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Absolute polarity on the sphere; conics;

loxodrome, tractrix∗†

Hans Dirnböck‡

Abstract. Elements in the bundle and on the sphere, distance, angle
and absolute polarity are explained. The spherical conic has an absolute
polar conic, they are equidistant to each other; they have the same evo-
lute curve. The well-known focus-properties are absolutely polarized.

The loxodrome and the spherical evolute curve are presented. Polar-
izing the loxodrome there results a spherical tractrix. Kinematic gener-
ation of these curves is shown.
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1. Geometry in the bundle

In the EUKLIDean R3 we fix one point O(0/0/0) and so we get the nonEUKLIDean
elliptic geometry in the bundle with the elements:
straight lines 3 O, named “points”
planes 3 O, named “straight lines”.

Further we have:
cones of rotation, spit O, named “circles”
cones of 2nd deg., spit O, named “curves of 2nd degree”
cones, spit O, named “curves”
angles, formed by two straight lines, named “distance between points”
angles, formed by two planes, named “angles between straight lines”

∗The lecture presented at the Mathematical Colloquium in Osijek organized by Croatian
Mathematical Society - Division Osijek, April 23, 1999.

†The author wants to express his best thanks to the referee and to the editorial staff.
‡Institute of Mathematics, Statistics and Didactics, University of Klagenfurt, Univer-

sitätsstrasse 65, A-9 020 Klagenfurt, Austria, e-mail: hans.dirnboeck@uni-klu.ac.at
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a straight line 3 O
and a plane 3 O
which are orthogonal (⊥)
are absolutely polar

This situation
is named

“a point
and a straight line
which are orthogonal (⊥)
are absolutely polar”

Often we calculate with CARTESian coordinates and vectors. All elements and
shapes are extended in both directions from O. We write ⊥= 90o = 100g = π/2.

Figure 1.1. The bundle. All elements and shapes are extended in both directions
from O!

2. Geometry on the sphere

We introduce the unit sphere K with center O

x2 + y2 + z2 = 1; (2.1)

all elements and shapes of 1. are intersected with this sphere. Now we get:
pairs of points, named “points”
great circles, named “straight lines”
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pairs of small circles, named ”circles”
“curves of 2nd degree”
“curves”
“distance between points”
“angles between straight lines”

If
_

point1point2 = π
2 , we are allowed to say “orthogonal points”.

If ̂straight line1straight line2 = π
2 , we say “orthogonal straight lines”.

If a point and a straight line which have the shortest distance = π
2 , are absolutely

polar, we are allowed to say that “they are orthogonal”.

This well-known transformation P which transforms points into straight lines,
so that distance = π

2 , is the absolute polarity P, in this paper short polar-
ity P. We remark that P transforms distances into angles. P is an involutoric
transformation, so that P ◦P = I = identity.

The geometries in the bundle 1. and on the sphere 2. are isomorphic; there
remain only questions of convenience, visualization, didactics, calculation, comput-
ing, constructive and descriptive geometry to choose the method of work. Often we
use spherical trigonometry. It is allowed to use the vocabulary of geography.

A line element is a point with direction. P transforms such a line element into
a line element.
Let “*” be the symbol for absolutely polarized elements.

We write P ∗ = P ◦ P or P ∗ ⊥ P , where P is a point, but P ∗ is a straight line,
we speak: P ∗ is the polar line of P .

We write g∗ = P ◦ g or g∗ ⊥ g, where g is a straight line, but g∗ is a point, we
speak: g∗ is the pole of g.

P =point
g = straight line
c =circle

_

PQ =distance
ĝh =angle
P ⊥ g
Q ⊥ h

_

PQ = ĝh

Figure 2.1. The sphere
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3. Spherical conics c

A cone Φ of 2nd degree has 3 midpoints, which we put into:

U = x− axis ∩K
V = y − axis ∩K

}
are on the “equator” ä

W = z − axis∩K = the “north pole” and the “south pole”.

Now Φ can be written as

Φ · · · x2

tan2 a
+

y2

tan2 b
− z2 = 0 (3.1)

0 < b ≤ a <
π

2
, (3.2)

where a and b are the half lengths of the axes of Φ in the bundle.
Now the spherical conic c is

c = K ∩ Φ, c = (2.1) ∩ (3.1), let (3.2) (3.3)

a and b are the half spherical lengths of the axes of c.
Eliminating x or y or z from (3.3) you can get the front view, the side view, the

top view, the formulas for Figure 3.1. Sometimes it is clever to work in the planes
z = 1 or z = −1:

cz = Φ ∩ (z = ±1) · · · x2

tan2 a + y2

tan2 b = 1

AND z = ±1



 (3.4)

cz · · · x = cos T tan a
y = sinT tan b
z = ±1



 (3.5)

Now we have

c · · · R =
√

(cos T tan a)2 + (sinT tan b)2 + 1

x = 1
R

cos T tan a

y = 1
R sinT tan b

z = ± 1
R





(3.6)
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Figure 3.3. c and cz, a = π
3
, b = π

6

The figure also shows for the next chapter: k = circle of curvature, eva = evolute
curve of c, evaz = [eva O] ∩ (z = −1).
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4. Spherical evolute curve eva

Let
m = sin2 a−sin2 b

sin a cosa

n = sin2 b−sin2 a
sin b cos b



 (4.1)

Then we get the evolutic cone of c as

[O eva] ...
( x
m

) 2
3

+
( y
n

)2
3

= z
2
3 (4.2)

evaz ...
(

x
m

) 2
3 +

(
y
n

) 2
3 = 1

AND z = ±1



 (4.3)

evaz · · · x = m cos3 T
y = n sin3 T
z = ±1



 (4.4)

eva · · · R =
√
m2 cos6 T + n2 sin6 T + 1

x = m
R cos3 T

y = n
R sin3 T

z = ± 1
R





(4.5)

(4.1) shows that we have the chance to find a nontrivial equilateral spherical evolute
curve, the condition is

a + b =
π

2
. (4.6)

An equilateral evolute curve of an ellipsis cannot appear in EUKLIDean geometry!
The case (4.6) and all facts of Section 4 are shown in Figure 3.3.
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5. Absolute polarization of the conic c

Figure 5.1. Conic c and the absolute polar conic c∗

c is to be polarized. By P the line element P with t is transformed into the line
element P ∗ with t∗, c is transformed into c∗.

c has a and b due to 3.,

c∗ has a∗ =
π

2
− a, b∗ =

π

2
− b (5.1)

as new spherical half lengths of the axes.

The distance
_

Pt∗ = π
2 and n = [P t∗] rolls on eva, while P and t∗ draw the

paths c and c∗, while t and P ∗ envelop c and c∗; c and c∗ are equidistant curves. c
and c∗ have the same evolute curve eva.
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Figure 5.2. As in Figure 5.1, we can additionally see the octant P t∗ n∗ and the
path eva∗.

We can absolutely polarize eva and we get eva∗. The points P t∗ n∗ form a
spherical octant: the three angles have π

2 , the three edges have π
2 .

When n is rolling on eva, n∗ draws the path eva∗.
In the language of spherical kinematic geometry: eva is the fixed polhode, n is the
moving polhode of this spherical motion.
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6. Focus-properties of the spherical conic c

A didactical trick: we begin with c∗. The spherical conic c∗ has the well-known foci
F ∗

1 and F ∗
2 . c∗ has the well-known properties

_

F ∗
1 t

∗ = r∗1
_

F ∗
2 t

∗ = r∗2
r∗1 + r∗2 = 2b∗





(6.1)

t∗ is a point of c∗.
The supplements of these distances are

rH∗
1 = π − r∗1
rH∗
2 = π − r∗2

}
(6.2)

(6.1) looks like an ellipsis, but if we substitute one of the terms (6.2), it looks like a
hyperbola; in fact, there exists only one kind of a spherical conic. The tangent line
P ∗ in t∗ bisects the angle between r∗1 and rH∗

2 ;

the half angle is denoted as σ (6.3)

Now let us use Figure 6.1 and let us polarize these facts step by step!

P ◦ c∗ = c

P ◦ (point t∗ of c∗) = tangent line t of c
P ◦ (tangent line P ∗ of c∗) = point P of c
P ◦ F ∗

1 = F1 = “focus line” of c
P ◦ F ∗

2 = F2 = “focus line” of c
[F ∗

1 t
∗] = line v∗1

[F ∗
2 t

∗] = line v∗2
P◦ line v∗1 = point v1
P◦ line v∗2 = point v2
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Figure 6.1. The well-known focus-properties of c∗, triangle of constant area for c

Additional in Figure 6.1:
P ∈ c, P bisects the distance

_
v1v2 on t,

distance
_

WF ∗
1 = e∗,

distance
_

WF ∗
2 = e∗,

P◦
_

WF ∗
1 = angle e∗,

P◦
_

WF ∗
2 = angle e∗,

spherical triangle v1v2U : the angle in U = π − 2e∗ = constant,

P◦
_

F ∗
1 t

∗ = angle r∗1,

P◦
_

F ∗
2 t

∗ = angle r∗2,
angle r∗1 + angle r∗2 + angle π − 2e∗ = constant.
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The spherical triangle v1v2U has a constant area (6.4).
Further:
In t∗ we have angles σ = σ. (6.3),
Therefore, on t we have distances

σ = σ.

P bisects the distance
_

v1v2 (6.5).
Annotation: An EUKLIDean hyperbola xy = 1 has analogous properties as

(6.4) and (6.5).

7. Loxodrome

Figure 7.1 loxodrome q

As in the figure a loxodrome q is defined as an isogonal trajectory of the merid-
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ians of a globe; let this angle be denoted as π
2 − θ,

k = tan θ (7.1)

k =
dP

dL cosP
(7.2)

we integrate and get

ln tan
(
P

2
+
π

4

)
= k(L− LD) (7.3)

For our task we always let LD = 0, then we have

the loxodrome 3 U...L =
ln tan

(
P
2 + π

4

)

k
· · · q (7.4)

The arclength is easy: s|P0 =
1

sin θ
· P (7.5)

In CARTESian coordinates we have

Q = ~X =




cosL
Ch(kL)

sin L
Ch(kL)

Th (kL)


 · · · q (7.6)

When derivating with respect to L, we write “ . ”,
when derivating with respect to s, we write “ ′ ”.
Useful are the following vectors:

~X ′ =




1√
1+k2

−Ch (kL) sin L−Sh (kL)k cosL
Ch (kL)

1√
1+k2

Ch (kL)cosL−Sh (kL)k sin L
Ch(kL)

1√
1+k2

k
Ch (kL)


 (7.7)

~X ′′ =




−Ch2(kL) cosL+Sh (kL)Ch (kL)k sin L−k2 cosL
(1+k2)Ch (kL)

−Ch2(kL) sin L−Sh (kL)Ch (kL)k cosL−k2 sin L
(1+k2)Ch (kL)

−k2Sh (kL)
(1+k2)Ch (kL)


 (7.8)

~X ′′
e = unit vector of (7.8) (7.9)

8. Spherical evolute curve es
1,2 of the loxodrome q

(7.7) × (7.9) is the unit vector orthogonal to (7.7) and orthogonal to (7.9), it is

~be = ~X ′ × ~X ′′
e =




k sin L√
k2+Ch2(kL)

−k cosL√
k2+Ch2(kL)

Ch (kL)√
k2+Ch2(kL)




(8.1)
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also it is the representation of the spherical center of curvature M s
1,2; while L is

variable, it represents the evolute curve es
1,2 of q. The + sign gives es

1, the − sign
gives es

2 in Figure 8.1.
ψ = spherical radius of curvature1 of q,
π − ψ = spherical radius of curvature2 of q,

cosψ =
Sh (kL)√

k2 + Ch2(kL)
(8.2)

Figure 8.1. Loxodrome q and spherical evolute curve es
1,2
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9. Spherical tractrix f

Now we polarize q. We will show that we get a spherical tractrix f = P ◦ q. We
polarize F ∗, which is the spherical tangent line of q, then we get F ∈ f :

F = Q× ~X ′ = (7.6) × (7.7),

F =
1√

1 + k2




Ch(kL)k sin L−Sh (kL) cosL
Ch (kL)

−Ch(kL)k cosL−Sh (kL) sin L
Ch (kL)

1
Ch (kL)


 (9.1)

Polarization of the elements and properties of q:

P ◦ point Q = tangent line Q∗ of f
P ◦ tangent line F ∗ = point F of f

P ◦ meridian in Q = Ä

P ◦ ( ̂angle meridian F ∗ = π
2
− θ) = distance

_

ÄF = π
2
− θ

(9.2)

Therefore F draws a tractrix f , while Ä is running on the equator ä; ä is an
asymptotic line of f . See Figure 9.1, sometimes Figure7.1.

Figure 9.1. Loxodrome q, evolute curve es
1, tractrix f , path h
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10. Path h

The last step: we polarize es
1,2. The result is the path h:

h = P ◦ es
1,2

n = tangent line of es
1,2 = [Q F ]

H = P ◦ n
H = Q× F = (7.6) × (9.1) = − ~X ′ (7.7)
See Figure 9.1.

11. Result from 7. to 10.

Q F H form a spherical octant with three angles of π
2 and three edges of π

2 . n =
[Q F ] rolls along the evolute curve es

1,2.
Q draws the loxodrome q,
F draws the tractrix f ,
H draws the path h.
es
1,2 has two special evolvent curves q and f , they are equidistant curves from each

other, the distance is π
2
. See Figure9.1.
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