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Numerical methods for solving stochastic
differential equations∗

Rózsa Horváth Bokor†

Abstract. This paper provides an introduction to stochastic calculus
and stochastic differential equations, in both theory and applications,
emphasizing the numerical methods needed to solve such equations.
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1. Introduction

The aim of this paper is to present efficient numerical methods to compute cer-
tain quantities depending on the unknown process (X(t)), with algoritms based on
simulations on a computer of the other processes.

Before going on, it must be said that the numerical analysis of stochastic dif-
ferential equations is at its very beginning. Nevertheless, it already appears that
this field is not at all direct continuation of what has been done for the numerical
solving of ordinary differential equations. It is often unuseful to try to approximate
the stochastic differential equation on the space of trajectories, when one wants to
compute a quantity which depends on law.

We refer here to the books of Kloeden and Platen ([4]), Kloeden, Platen and
Schurz ([5]) and Schurz ([7],[8]).

Consider the simple population growth model

dX

dt
= a(t)X(t), X(0) = A, (1)

where X(t) is the size of the population at time t, and a(t) is the relative rate
growth at time t. It might happen that a(t) is not completely known, but subject
to some random environmental effects, so that we have

a(t) = r(t) + ” noise ”, (2)

where r(t) is non-random function. So the equation (1) becomes

dX

dt
= r(t)X(t) + X(t) · ” noise ” (3)
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or more generally equation of the form

dXt

dt
(ω) = a(t, Xt(ω))dt + b(t, Xt(ω))ξt(ω) (4)

where a and b are some given functions, and (ξt) were standard Gaussian random
variables for each t and b(t, x) a (generally) time-space dependent intensity factor.
This symbolic differential was interpreted as an integral equation

Xt(ω) = Xt0(ω) +
∫ t

t0

a(s, Xs(ω))ds +
∫ t

t0

b(s, Xs(ω))ξs(ω)ds (5)

for each sample path. For the special case of (5) with a ≡ 0, b ≡ 1 we see that ξt

should be derivative of pure Brownian motion, that is the derivative of a Wiener
process Wt, thus we suggest that we could write (5) alternatively as

Xt(ω) = Xt0(ω) +
∫ t

t0

a(s, Xs(ω))ds +
∫ t

t0

b(s, Xs(ω))dWs(ω). (6)

The problem with this is that a Wiener process Wt is nowhere differentiable, so
strictly speaking the white noise process ξt does not exist as a conventional function
of t. Thus the second integral in (6) cannot be an ordinary Riemann or Lebesque
integral. Worse still, the continuous sample paths of a Wiener process are not of
bounded variation on any bounded time interval, so the second integral cannot even
be interpreted as a Riemann-Stieltjes integral for each sample path.

2. The main results

Definition 1. A process W=(Wt) defined on a complete probability space (Ω,F ,P)
is called a standard Brownian motion if it has the following properties:

1.) W0 = 0 (a.s),

2.) For a.a.ω, the trajectories t → Wt(ω) are continuous t ∈ [0, T ],

3.) For all 0 ≤ t1 ≤ t2 ≤ t3 ≤ t4, ti ∈ [0, T ] the random variables Wt4 − Wt3 and
Wt2 − Wt1 are independent,

4.) For every s and t (s ≤ t) Wt − Ws has Gaussian distribution with zero mean
and variance equal to t-s, t, s,∈ [0, T ].

We suppose that we have a complete probability space (Ω,F ,P), a Brownian
motion W = (Wt, t ≥ 0) and a filtration {Ft, t ≥ 0}.

Definition 2. A process W =(Wt) is called a (Ft)-Brownian motion if it has the
following properties:

1.) (Wt) is (Ft)-adapted,

2.) (Wt) is a standard Brownian motion,

3.) For every t ≥ 0 and s > 0 Wt+s − Wt is independent with Ft.
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Definition 3. Let M[0,T ] be the class of all processes f =(ft) satisfying the condi-
tions:

1.) (ft) is B(R)/B([0, T ]) × F-measurable,

2.) (ft) is (Ft)-adapted,

3.) E
∫ T

0
||ft ||2 dt < +∞.

Definition 4. The Ito integral
∫ T

0
f(t, ω)dWt(ω), sign by I(f), for an integrand

f ∈ M[0,T ] is equal to the mean-square limit of the sums

Sn(ω) =
n∑

j=1

f(ξ(n)
j , ω)(W

t
(n)
j+1

(ω) − W
t
(n)
j

(ω))

with evalution points ξ
(n)
j = t

(n)
j for partitions 0 = t

(n)
1 < t

(n)
2 < . . . < t

(n)
n+1 = T for

which
δn = max

1≤j≤n
(t(n)

j+1 − t
(n)
j ) → 0 as n → +∞.

Other choices of evalution points t
(n)
j ≤ ξ

(n)
j ≤ t

(n)
j+1 are possible, but generally

lead to different random variables in the limit. While arbitrarily chosen evalution
points

ξ
(n)
j = (1 − λ)t(n)

j + λt
(n)
j+1

for the same fixed 0 ≤ λ ≤ 1 lead to limits, which we shall denote here by

(λ)
∫ T

0

f(t, ω)dWt(ω).

As an indication of how the value of these integrals vary with λ we observe that

(λ)
∫ T

0

Wt(ω)dWt(ω) =
1
2
W 2

T (ω) + (λ − 1
2
)T.

Lemma 1. For any f, g ∈ M[0,T ] and α, β ∈ R the Ito stochastic integral satisfies

1.) I(f) is FT -measurable,

2.) E[I(f)] = 0,

3.) E[I(f)]2 =
∫ T

0
E(f(t, ·))2dt.

The problem considered here is that of approximating strong solutions of the
following type of the Ito stochastic differential equation:

dXt = a(t, Xt)dt + b(t, Xt)dWt, for 0 ≤ t ≤ T. (7)

We suppose that E ||X0 ||2 < +∞ and X0 is independent of Ft = σ{Ws, 0 ≤
s ≤ t}, the σ-algebra generated by the underlying process.

Also, suppose that the coefficients a(t, x) and b(t, x) satisfy conditions which
guarantee the existence of the unique, strong solution of the stochastic differential
equation.
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Theorem 1. Let U : [0, T ]×R → R have continuous partial derivatives ∂U
∂t , ∂U

∂x , ∂2U
∂x2

and define the process (Yt, 0 ≤ t ≤ T ) by Yt = U (t, Xt) w.p.1, where Xt satisfies
the differential (7). Then the stochastic differential equation for Yt is given by

dYt = [
∂U

∂t
(t, Xt) + a(t, Xt)

∂U

∂x
(t, Xt) +

1
2
b2(t, Xt)

∂2U

∂x2
(t, Xt)]dt

+ b(t, Xt)
∂U

∂x
(t, Xt)dWt.

Details about this stochastic object and the corresponding calculus can be found in
Karatzas and Shreve([3])

Let us consider the 1-dimensional stochastic differential equation in an integral
form

Xt = X0 +
∫ t

0

a(Xs)ds +
∫ t

0

b(Xs)dWs,

for t ∈ [0, T ], where the second integral is an Ito stochastic integral and the co-
efficients a and b are sufficiently smooth real-valued functions satisfying a linear
growth bound. Then, for any twice continuously differentiable function f : R → R
the Ito formula gives

f(Xt) = f(X0) +
∫ t

0

(a(Xs)
∂

∂x
f(Xs) +

1
2
b2(Xs)

∂2

∂x2
f(Xs))ds

+
∫ t

0

b(Xs)
∂

∂x
f(Xs)dWs

= f(X0) +
∫ t

0

L0f(Xs)ds +
∫ t

0

L1f(Xs)dWs.

So if we apply the Ito formula to the functions f = a and f = b we obtain

Xt = X0 +
∫ t

0

a(Xz)dz +
∫ t

0

b(Xz)dWz

= X0 +
∫ t

0

[a(X0) +
∫ z

0

L0a(Xs)ds +
∫ z

0

L1a(Xs)dWs]dz

+
∫ t

0

[b(X0) +
∫ z

0

L0b(Xs)ds +
∫ z

0

L1b(Xs)dWs]dWz

= X0 + a(X0)
∫ t

0

ds + b(X0)
∫ t

0

dWs + R.

So far a given discretization 0 = t1 < t2 < . . . < tN = T at the time interval [0, T ],
an Euler scheme is given by

Yn+1 = Yn + a(Yn)(tn+1 − tn) + b(Yn)(Wtn+1 − Wtn),

for n = 0, 1, 2, . . ., N − 1 with the initial value Y0 = X0.
We can continue the Ito-Taylor expansion by applying the Ito formula to f =

L1b, in which case we get

Xt = X0 + a(X0)
∫ t

0

ds + b(X0)
∫ t

0

dWs + L1b(X0)
∫ t

0

∫ s

0

dWzdWs + R.
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For a given discretization mentioned earlier a Milstein scheme is given by

Yn+1 = Yn + a(Yn)(tn+1 − tn) + b(Yn)(Wtn+1 − Wtn)

+
1
2

b (Yn)
∂

∂x
b(Yn)((Wtn+1 − Wtn)2 − (tn+1 − tn)),

for n = 0, 1, 2, . . ., N − 1 with the initial value Y0 = X0.
Usually, we consider equidistant discretization times tn = n∆, where ∆ = T

N .

Theorem 2. Let us suppose that the functions a and b are of class C2, with bounded
derivatives of first and second orders. Then the Euler scheme satisfies: for any
integration time T, there exists a positive constant C(T) such that, for any step size
∆ of type T

N
, N = 1, 2, 3, . . .

[E‖X(T ) − YN‖2]
1
2 ≤ C(T )

√
∆.

For the Milstein scheme, we can substitute the following bound for the error:

[E‖X(T ) − YN‖2]
1
2 ≤ C(T )∆.

To get a better rate of convergence in the mean-square sense that these schemes,
one must involve multiple stochastic integrals of order strictly larger than 1, for
example:

∫ t

0

∫ s

0
dWzdWs,

∫ t

0

∫ s

0

∫ z

0
dWudWzdWs and

∫ t

0

∫ s

0

∫ z

0
dudWzdWs.

Of course, most of those integrals have probability laws which seem difficult to
simulate. There are some other two-step methods for numerical solutions of stochas-
tic differential equations. Details about this stochastic object and the corresponding
calculus can be found in ([1]) and ([2]).
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