Necessary and sufficient condition for L^1 -convergence of cosine trigonometric series with δ -quasimonotone coefficients

ŽIVORAD TOMOVSKI*

Abstract. For a cosine trigonometric series with coefficients in the class $S_p(\delta)$, $1 , the necessary and sufficient condition for <math>L^1$ -convergence is obtained.

Key words: δ -quasi-monotone sequence, cosine trigonometric series, Fourier series, Dirichlet kernel, Abel's transformation, Holder inequality, Hausdorff-Young inequality, L^1 -convergence of Fourier series

AMS subject classifications: 26D15,42A20

Received February 15, 1999 Accepted July 17, 1999

1. Introduction

Let f be a 2π -periodic and even function in $L^1(0,\pi)$, and let $\{a_k\}$ be the sequence of its Fourier coefficients. Denote by $\mathcal J$ the class of sequences of Fourier coefficients of all such functions. It is well known that, in general, it does not follow from $\{a_n\} \in \mathcal J$ that

$$S_n(x) = \frac{a_0}{2} + \sum_{k=1}^n a_k \cos kx$$
 (1)

converges to f in the L^1 -norm, i.e. it does not follow that $||S_n - f|| = o(1), n \to \infty$. There is a classical example for which $||S_n - f|| = o(1), n \to \infty$ is equivalent with $a_n \log n = o(1), n \to \infty$.

Telyakovskii [8] introduced the following class S. A sequence $\{a_k\}$ belongs to the class S if $a_k \to 0$ as $k \to \infty$ and there exists a monotonically decreasing sequence

$$\{A_k\}$$
 such that $\sum_{k=1}^{\infty} A_k < \infty$ and $|\Delta a_k| \le A_k$, for all k . A sequence $\{a_k\}$ of positive

numbers is said to be quasi-monotone if $a_k \to \infty$ as $k \to 0$ and $\Delta a_k \ge -\beta \frac{a_k}{k}$, for some $\beta > 0$.

A sequence $\{a_k\}$ is said to be δ -quasi-monotone if $a_k \to 0$, $a_k > 0$, ultimately, and $\Delta a_k \ge -\delta_k$, where $\{\delta_k\}$ is a sequence of positive numbers.

^{*}Faculty of Mathematical and Natural Sciences, PO BOX 162, 91000 Skopje, Macedonia, e-mail: tomovski@iunona.pmf.ukim.edu.mk

220

A sequence $\{a_k\}$ is said to satisfy condition S', if $a_k \to 0$ as $k \to \infty$ and there exists a sequence $\{A_k\}$ such that $\{A_k\}$ is quasi-monotone, $\sum_{k=1}^{\infty} A_k < \infty$, $|\Delta a_k| \le A_k$, for all k.

On the other hand, a sequence $\{a_k\}$ is said to satisfy condition $S(\delta)$, if $a_k \to 0$ as $k \to \infty$ and there exists a sequence $\{A_k\}$ such that $\{A_k\}$ is δ -quasi-monotone, $\sum_{k=1}^{\infty} A_k < \infty, \sum_{k=1}^{\infty} k \delta_k < \infty \text{ and } |\Delta a_k| \le A_k, \text{ for all } k.$

Now, we say that a null-sequence $\{a_k\}$ belongs to the class $S_p(\delta)$, $1 if there exists a sequence of numbers <math>\{A_k\}$ such that:

- (a) $\{A_k\}$ is δ -quasi-monotone and $\sum_{k=1}^{\infty} k \, \delta_k < \infty$.
- (b) $\sum_{k=1}^{\infty} A_k < \infty.$
- (c) $\frac{1}{n} \sum_{k=1}^{n} \frac{|\Delta a_k|^p}{A_k^p} = O(1).$

Thus, in view of the above definitions it is obvious that $S' \subset S(\delta) \subset S_p(\delta)$.

2. Lemmas

For the proof of our theorem we require the following lemmas.

Lemma 1. (Hausdorff-Young, see [3]) Let the sequence of complex numbers $\{c_n\} \in l^p$, $1 . Then <math>\{c_n\}$ is the sequence of Fourier coefficients of some $\varphi \in L^q\left(\frac{1}{p} + \frac{1}{q} = 1\right)$, and

$$\left(\frac{1}{2\pi} \int_{0}^{2\pi} |\varphi(x)|^q dx\right)^{1/q} \le \left(\sum_{n=-\infty}^{\infty} |c_n|^p\right)^{1/p}.$$

Lemma 2. (see [1],[11] case v=1) If $\{a_n\}$ is a δ -quasi-monotone sequence with $\sum_{n=1}^{\infty} n\delta_n < \infty$, then the convergence of $\sum_{n=1}^{\infty} a_n$ implies that $na_n = o(1), n \to \infty$.

Lemma 3. (see [11]) Let $\{a_n\}$ be a δ -quasi-monotone sequence with $\sum_{n=1}^{\infty} n\delta_n < \infty$.

If
$$\sum_{n=1}^{\infty} a_n < \infty$$
, then $\sum_{n=1}^{\infty} (n+1) |\Delta a_n| < \infty$.

Lemma 4. Let the coefficients of the series (1) satisfy the condition $S_p(\delta)$, 1 . Then the following relations hold

a)
$$\int_{0}^{\pi} \left| \sum_{j=0}^{k} \frac{\Delta a_{j}}{A_{j}} D_{j}(x) \right| dx = O_{p}(k), \text{ where } O_{p} \text{ depends on } p.$$

b)
$$A_n \int_0^{\pi} \left| \sum_{j=0}^n \frac{\Delta a_j}{A_j} D_j(x) \right| dx = o(1), n \to \infty.$$

Proof. a) We have

$$\int_{0}^{\pi} \left| \sum_{j=0}^{k} \frac{\Delta a_{j}}{A_{j}} D_{j}(x) \right| dx = \int_{0}^{\pi/k} + \int_{\pi/k}^{\pi} = I_{k} + J_{k}.$$

Recalling the uniform estimate of the Dirichlet kernel we have:

$$I_k \le A \sum_{j=0}^k \frac{|\Delta a_j|}{A_j} \le Ak \left(\frac{1}{k} \sum_{j=0}^k \frac{|\Delta a_k|^p}{A_j^p}\right)^{1/p}$$

where A is an absolute constant.

To estimate the second integral:

$$J_{k} = \int_{\pi/k}^{\pi} \left| \sum_{j=0}^{k} \frac{\Delta a_{j}}{A_{j}} D_{j}(x) \right| dx = \int_{\pi/k}^{\pi} \frac{1}{2 \sin \frac{x}{2}} \left| \sum_{j=0}^{k} \frac{\Delta a_{j}}{A_{j}} \sin \left(j + \frac{1}{2} \right) x \right| dx.$$

We shall first apply the Holder inequality, where $\frac{1}{p} + \frac{1}{q} = 1$,

$$J_k \le \left[\int_{\pi/k}^{\pi} \left(\frac{1}{2\sin\frac{x}{2}} \right)^p dx \right]^{1/p} \left[\int_{0}^{\pi} \left| \sum_{j=0}^{k} \frac{\Delta a_j}{A_j} \sin\left(j + \frac{1}{2}\right) x \right|^q dx \right]^{1/q}.$$

Since

$$\int_{\pi/k}^{\pi} \frac{dx}{\left(\sin\frac{x}{2}\right)^{p}} \le \pi^{p} \int_{\pi/k}^{\pi} \frac{dx}{x^{p}} \le \frac{\pi}{p-1} k^{p-1} \,,$$

it follows that

$$J_k \le \frac{1}{2} \left(\frac{\pi}{p-1} \right)^{1/p} k^{(p-1)/p} \left[\int_0^{\pi} \sum_{j=0}^k \left| \frac{\Delta a_j}{A_j} \sin \left(j + \frac{1}{2} \right) x \right|^q dx \right]^{1/q}.$$

Then using the Hausdorff-Young inequality we get:

$$\left[\int\limits_0^\pi \left|\sum_{j=0}^k \frac{\Delta a_j}{A_j} \sin\left(j+\frac{1}{2}\right) x\right|^q dx\right]^{1/q} \leq \left[\int\limits_0^\pi \sum_{j=0}^k \left|\frac{\Delta a_j}{A_j} e^{ijx}\right|^q dx\right]^{1/q} \leq \left(\sum_{j=0}^k \frac{|\Delta a_j|^p}{A_j^p}\right)^{1/p}.$$

222

Finally,

$$J_k \le B_p \left(\frac{1}{k} \sum_{j=0}^k \frac{|\Delta a_j|^p}{A_j^p} \right)^{1/p},$$

where B_p is an absolute constant dependent on p. Thus

$$\int_{0}^{\pi} \left| \sum_{j=0}^{k} \frac{\Delta a_j}{A_j} D_j(x) \right| dx = O_p(k).$$

b) Applying first the relation a) of this lemma, then Lemma 2 yields

$$\int_{0}^{\pi} \left| \sum_{j=0}^{n} \frac{\Delta a_j}{A_j} D_j(x) \right| dx = O_p(nA_n) = o(1), \quad n \to \infty.$$

3. Main result

Theorem 1. Let $\{a_k\} \in S_p(\delta)$, $1 . Then (11) is a Fourier series of some <math>f \in L^1(0,\pi)$ and $||S_n - f|| = o(1)$, $n \to \infty$ if and only if $a_n \log n = o(1)$, $n \to \infty$.

Proof. By summation by parts, we have:

$$\begin{split} \sum_{k=1}^{n} |\Delta a_{k}| &= \sum_{k=1}^{n} A_{k} \frac{|\Delta a_{k}|}{A_{k}} \leq \sum_{k=1}^{n-1} |\Delta A_{k}| \sum_{j=1}^{k} \frac{|\Delta a_{j}|}{A_{j}} + A_{n} \sum_{j=1}^{n} \frac{|\Delta a_{j}|}{A_{j}} \\ &\leq \sum_{k=1}^{n-1} k |\Delta A_{k}| \left(\frac{1}{k} \sum_{j=1}^{k} \frac{|\Delta a_{j}|^{p}}{A_{j}^{p}} \right)^{1/p} + n A_{n} \left(\frac{1}{n} \sum_{j=1}^{n} \frac{|\Delta a_{j}|^{p}}{A_{j}^{p}} \right)^{1/p} \\ &= O(1) \left[\sum_{k=1}^{n-1} k |\Delta A_{k}| + n A_{n} \right] \leq O(1) \left[\sum_{k=1}^{n-1} (k+1) |\Delta A_{k}| + n A_{n} \right]. \end{split}$$

Application of Lemma 2 and Lemma 3 yields, $\sum_{n=1}^{\infty} |\Delta a_n| < \infty$, i.e. $S_n(x)$ converges to f(x), for $x \neq 0$.

Using Abel's transformation, we obtain:

$$f(x) = \sum_{k=0}^{\infty} \Delta a_k D_k(x),$$

by the fact that $\lim_{n\to\infty} a_n D_n(x) = 0$, if $x\neq 0$, where $D_n(x)$ is the Dirichlet kernel.

Then,

$$||S_n - f|| = \left\| \frac{a_0}{2} + \sum_{k=1}^n a_k \cos kx - f(x) \right\|$$

$$= \left\| \frac{a_0}{2} - \frac{a_{n+1}}{2} + \sum_{k=1}^n (a_k - a_{n+1}) \cos kx - f(x) + \frac{a_{n+1}}{2} + \sum_{k=1}^n a_{n+1} \cos kx \right\|$$

$$= \left\| \frac{1}{2} \sum_{k=0}^n \Delta a_k + \sum_{k=1}^n \sum_{j=k}^n \Delta a_j \cos kx - f(x) + a_{n+1} D_n(x) \right\|$$

$$= \|g_n(x) - f(x) + a_{n+1} D_n(x)\|,$$

where $g_n(x) = \frac{1}{2} \sum_{k=0}^n \Delta a_k + \sum_{k=1}^n \sum_{j=k}^n \Delta a_j \cos kx$ are the Rees-Stanojević sums (see [2],[6],[7]).

We have:

$$g_n(x) = \frac{\Delta a_0}{2} + \sum_{k=1}^n \left(\frac{1}{2} \Delta a_k + \sum_{j=k}^n \Delta a_j \cos kx \right)$$

= $\frac{\Delta a_0}{2} + \sum_{k=1}^n \frac{1}{2} \Delta a_k + \sum_{k=1}^n a_k \cos kx - a_{n+1} D_n(x) + \frac{1}{2} a_{n+1}.$

Using Abel's transformation, we obtain:

$$g_n(x) = \frac{\Delta a_0}{2} + \sum_{k=1}^{n} \frac{1}{2} \Delta a_k + \sum_{k=1}^{n-1} \Delta a_k \left(D_k(x) - \frac{1}{2} \right) + a_n \left(D_n(x) - \frac{1}{2} \right) - a_{n+1} D_n(x) + \frac{1}{2} a_{n+1}$$

$$= \Delta a_0 D_0(x) + \sum_{k=1}^{n-1} \Delta a_k D_k(x) + a_n D_n(x) - a_{n+1} D_n(x)$$

$$= \sum_{k=0}^{n} \Delta a_k D_k(x) .$$

Since $\sum_{n=1}^{\infty} |\Delta a_n| < \infty$, the series $\sum_{k=0}^{\infty} \Delta a_k D_k(x)$ converges. Hence $\lim_{n\to\infty} g_n(x)$ exists for $x\neq 0$.

$$||f(x) - g_n(x)|| = \left\| \sum_{k=n+1}^{\infty} \Delta a_k D_k(x) \right\| = \frac{1}{\pi} \int_{0}^{\pi} \left| \sum_{k=n+1}^{\infty} \Delta a_k D_k(x) \right| dx.$$

Application of Abel's transformation and Lemma 4.b) yields

$$\int_{0}^{\pi} \left| \sum_{k=n+1}^{\infty} A_k \frac{\Delta a_k}{A_k} D_k(x) \right| dx \le \sum_{k=n+1}^{\infty} |\Delta A_k| \int_{0}^{\pi} \left| \sum_{j=0}^{k} \frac{\Delta a_j}{A_j} D_j(x) \right| dx + o(1), \quad n \to \infty.$$

Then, by Lemma 4.a) and Lemma 3, we have:

$$\int_{0}^{\pi} \left| \sum_{k=n+1}^{\infty} \Delta a_{k} D_{k}(x) \right| dx = O_{p} \left(\sum_{k=n+1}^{\infty} |\Delta A_{k}| (k+1) \right) + o(1) = o(1), \ n \to \infty.$$

Thus $||f(x) - g_n(x)|| = o(1), n \to \infty$. "If": Let $||S_n - f|| = o(1), n \to \infty$, then by the formulae:

$$S_n(x) = q_n(x) + a_{n+1}D_n(x),$$

we get:

$$||a_{n+1}D_n(x)|| = ||S_n - g_n|| \le ||S_n - f|| + ||f - g_n|| = o(1) + o(1), \quad n \to \infty.$$

Since $||D_n(x)|| = O(\log n)$, we have, $a_n \log n = o(1)$, $n \to \infty$. "Only if": Let $a_n \log n = o(1)$, $n \to \infty$. Then,

$$||S_n - f|| \le ||g_n - f|| + ||a_{n+1}D_n(x)|| = o(1) + a_{n+1}O(\log n) = o(1), \ n \to \infty.$$

References

- [1] R. P. Boas, Quasi-positive sequence and trigonometric series, Proc. Lond. Math. Soc. 14A(1965), 38–48.
- [2] C. S. Rees, Č. V. Stanojević, Necessary and sufficient condition for integrability of certain cosine sums, J. Math. Anal. Appl. 43(1973), 579–586.
- [3] P. L. Duren, Theory of H^p spaces, Academic Press, New York, 1970.
- [4] G. A. FOMINE, On linear method for summing Fouries series, Mat. Sb. **66**(107)(1964), 144–152.
- [5] J. W. GARRET, Č. V. STANOJEVIĆ, On L¹ convergence of certain cosine sums, Proc. Amer. Math. Soc. 54(1976), 101–105.
- [6] J. W. Garret, Č. V. Stanojević, Necessary and sufficient condition for L¹ convergence of trigonometric series, Proc. Amer. Math. Soc. **60**(1976), 68–71.
- [7] B. HÜSEYN, Integrability of Rees-Stanojević sums, Tamkang. J. Math. 15(1984), 157–160.
- [8] S. A. Telyakovskii, Concerning a sufficient condition of Sidon for the integrability of trigonometric series, Math. Zametki 14(1973), 742–748.
- [9] Z. Tomovski, An application of the Hausdorff-Young integrability, Math. Ineq. & Applications 1(1998), 527–532.
- [10] Ž. Tomovski, A note on some classes of Fourier coefficients, Math. Ineq. & Applications 2(1999), 15–18.
- [11] S. A. Z. Zahid, Integrability of trigonometric series, Tamkang. J. Math. **21**(1990), 295–301.