pi2t
2 +

∑̀

i=1

pi1t +
∑̀

i=1

pi0 = 0 (11)

where

pi4 = αi(v − 1)(2(v − 1)xi − αi + γi),
pi3 = −αi(v − 1)(2(v − 1)xi + γi) + δi(2(v − 1)xi − αi + γi),
pi2 = αi(v − 1)ai − δi(3(v − 1)xi + γi) + βiv(bi − xi),
pi1 = δi(ai − xi) + βiv(2(v − 1)xi + γi),
pi0 = v(bi − ai)(xi − ai),

and

αi := (ai − ci) , βi := (bi − ai) , γi := 2(ai − biv) , δi := αi + 2βiv.

Thus the conditions (7) are m polynomial equations of degree four. Only for vk = 1
the degree will be three. All zeros can be calculated either in closed form [1] or by
some polynomial solver like RPOLY [7]. The existence of at least one real solution
tk can be assumed [6]. In the case of several real solutions tk we select that one
that minimizes the k-th term of S. (Thus the error vectors will be perpendicular to
the actual conic.) This guarantees the descent property of the following algorithm
for a fixed value of w:
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Step 0. Let suitable starting values t
(0)
1 , . . . , t

(0)
m be given (see remark be-

low). Set it = 0 (number of iterations).

Step 1. Solve the linear systems (9) with tk := t
(it)
k , k = 1, . . . , m and

thus determine

a
(it+1)
i := ai , b

(it+1)
i := bi , c

(it+1)
i := ci , i = 1, . . . , ` .

Step 2. Solve the m single equations (10) with

ai := a
(it+1)
i , bi := b

(it+1)
i , ci := c

(it+1)
i , i = 1, . . . , `

and select that real solution tk that minimizes Sk := S1k+· · ·+S`k .
Set

t
(it+1)
k := tk , it := it + 1 .

If you are beyond a given maximal number of iterations or if the
unknowns or the value of S do not longer change significantly,
then stop; otherwise go back to Step 1.

Remark: A general method of estimating t
(0)
k (k = 1, . . . , m) cannot be recom-

mended. If the data indicate only some part of some conic, then choosing the t
(0)
k

equidistant in [0, 1) is one possibility whereas, when the data are indicating some
whole conic, the interval [−1, 2) was more successful for the first iteration. Also,
ordering the given data points ((xik, i = 1, . . . , `), k = 1, . . . , m) in some way and
numbering the t

(0)
k (k = 1, . . . , m) correspondingly may be a good advice. Never-

theless, different starting values may produce different local minima. Thus it is a
natural mean to vary those values corresponding to several heuristics.

4. Identification of the type of the conic section

So far the algorithm only works for a fixed value of w. To determine also w, when
minimizing S, requires to solve in addition to (6) and (7) the necessary condition

∂S

∂w
= 0 . (12)

However, as w appears in each term of S, (12) would give a polynomial equation
of degree 3m − 2, where m is the number of given points. The numerical solution
of polynomials of such high degree (m = 20 means degree 58) is not easy, but it
empirically turned out that S as a function of w for given a,b, c, and t is unimodal
within a symmetrical interval with midpoint w0, e.g. within [w0−.05, w0+.05]. Thus
it is possible to minimize S with some method that does not need the derivative of
S with respect to w. Such a method is realized, e.g. in the subroutine FMIN [8].

Consequently, our algorithm from Section 3 is supplemented by
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Step 3. For given values ai = a
(it)
i , bi = b

(it)
i , ci = c

(it)
i , and ti = t

(it)
i

we calculate in a suitable interval with midpoint w0 = w(it) a
minimum wmin of S. Then we put w(it+1) := wmin.

This additional step can be added after Step 1 or after Step 2 or even after both
steps. The descent property of the algorithm is preserved in any case.

5. Numerical examples

The normalization discussed in Section 2 could be inserted in each iteration, but
practically it was sufficient to realize it after stopping the algorithm. For the exam-
ples given here we always used starting values for tk which were equally distributed
in [0, 1].

At first we tested the algorithm with 10 data points lying exactly on an ellipse
(Table 1). Table 2 shows results for fixed values of w. It is clear that S cannot tend
to zero for w ≥ 1. Table 3 presents results with w not being fixed. You can see
that even for starting values w(0) ≥ 1 the algorithm finds out w < 1, i.e. the type
identification works in this case.

k 1 2 3 4 5 6 7 8 9 10

x1k -1.799 -1.703 -1.573 -1.316 -0.414 -0.123 0.011 0.531 0.404 1.193
x2k -0.849 -0.262 -0.047 0.257 0.912 1.050 1.104 1.254 1.299 1.285

Table 1. Ten given points on an ellipse (rounded)

it 1 10 100 400 1000
w=0.2 S(it) 0.05970 0.00245 0.00020 0.00005 0.00000
w=0.4 S(it) 0.03903 0.00015 0.00004 0.00000 0.00000
w=0.6 S(it) 0.03826 0.00249 0.00098 0.00051 0.00003
w=0.8 S(it) 0.04373 0.00762 0.00316 0.00300 0.00259
w=1.0 S(it) 0.05063 0.01202 0.00532 0.00532 0.00532
w=1.2 S(it) 0.05761 0.01580 0.00725 0.00716 0.00699
w=1.6 S(it) 0.07088 0.02176 0.01053 0.01003 0.00923
w=2.0 S(it) 0.08321 0.02622 0.01323 0.01236 0.01097

Table 2. Values of S(it) for fixed w

it 1 10 100 400 1000

w(it) 0.5 0.4611 0.4348 0.4218 0.4238
w(0)=0.5 S(it) 0.03732 0.00061 0.00002 0.00000 0.00000

w(it) 1.0 0.8930 0.6552 0.4301 0.4116
w(0)=1.0 S(it) 0.05063 0.00983 0.00182 0.00003 0.00000

w(it) 2.0 1.7985 1.2520 0.5718 0.3818
w(0)=2.0 S(it) 0.08322 0.02388 0.00765 0.00137 0.00000

Table 3. Values of S(it) with type identification
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Next we considered two sets of data points given in Tables 4 and 6 which only
differ in four points. The first set ought to be best fitted by an ellipse, the second
one by a hyperbola (see also Figure 4 and 5). Indeed, when increasing the iterations,
the values of w develop in both cases correspondingly (see Tables 5 and 7).

k 1 2 3 4 5 6 7 8 9 10
x1k -2 -3 -4 -5 -4 -3 -1 1 2 4
x2k 4 3 2 0 -1 -2 -3 -4 -3 -2

Table 4. Scattered data points (set 1)

it 1 10 100 400 1000

w 0.5 0.4611 0.2671 0.2280 0.2270
w(0)=0.5 S(it) 2.01361 1.77644 1.01452 0.88163 0.88163

w(it) 1.0 0.9183 0.5192 0.2244 0.2235
w(0)=1.0 S(it) 3.27108 2.31068 1.86630 0.88163 0.88163

w(it) 2.0 1.7600 0.8175 0.3270 0.2177
w(0)=2.0 S(it) 5.54759 2.93128 2.23468 1.42053 0.88163

Table 5. Fitting with type identification

k 1 2 3 4 5 6 7 8 9 10
x1k -2 -3 -4 -5 -4 -3 -1 1 2 4
x2k 6 4 2 0 -1 -2 -3 -4 -4 -4

Table 6. Scattered data points (set 2)

it 1 10 100 400 1000

w(it) 0.5 0.5168 0.6917 1.3854 1.5600
w(0)=0.5 S(it) 1.10691 0.79854 0.67971 0.54138 0.53791

w(it) 1.0 1.0291 1.2360 1.5341 1.5723
w(0)=1.0 S(it) 1.43181 0.57987 0.55142 0.53807 0.53791

w(it) 2.0 1.9700 1.8344 1.6855 1.6529
w(0)=2.0 S(it) 2.95856 0.54929 0.54008 0.53798 0.53791

Table 7. Fitting with type identification (hyperbola)
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Figure 4. A fitted ellipse in a normalized NURBS parametrization

Figure 5. A fitted hyperbola in a normalized NURBS parametrization

Finally, we remark that the algorithm is easily adapted for ` = 3. A set of 14
data points in the space is given in Table 8. The fitted ellipse is shown in Figure 6.
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After 148 iterations we got

w = 0.789625 , S = 0.481444,
a = (1 .265 , 2 .159 , 2 .752 )T ,
b = (0 .071 , 1 .502 , 2 .716 )T ,
c = (−0 .658 , 0 .547 , 2 .349 )T

and after normalization

w =
√

2
2

, S = 0.481444,
a = (0 .299 , 1 .499 , 2 .643 )T ,
b = (−1 .295 , 0 .208 , 2 .337 )T ,
c = (−0 .907 ,−0 .185 , 1 .971 )T .

k 1 2 3 4 5 6 7
x1k 2.10 2.29 1.55 1.40 0.85 0.54 0.31
x2k 2.52 2.23 2.25 2.16 1.84 1.69 1.35
x3k 2.59 2.38 2.88 2.76 2.65 2.70 2.91

k 8 9 10 11 12 13 14
x1k 0.07 -0.45 -0.75 -0.66 -0.77 -0.25 -0.47
x2k 1.51 0.81 0.74 0.36 0.70 0.74 -0.28
x3k 2.53 2.52 2.52 2.35 2.01 2.26 1.94

Table 8. Data points in space

Figure 6. A fitted ellipse in space
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