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Abstract. There are numerous methods for rational approximation
of real numbers. Continued fraction convergent is one of them and
Newton’s iterative method is another one. Connections between these two
approximation methods were discussed by several authors. Householder’s
methods are generalisation of Newton’s method. In this paper, we will show
that for these methods analogous connection with continued fractions hold.

1. Introduction and main results

Let α be a quadratic irrational, i.e., α = c+
√
d, c, d ∈ Q, d > 0 and d is

not a square of a rational number. It is well known that continued fraction
expansion of α is periodic, i.e., has the form

α = [ a0, a1, . . . , ah, ah+1, ah+2, . . . , ah+ℓ ].

Here ℓ = ℓ(α) denotes the length of the shortest period in the expansion of α.
We will observe quadratic irrationals whose period begins with a1. We will
say that period is palindromic if it holds a1 = aℓ−1, a2 = aℓ−2, . . . , i.e., the
period without the last term is symmetric.

Continued fraction convergents pn

qn
= [ a0, a1, . . . , an ] give good rational

approximations of α. Another approximation method we obtain using the
Householder’s iterative method of order p. This method is a numerical
algorithm for solving the nonlinear equation f(x) = 0, where f(x) is a p+ 1
times continuously differentiable function and α is a zero of f but not of its
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derivative. Householder’s method of order p consists of a sequence of iterations

xi+1 = xi + p · (1/f)
(p−1)(xi)

(1/f)(p)(xi)

beginning with an initial guess x0. Householder’s method of order 1 is just
Newton’s method and for Householder’s method of order 2 one gets Halley’s
method.

In this paper we study connections between continued fraction convergents
of quadratic irrational α = c +

√
d and Householder’s iterative method of

order m − 1, m ∈ N, m ≥ 2 (with rate of convergence m) for the equation

f(x) = (x−α)(x−α′) = 0, where α′ = c−
√
d. Precisely, if the initial iteration

x0 = pn

qn
is the nth continued fraction convergent of α, the principal question

is whether the first iteration R
(m)
n = x1 also a convergent of α. In that case

we say that R
(m)
n is a good approximant.

We will show that for quadratic irrational α whose period of the length ℓ
begins with a1, there is a good approximant at the end of the period, i.e., it
holds

(1.1) R
(m)
kℓ−1 =

pmkℓ−1

qmkℓ−1
, for all k ∈ N,

and when period is palindromic and has even length, say ℓ = 2t, there is a
good approximant in the half of the period, i.e., it holds

(1.2) R
(m)
kt−1 =

pmkt−1

qmkt−1
, for all k ∈ N.

In Section 3 we show

Theorem 1.1. To be a good approximant is a periodic property, i.e., for
all k ∈ N it holds

R(m)
n =

ps
qs

⇐⇒ R
(m)
kℓ+n =

pkmℓ+s

qkmℓ+s
,

and when period is palindromic, it is also a palindromic property, i.e., it holds

R(m)
n =

ps
qs

⇐⇒ R
(m)
ℓ−n−2 =

pmℓ−s−2

qmℓ−s−2
.

When ℓ ≤ 2, from (1.1) and (1.2) it follows that then every approximant

is good, and then it holds R
(m)
n =

pm(n+1)−1

qm(n+1)−1
for all n ≥ 0. So if R

(m)
n is a good

approximant, one might expect that it hits convergent with m-times larger

index. However, this is not always true. If R
(m)
n = ps

qs
, we can define numbers

j
(m)
n = j

(m)
n (α) as half of the distance from convergent with m times larger

index

(1.3) j(m)
n =

s+ 1−m(n+ 1)

2
.
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We prove that it is unbounded by constructing an explicit family of quadratic
irrationals, which involves the Fibonacci numbers.

Theorem 1.2. Let Fℓ denote the ℓ-th Fibonacci number. Let ℓ > 3, ℓ ≡
±1 (mod 6). Then for dℓ =

(Fℓ−3Fℓ+1
2

)2
+ Fℓ−3Fℓ−1 + 1 and M ∈ N it holds

ℓ(
√
dℓ) = ℓ and

j
(3M−1)
0 (

√

dℓ) = j
(3M)
0 (

√

dℓ) = j
(3M+1)
0 (

√

dℓ) =
ℓ−3
2 ·M.

Connection between Newton’s iterative method

xi+1 = xi −
f(xi)

f ′(xi)

for solving nonlinear equations f(x) = 0 and continued fractions was discussed
by several authors. So, let us briefly mention what is known in the casem = 2.

It is well known that for α =
√
d, d ∈ N, d not a perfect square, and the

corresponding Newton’s approximant R
(2)
n = 1

2 (
pn

qn
+ dqn

pn
) it follows that (see

e.g. [1, p. 468])

(1.4) R
(2)
kℓ−1 =

p2kℓ−1

q2kℓ−1
, for k ≥ 1.

It was proved by Mikusiński [9] (see also Elezović [4]) that if ℓ = 2t, then

(1.5) R
(2)
kt−1 =

p2kt−1

q2kt−1
, for k ≥ 1.

These results imply that if ℓ(
√
d) ≤ 2, then all approximants R

(2)
n are

convergents of
√
d. In 2001, Dujella [2] proved the converse of this result.

Namely, if all approximants R
(2)
n are convergents of

√
d, then ℓ(

√
d) ≤ 2.

Thus, if ℓ(
√
d) > 2, we know that some of approximants R

(2)
n are convergents

and some of them are not. Using a result of Komatsu [8] from 1999, Dujella
also showed that being a good approximant is a periodic and a palindromic
property, so he defined the number b(

√
d) as the number of good approximants

in the period. Formulas (1.4) and (1.5) suggest that R
(2)
n should be convergent

whose index is twice as large when it is a good approximant. However, this is
not always true, and Dujella defined the number j(

√
d) as half of the distance

from two times larger index. He also pointed out that j(
√
d) is unbounded.

In 2005, Dujella and the author [3] proved that b(
√
d) is unbounded, too.

In 2011, the author [13] proved the analogous results for α = 1+
√
d

2 , d ∈ N,
d not a perfect square and d ≡ 1 (mod 4).

Sharma [15] observed arbitrary quadratic surd α = c +
√
d, c, d ∈ Q,

d > 0, d is not a square of a rational number, whose continued fraction period
of the length ℓ begins with a1. He showed that for every such α and the
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corresponding Newton’s approximant R
(2)
n =

p2
n−αα′q2n

qn(2pn−(α+α′)qn)
it holds

R
(2)
kℓ−1 =

p2kℓ−1

q2kℓ−1
, for k ≥ 1,

and when ℓ = 2t and the period is palindromic then it holds

R
(2)
kt−1 =

p2kt−1

q2kt−1
, for k ≥ 1.

Frank and Sharma [6] discussed generalization of Newton’s formula. They
showed that for every quadratic irrational α, whose period begins with a1, it
holds

(1.6)
pmkℓ−1

qmkℓ−1
=

α(pkℓ−1 − α′qkℓ−1)
m − α′(pkℓ−1 − αqkℓ−1)

m

(pkℓ−1 − α′qkℓ−1)m − (pkℓ−1 − αqkℓ−1)m
, for k,m ∈ N,

and when ℓ = 2t and the period is palindromic then it holds

(1.7)
pmkt−1

qmkt−1
=

α(pkt−1 − α′qkt−1)
m − α′(pkt−1 − αqkt−1)

m

(pkt−1 − α′qkt−1)m − (pkt−1 − αqkt−1)m
, for k,m ∈ N.

2. Householder’s methods

Householder’s iterative method (see [14], [7, §4.4]) of order p for rootsolv-
ing, consists of a sequence of iterations

xi+1 = H(p)(xi) = xi + p · (1/f)
(p−1)(xi)

(1/f)(p)(xi)
,

(where (1/f)(p) denotes p-th derivative of 1/f) beginning with an initial guess
x0. Let f(x) be a p + 1 times continuously differentiable function and α
is a zero of f but not of its derivative, then, in a neighborhood of α, the
convergence has rate p+ 1.

Analogous to Newton’s method, we will start with function f(x) = (x −
α)(x − α′), which satisfies the above conditions. Let us first observe p-th
derivative of the function 1/f

(1/f)(p) =
( 1

(x− α)(x − α′)

)(p)

=
1

α− α′

( 1

x− α
− 1

x− α′

)(p)

=
(−1)pp!

α− α′

( 1

(x − α)p+1
− 1

(x− α′)p+1

)

.

So we have

(2.1)

H(p)(x) = x− (x− α′)p − (x− α)p

(x− α′)p+1 − (x− α)p+1
(x− α)(x − α′)

=
α(x − α′)p+1 − α′(x − α)p+1

(x− α′)p+1 − (x − α)p+1
.
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It is not hard to show that it holds

(2.2) H(p+1)(x) =
xH(p)(x) − αα′

H(p)(x) + x− α− α′ , for p ∈ N.

Formula (1.6) shows that for an arbitrary quadratic surd, whose period
begins with a1 and k ∈ N, m = 2, 3, . . . , it holds

(2.3) H(m−1)
(pkℓ−1

qkℓ−1

)

=
pmkℓ−1

qmkℓ−1
,

and when period is palindromic, and has even length, say ℓ = 2t, from (1.7)
it follows

(2.4) H(m−1)
(pkt−1

qkt−1

)

=
pmkt−1

qmkt−1
.

Let us recall the definition

R(1)
n =

pn
qn

, and for m > 1 R(m)
n = H(m−1)

(pn
qn

)

,

and we say that R
(m)
n is good approximation, if it is a convergent of α. From

(2.3) and (2.4) it follows (1.1) and (1.2). From (2.1) we have

(2.5) R(m)
n =

α(pn − α′qn)
m − α′(pn − αqn)

m

(pn − α′qn)m − (pn − αqn)m
,

and formula (2.2) says

(2.6) R(m+1)
n =

R
(1)
n R

(m)
n − αα′

R
(1)
n +R

(m)
n − α− α′

, for m ∈ N, n = 0, 1, . . . .

3. Good approximants are periodic and palindromic

From now on, we assume that α is quadratic irrational whose period of
the length ℓ begins with a1. From formula [15, (8)] we obtain

(aℓ − a0)pkℓ−1 + pkℓ−2 = −αα′qkℓ−1,(3.1)

(aℓ − a0)qkℓ−1 + qkℓ−2 = pkℓ−1 − (α+ α′)qkℓ−1,(3.2)

for all k ∈ N.

Lemma 3.1. For m, k ∈ N and i = 1, 2, . . . , ℓ, it holds

(3.3) R
(m)
kℓ+i−1 =

R
(m)
kℓ−1R

(m)
i−1 − αα′

R
(m)
kℓ−1 +R

(m)
i−1 − α− α′

.

Proof. For m = 1, statement of the lemma is proven in [5, Thm. 2.1].
Suppose that (3.3) holds for some m ∈ N, and let us show that it holds for
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m+1 too. Using the notation s = R
(1)
kℓ−1, S = R

(m)
kℓ−1, t = R

(1)
i−1 and T = R

(m)
i−1 ,

we have

R
(m+1)
kℓ+i−1

(2.6)
=

R
(1)
kℓ+i−1R

(m)
kℓ+i−1 − αα′

R
(1)
kℓ+i−1 +R

(m)
kℓ+i−1 − α− α′

=
st−αα′

s+t−α−α′
· ST−αα′

S+T−α−α′
− αα′

st−αα′

s+t−α−α′
+ ST−αα′

S+T−α−α′
− α− α′

= (st−αα′)(ST−αα′)−αα′(s+t−α−α′)(S+T−α−α′)
(st−αα′)(S+T−α−α′)+(ST−αα′)(s+t−α−α′)−(α+α′)(s+t−α−α′)(S+T−α−α′)

= (sS−αα′)(tT−αα′)−αα′(s+S−α−α′)(t+T−α−α′)
(sS−αα′)(t+T−α−α′)+(tT−αα′)(s+S−α−α′)−(α+α′)(s+S−α−α′)(t+T−α−α′)

=
sS−αα′

s+S−α−α′
· tT−αα′

t+T−α−α′
− αα′

sS−αα′

s+S−α−α′
+ tT−αα′

t+T−α−α′
− α− α′

(2.6)
=

R
(m+1)
kℓ−1 R

(m+1)
i−1 − αα′

R
(m+1)
kℓ−1 +R

(m+1)
i−1 − α− α′

.

We have (see e.g. [12, §23]) −(α− a0)
′ = [ aℓ, aℓ−1, . . . , a2, a1 ], and so

1

a0 − aℓ − α′ = [ aℓ−1, . . . , a2, a1, aℓ ].

So when period is palindromic, we have α+α′ = 2a0−aℓ, thus formulas (3.1)
and (3.2) in palindromic case become

a0pkℓ−1 + pkℓ−2 = (α+ α′)pkℓ−1 − αα′qkℓ−1,(3.4)

a0qkℓ−1 + qkℓ−2 = pkℓ−1.(3.5)

Lemma 3.2. For m, k ∈ N and i = 1, 2, . . . , ℓ − 1, when period is
palindromic, it holds

(3.6) R
(m)
kℓ−i−1 =

R
(m)
kℓ−1(R

(m)
i−1 − α− α′) + αα′

R
(m)
i−1 −R

(m)
kℓ−1

.

Proof. For m = 1 we have

R
(1)
kℓ−i−1 =

pkℓ−i−1

qkℓ−i−1
=

0 · pkℓ−i + pkℓ−i−1

0 · qkℓ−i + qkℓ−i−1
= [ a0, a1, . . . , akℓ−i−1, akℓ−i, 0 ]

= [ a0, a1, . . . , akℓ−i, akℓ−i+1, . . . , akℓ−1, a0, 0,−a0,−a1, . . . ,−ai−1 ]

= [ a0, a1, . . . , akℓ−i, akℓ−i+1, . . . , akℓ−1, a0 −
pi−1

qi−1
]

=
pkℓ−1(a0 −R

(1)
i−1) + pkℓ−2

qkℓ−1(a0 −R
(1)
i−1) + qkℓ−2

(3.4)
=

(3.5)

R
(1)
kℓ−1(R

(1)
i−1 − α− α′) + αα′

R
(1)
i−1 −R

(1)
kℓ−1

.
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Suppose that (3.6) holds for some m ∈ N, and let us show that it holds
for m+1 too. With the same notation as in the proof of Lemma 3.1, we have

R
(m+1)
kℓ−i−1

(2.6)
=

R
(1)
kℓ−i−1R

(m)
kℓ−i−1 − αα′

R
(1)
kℓ−i−1 +R

(m)
kℓ−i−1 − α− α′

=

s(t−α−α′)+αα′

t−s · S(T−α−α′)+αα′

T−S − αα′

s(t−α−α′)+αα′

t−s + S(T−α−α′)+αα′

T−S − α− α′

= (s(t−α−α′)+αα′)(S(T−α−α′)+αα′)−αα′(t−s)(T−S)
(s(t−α−α′)+αα′)(T−S)+(S(T−α−α′)+αα′)(t−s)−(α+α′)(t−s)(T−S)

= (sS−αα′)(tT−αα′−(α+α′)(t+T−α−α′))+αα′(s+S−α−α′)(t+T−α−α′)
(tT−αα′)(s+S−α−α′)−(sS−αα′)(t+T−α−α′)

=
sS−αα′

s+S−α−α′
( tT−αα′

t+T−α−α′
− α− α′) + αα′

tT−αα′

t+T−α−α′
− sS−αα′

s+S−α−α′

(2.6)
=

R
(m+1)
kℓ−1 (R

(m+1)
i−1 − α− α′) + αα′

R
(m+1)
i−1 −R

(m+1)
kℓ−1

.

Let us show that each approximant can be expressed as the combination

of convergent with m times larger index and carefully selected numbers β
(m)
i ,

which are periodic (so we take them for i = 1, . . . ℓ− 1).

Proposition 3.3. Let m ∈ N. For i = 1, 2, . . . , ℓ− 1 let

β
(m)
i = −

pmi−1 −R
(m)
i−1qmi−1

pmi −R
(m)
i−1qmi

.

Then it holds

R
(m)
kℓ+i−1 =

β
(m)
i pm(kℓ+i) + pm(kℓ+i)−1

β
(m)
i qm(kℓ+i) + qm(kℓ+i)−1

, for all k ≥ 0,(3.7)

and when period is palindromic, then

R
(m)
kℓ−i−1 =

pm(kℓ−i)−1 − β
(m)
i pm(kℓ−i)−2

qm(kℓ−i)−1 − β
(m)
i qm(kℓ−i)−2

, for all k ≥ 1.(3.8)

Proof. Let us first consider the continued fraction expansion of β
(m)
i .

β
(m)
i = −

[

0,
pmi −R

(m)
i−1qmi

pmi−1 −R
(m)
i−1qmi−1

]

[13, Lm. 3]
= −

[
0, ami, ami−1, . . . , a1, a0 −R

(m)
i−1

]

=
[
0,−ami,−ami−1, . . . ,−a1,−a0 +R

(m)
i−1

]
.



238 V. PETRIČEVIĆ

If k = 0 we have

β
(m)
i pmi + pmi−1

β
(m)
i qmi + qmi−1

=
[
a0, a1, . . . , ami−1, ami, β

(m)
i

]

=
[
a0, a1, . . . , ami−1, ami, 0,−ami,−ami−1, . . . ,−a1,−a0 +R

(m)
i−1

]
= R

(m)
i−1 ,

and if k > 0 we have

β
(m)
i pm(kℓ+i) + pm(kℓ+i)−1

β
(m)
i qm(kℓ+i) + qm(kℓ+i)−1

=
[
a0, a1, . . . , amkℓ−1, amkℓ, amkℓ+1, . . . , am(kℓ+i), β

(m)
i

]

=
[
a0, a1, . . . , amkℓ−1, amkℓ − a0 +R

(m)
i−1

]

=
pmkℓ−1(amkℓ − a0 +R

(m)
i−1) + pmkℓ−2

qmkℓ−1(amkℓ − a0 +R
(m)
i−1) + qmkℓ−2

(3.1)
=

(3.2)

pmkℓ−1R
(m)
i−1 − αα′qmkℓ−1

pmkℓ−1 + qmkℓ−1(R
(m)
i−1 − α− α′)

(2.3)
=

R
(m)
kℓ−1R

(m)
i−1 − αα′

R
(m)
kℓ−1 +R

(m)
i−1 − α− α′

Lm. 3.1
= R

(m)
kℓ+i−1.

When period is palindromic we have

pm(kℓ−i)−1 − β
(m)
i pm(kℓ−i)−2

qm(kℓ−i)−1 − β
(m)
i qm(kℓ−i)−2

=

[

a0, a1, . . . , am(kℓ−i)−1,−
1

β
(m)
i

]

=
[
a0, a1, . . . , am(kℓ−i)−1, 0, 0, ami, ami−1, . . . , a1, a0 −R

(m)
i−1

]

=
[
a0, a1, . . . , am(kℓ−i)−1, am(kℓ−i), am(kℓ−i)+1, . . . , amkℓ−1, a0 −R

(m)
i−1

]

=
pmkℓ−1(a0 −R

(m)
i−1) + pmkℓ−2

qmkℓ−1(a0 −R
(m)
i−1) + qmkℓ−2

(3.4)
=

(3.5)

pmkℓ−1(R
(m)
i−1 − α− α′) + αα′qmkℓ−1

qmkℓ−1R
(m)
i−1 − pmkℓ−1

(2.3)
=

R
(m)
kℓ−1(R

(m)
i−1 − α− α′) + αα′

R
(m)
i−1 −R

(m)
kℓ−1

Lm. 3.2
= R

(m)
kℓ−i−1.

Remark 3.4. [8, Thm. 1] and [13, Thm. 2] are special cases of the last

proposition for m = 2 and α =
√
d and α = 1+

√
d

2 , respectively.

Proof of Thereom 1.1. The first part for n = ℓ − 1 is (1.1) and for
n = 0, 1, . . . , ℓ − 2 follows from (3.7). The second part follows similarly as

in [2, Lm. 3], but we have three cases. Let R
(m)
n = ps

qs
= [ a0, a1, . . . , as ].
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If s = m(n + 1) − 1, from (3.7) we have β
(m)
n+1 = 0, so from (3.8) we have

R
(m)
ℓ−n−2 =

pm(ℓ−n−1)−1

qm(ℓ−n−1)−1
=

pmℓ−s−2

qmℓ−s−2
.

If s > m(n+ 1)− 1, then from (3.7) we have

β
(m)
n+1 = [ am(n+1)+1, am(n+1)+2, . . . , as ]

= [ am(ℓ−n−1)−1, am(ℓ−n−1)−2, . . . , amℓ−s ].

From (3.8) we have

R
(m)
ℓ−n−2 =

pm(ℓ−n−1)−1 − β
(m)
n+1pm(ℓ−n−1)−2

qm(ℓ−n−1)−1 − β
(m)
n+1qm(ℓ−n−1)−2

=

[

a0, a1, . . . , am(ℓ−n−1)−1,−
1

β
(m)
n+1

]

=
[
a0, a1, . . . , am(ℓ−n−1)−1, 0,−am(ℓ−n−1)−1,−am(ℓ−n−1)−2, . . . ,−amℓ−s

]

= [ a0, a1, . . . , amℓ−s−1, 0 ] =
pmℓ−s−2

qmℓ−s−2
.

If s < m(n+ 1)− 1, then from (3.8) we have

β
(m)
ℓ−n−1 = [ am(n+1)−1, am(n+1)−2, . . . , as+2 ]

= [ am(ℓ−n−1)+1, am(ℓ−n−1)+2, . . . , amℓ−s−2 ].

From (3.7) we have

R
(m)
ℓ−n−2 =

β
(m)
ℓ−n−1pm(ℓ−n−1) + pm(ℓ−n−1)−1

β
(m)
ℓ−n−1qm(ℓ−n−1) + qm(ℓ−n−1)−1

=
pmℓ−s−2

qmℓ−s−2
.

Let us show how Theorem 1.1 can be applied. The first example shows
palindromic situation, the second is not palindromic (but we accidentally get
good approximation in the half of the period), and the third shows that good
approximants do depend on m.

Example 3.5. Let us observe
√
44 = [ 6, 1, 1, 1, 2, 1, 1, 1, 12]. The period

is palindromic and we have ℓ = 8. Let us consider e.g. the case m = 5. From
(2.5) we have

R(5)
n =

p5n + 440p3nq
2
n + 9680pnq

4
n

5p4nqn + 440p2nq
3
n + 1936q5n

.

From (1.2) we have

R
(5)
3 =

p19
q19

=
3 160 100

476 403
, R

(5)
7 =

p39
q39

=
4 993 116 004 999

752 740 560 150
,

R
(5)
11 =

p59
q59

, R
(5)
15 =

p79
q79

, . . . , R
(5)
4k−1 =

p20k−1

q20k−1
.
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Since, R
(5)
0 = p8

q8
= 2514

379 . From Theorem 1.1 we have R
(5)
6 = p30

q30
= 7944493914

1197677521 ,

and also R
(5)
8k =

p40k+8

q40k+8
and R

(5)
8k−2 =

p40k−10

q40k−10
.

R
(5)
1 = 235 487

35 501 is not a convergent of
√
44, so neither R

(5)
8k+1 nor R

(5)
8k−3 will

be.
R

(5)
2 = 6 251 453

942 442 is not a convergent of
√
44, so neither R

(5)
8k+2 nor R

(5)
8k−4

will be.

Example 3.6. Let us observe α = 5+
√
21

3 = [ 9, 5, 6, 1, 2 ] and m = 3.

From 2.5 we have R
(3)
m =

37p3
n−4572pnq

2
n+23368q3n

81p2
nqn−1242pnq2n+4824q3n

.

We have R
(3)
3 = p11

q11
= 4 4004 659

435 564 , and so R
(3)
4k−1 =

p12k−1

q12k−1
. The period is

not palindromic, and accidentally we have: R
(3)
1 = p7

q7
= 36 409

3960 (in palindromic

case it would be p5

q5
), and so R

(3)
4k+1 =

p12k+7

q12k+7
.

Example 3.7. Let us observe α = 7+
√
11

5 = [ 2, 15, 1, 3, 1, 3, 1]. Form = 3

we have R
(3)
6k−1 =

p18k−1

q18k−1
; R

(3)
1 = p7

q7
and R

(3)
6k+1 =

p18k+7

q18k+7
.

For m = 4 we have: R
(4)
6k−1 =

p24k−1

q24k−1
; R

(4)
0 = p5

q5
and R

(4)
6k =

p24k+5

q24k+5
;

R
(4)
1 = p11

q11
and R

(4)
6k+1 = p24k+11

q24k+11
; R

(4)
3 = p17

q17
and R

(4)
6k+3 = p24k+17

q24k+17
.

4. Which convergents may appear?

From now on, let us observe only quadratic irrationals of the form α =
√
d,

d ∈ N, d not a perfect square. It is well known that period of such α begins
with a1 and is palindromic.

Lemma 4.1. a) R
(m)
n <

√
d if and only if n is even and m is odd.

Therefore, R
(m)
n can be an even convergent only if n is even and m is

odd.
b)

(4.1)
∣
∣R

(m)
n+1 −

√
d
∣
∣ <

∣
∣R(m)

n −
√
d
∣
∣.

Proof. a) From (2.5) we have

(4.2) R(m)
n −

√
d =

2
√
d(pn − qn

√
d)m

(pn + qn
√
d)m − (pn − qn

√
d)m

.

On the right side of (4.2), denominator is always greater than 0, and

nominator is less than 0 if and only if n is even (then we have pn−
√
dqn < 0)

and m is odd.
b) Let us observe (4.2). From 1 ≤ p0 < p1 < p2 < . . . and 1 ≤ q0 < q1 <

q2 < . . . we have 2 < p0 +
√
dq0 < p1 +

√
dq1 < . . . . On the other hand, we

have 1 > |p0−
√
dq0| > |p1−

√
dq1| > . . . (see e.g. [12, §15]), so it holds (4.1).
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Let us observe the definition (1.3). The number j
(m)
n is an integer, by

Lemma 4.1 a). Using Theorem 1.1 we have

(4.3) j(m)
n = j

(m)
kℓ+n, and in palindromic case j(m)

n = −j
(m)
ℓ−n−2.

Proposition 4.2. For n ≥ 0 and m ∈ N we have

∣
∣j(m)

n (
√
d)
∣
∣ <

m(ℓ/2− 1)

2
.

Proof. Let R
(m)
n =

pm(n+1)+2j−1

qm(n+1)+2j−1
. According to (4.3), it suffices to

consider the case j > 0 and n < ℓ.

Assume first that ℓ is even, that is ℓ = 2t. We have R
(m)
t−1 = pmt−1

qmt−1
and

R
(m)
ℓ−1 =

pmℓ−1

qmℓ−1
. For n < t− 1, using (4.1) we have m(n+1)+2j− 1 < mt− 1,

and 2j ≤ m(t − 1)− 1. For n = t − 1 and n = ℓ − 1 we have j = 0, and for
t−1 < n < ℓ−1 we have m(n+1)+2j−1 < mℓ−1, or 2j < mℓ−m(n+1) ≤
m(t− 1), so again we get j ≤ m(ℓ/2−1)−1

2 .

Let ℓ is odd, e.g. ℓ = 2t+ 1. If for some n, 0 ≤ n < t holds j ≥ m(ℓ/2−1)
2 ,

we would have s := m(n + 1) + 2j − 1 ≥ mℓ/2 − 1. By Theorem 1.1 it

follows R
(m)
ℓ−n−2 = pmℓ−s−2

qmℓ−s−2
, and mℓ − s − 2 ≤ mℓ/2 − 1. Now it holds

∣
∣
√
d− ps

qs

∣
∣ ≤

∣
∣
√
d− pmℓ−s−2

qmℓ−s−2

∣
∣, thus

∣
∣
√
d−R

(m)
n

∣
∣ ≤

∣
∣
√
d−R

(m)
ℓ−n−2

∣
∣. This is not

possible by (4.1), since ℓ − n− 2 ≥ t. For t− 1 < n < ℓ − 1, the proof is the
same as in the even case.

Proposition 4.3. Let ℓ ∈ N and a1, . . . , aℓ−1 ∈ N such that a1 = aℓ−1,

a2 = aℓ−2, . . . . The number [ a0, a1, a2, . . . , aℓ−1, 2a0 ] is of the form
√
d,

d ∈ N if and only if

(4.4) 2a0 ≡ (−1)ℓ−1p′ℓ−2q
′
ℓ−2 (mod p′ℓ−1),

where
p′

n

q′n
= [ a1, a2, . . . , an−1, an ]. Then it holds

(4.5) d = a20 +
2a0p

′
ℓ−2 + q′ℓ−2

p′ℓ−1

.

Proof. See [12, §26]
Lemma 4.4. Let Fk denote the k-th Fibonacci number. Let n ∈ N and

k > 1, k ≡ 1, 2 (mod 3). For dk(n) =
( (2n−1)Fk+1

2

)2
+ (2n − 1)Fk−1 + 1 it

holds ℓ(
√

dk(n)) = k and
√

dk(n) =
[ (2n−1)Fk+1

2 , 1, 1, . . . , 1, 1
︸ ︷︷ ︸

k−1 times

, (2n− 1)Fk + 1
]
.

Proof. From (4.4), it follows

2a0 ≡ (−1)k−1Fk−1Fk−2 ≡ (−1)k−1Fk−1(Fk − Fk−1)
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≡ (−1)k−1(−F 2
k−1) (mod Fk).

Now from Cassini’s identity FkFk−2 − F 2
k−1 = (−1)k−1 we have 2a0 ≡ 1

(mod Fk). When 3 | k, this congruence is not solvable, and if 3 ∤ k, the
solution is a0 ≡ Fk+1

2 (mod Fk), i.e.,

a0 =
Fk + 1

2
+ (n− 1)Fk =

(2n− 1)Fk + 1

2
, n ∈ N.

From (4.5) it follows

d =
((2n− 1)Fk + 1

2

)2

+

(
(2n− 1)Fk + 1

)
Fk−1 + Fk−2

Fk

=
((2n− 1)Fk + 1

2

)2

+ (2n− 1)Fk−1 + 1.

Remark 4.5. Periodic continued fractions involving Fibonacci numbers
with all ai = 1, i = 1, . . . , ℓ − 1 were known earlier. First example was
shown in [16]. Construction of such examples, using Pellian equations was
given in several papers by Mollin, see e.g. [11] and [10]. However, in all such

examples, the numbers are of the form 1+
√
d

2 with all ai = 1 in symmetric

part of the period, but for the numbers of the form
√
d there is at least one

ai 6= 1. In [13, Lemma 5] we constructed, in a similar was as in Lemma 4.4,

all numbers of the form 1+
√
d

2 , d ∈ N, d ≡ 1 (mod 4), with all ai = 1 in
symmetric part of the period. We have shown that all such numbers are of

the form
1+

√
d′

k
(n)

2 , where d′k(n) = 4
(
(n · Fk + 1)2 + n · Fk−3

)
+ 1, k, n ∈ N

or 2n ∈ N when 3 | k. Some of those numbers was also given in [11, Example
5] Dk(n) = 4F 2

2kn
2 + (20F 2

k + 8(−1)k)n + 5, i.e., it is not hard to show that
it holds Dk(n) = d′2k(n). It turns out that for the numbers in Lemma 4.4 it

holds dk(n) =
1
4d

′
k(

2n−1
2 ), and when 3 ∤ k, continued fraction of

√

dk(n) have
desired form (and there is no other number with such period).

Proof of Theorem 1.2. By (1.3), we have to prove

R
(3M−1)
0 =

pMℓ−2

qMℓ−2
, R

(3M)
0 =

pMℓ−1

qMℓ−1
, R

(3M+1)
0 =

pMℓ

qMℓ
.

We have a0 =
Fℓ−3Fℓ+1

2 , and since 3 ∤ ℓ, Fℓ−3 is odd, thus by Lemma 4.4 it
holds √

dℓ =
[
a0, 1, 1, . . . , 1, 1

︸ ︷︷ ︸

ℓ−1 times

, 2a0
]
.

From Cassini’s identity, since ℓ is odd (ℓ ≡ ±1 (mod 6)), it follows

2a0 = Fℓ−3(Fℓ−1 + Fℓ−2) + 1 = F 2
ℓ−2 + Fℓ−3Fℓ−2 = Fℓ−1Fℓ−2,

d− a20 = Fℓ−3Fℓ−1 + 1 = F 2
ℓ−2.
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So we get

(4.6)

R
(1)
0 =

p0
q0

= a0,

R
(2)
0 =

p20 + dq20
2p0q0

=
a20 + d

2a0
= a0 +

d− a20
2a0

= a0 +
Fℓ−2

Fℓ−1
=

pℓ−2

qℓ−2
,

R
(3)
0 =

p0(p
2
0 + 3dq20)

q0(3p20 + dq20)
=

a0(a
2
0 + 3d)

3a20 + d
= a0 +

2a0(d− a20)

4a20 + d− a20

= a0 +
Fℓ−1F

3
ℓ−2

F 2
ℓ−1F

2
ℓ−2 + F 2

ℓ−2

= a0 +
Fℓ−1Fℓ−2

F 2
ℓ−1 + 1

= a0 +
Fℓ−1Fℓ−2

Fℓ−2Fℓ

= a0 +
Fℓ−1

Fℓ
=

pℓ−1

qℓ−1
.

Let us prove the theorem using induction onM . For proving the inductive
step, first observe that from (2.6) for m ≥ 3 we have

R
(m)
k =

R
(2)
k R

(m−2)
k + d

R
(2)
k +R

(m−2)
k

, R
(m)
k =

R
(3)
k R

(m−3)
k + d

R
(3)
k +R

(m−3)
k

.(4.7)

Suppose that for some i ∈ {0, ℓ − 2, ℓ − 1} it holds
p(M−1)ℓ+i

q(M−1)ℓ+i
= R

(m−3)
0 .

We have

pMℓ+i

qMℓ+i
=

[

a0, 1, 1, . . . , 1, 1
︸ ︷︷ ︸

ℓ−1 times

, a0 +
p(M−1)ℓ+i

q(M−1)ℓ+i

]

=

[

a0, 1, 1, . . . , 1, 1
︸ ︷︷ ︸

ℓ−1 times

, a0 +R
(m−3)
0

]

=
pℓ−1(a0 +R

(m−3)
0 ) + pℓ−2

qℓ−1(a0 +R
(m−3)
0 ) + qℓ−2

(3.4)
=

(3.5)

pℓ−1R
(m−3)
0 + dqℓ−1

qℓ−1R
(m−3)
0 + pℓ−1

(4.6)
=

R
(3)
0 R

(m−3)
0 + d

R
(3)
0 +R

(m−3)
0

(4.7)
= R

(m)
0 .

Corollary 4.6. Let ℓ(
√
d) = ℓ be the length of the shortest period of the

continued fraction expansion of
√
d. Then for each m ≥ 2 it holds

sup
d,n

{∣
∣j(m)

n (
√
d)
∣
∣

}

= +∞, lim sup
d,n

{∣
∣j

(m)
n (

√
d)
∣
∣

ℓ(
√
d)

}

≥ m

6
.
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5. Number of good approximants

Analogously as in [2], let us define

b(m)(α) =
∣
∣{n : 0 ≤ n ≤ ℓ− 1, R(m)

n is a convergent of α}
∣
∣.

For arbitrary m experimental results suggest that similar properties could
hold as for m = 2. However, there are some differences, as the following
example shows.

Example 5.1. We have ℓ(
√
45) = 6 and

b(m)(
√
45) =

{

4, if m ≡ 2 (mod 4),

6, if m 6≡ 2 (mod 4).

Proof. We have
√
45 = [ 6, 1, 2, 2, 2, 1, 12 ] = [ 6, 1, 2, 2, 2, 1, 6, 0]. We

will denote convergents of regular expansion with pn

qn
. Using (2.3) and (2.4),

R
(m)
2 = p3m−1

q3m−1
and R

(m)
5 = p6m−1

q6m−1
are good approximants, and by Theorem 1.1,

we only have to check R
(m)
0 and R

(m)
1 . The first few convergents of

√
45 are

sequentially 6
1 ,

7
1 ,

30
3 , 47

7 , 114
17 ,

161
24 , and let us observe how other convergents

look like ([. . . ]M denote matrix form of convergents: [a0, a1, . . . , an]M =
(
a0

1
1
0

) (
a1

1
1
0

)
· · ·

(
an

1
1
0

)
=

(
pn

qn

pn−1

qn−1

)
), and let us write

(
7+

√
45

2

)3k
= γ.

(
p6k+1

q6k+1

p6k
q6k

)

= [ 6, 1, 2, 2, 2, 1, 6, 0]kM [ 6, 1 ]M =

(
161

24

1080

161

)k (
7

1

6

1

)

=





γ 7+
√
45

2 + γ′ 7−
√
45

2

γ
7+

√
45

2 −γ′ 7−
√
45

2√
45

γ 6+
√
45

2 + γ′ 6−
√
45

2

γ
6+

√
45

2 −γ′ 6−
√
45

2√
45



 ,

(
p6k+3

q6k+3

p6k+2

q6k+2

)

=





γ 47+7
√
45

2 + γ′ 47−7
√
45

2

γ
47+7

√
45

2 −γ′
47−7

√
45

2√
45

γ 20+3
√
45

2 + γ′ 20−3
√
45

2

γ
20+3

√
45

2 −γ′
20−3

√
45

2√
45



 ,

(
p6k+5

q6k+5

p6k+4

q6k+4

)

=





γ 161+24
√
45

2 + γ′ 161−24
√
45

2

γ
161+24

√
45

2 −γ′ 161−24
√
45

2√
45

γ 114+17
√
45

2 + γ′ 114−17
√
45

2

γ
114+17

√
45

2 −γ′ 114−17
√
45

2√
45



 .

From (2.5) we have R
(m)
n = (pn+qn

√
45)m+(pn−qn

√
45)m

(pn+qn
√
45)m−(pn−qn

√
45)m

√
45. We see now

that R
(m)
1 = (7+

√
45)m+(7−

√
45)m

(7+
√
45)m−(7−

√
45)m

√
45 is always a good approximant. Namely,

from (7±
√
45

2 )2 = 47±7
√
45

2 and (7±
√
45

2 )3 = 161± 24
√
45, since 7

1 ,
47
7 and 161

24

are convergents of
√
45, we have R

(m)
1 = p2m−1

q2m−1
.



HOUSEHOLDER’S APPROXIMANTS AND CONTINUED FRACTIONS 245

Finally, let us see when R
(m)
0 = (6+

√
45)m+(6−

√
45)m

(6+
√
45)m−(6−

√
45)m

√
45 is a convergent.

First consider

(5.1)

(
6±

√
45

3

)4

= 161± 24
√
45 =

(
7±

√
45

2

)3

.

From (5.1) we see R
(4m)
0 = p6m−1

q6m−1
and R

(4m+1)
0 = p6m

q6m
, and since (6±

√
45)3 =

9(114 ± 17
√
45) and 114

17 is a convergent of
√
45, we have R

(4m+3)
0 = p6m+4

q6m+4
.

From (6 ±
√
45)2 = 3(27 ± 4

√
45), and since 27

4 is not a convergent of
√
45,

neither R
(4m+2)
0 will be a convergent.

Let us define

ℓ
(m)
b = min{ℓ : there exists d ∈ N such that ℓ(

√
d) = ℓ and b(m)(

√
d) = b}.

In [3] Dujella and the author proved that sup
{ ℓ

(2)
b

b : b ≥ 1
}

≤ 2, and in

b ℓ
(3)
b ≤ d ℓ

(3)
b /b ≤ b ℓ

(3)
b ≤ d ℓ

(3)
b /b ≤

3 5 13 1.666667 18 36 30420 2.941176
4 6 21 1.5 19 71 313157 3.736842
5 11 1625 2.2 20 44 193648 2.2
6 6 45 1.0 21 41 21125 1.952381
7 11 36125 1.571429 22 46 796500 2.0909091
8 12 558900 1.5 23 157 221425 6.826087
9 21 277 2.333333 24 66 740880 2.75
10 14 500 1.4 25 97 490625 3.88
11 37 828325 3.363636 26 50 29403 1.923077
12 20 2548 1.666667 27 113 460525 4.185185
13 45 74698 3.461538 28 78 84500 2.785714
14 28 10125 2.461538 29 171 535517 5.896552
15 41 9125 2.733333 30 80 41405 2.666667
16 28 1125 1.75 31 97 903125 3.129032
17 67 260389 3.941176 32 88 892125 2.75

Table 1. Upper bounds for ℓ
(3)
b , 3 ≤ b ≤ 32.

[13] the author showed the same inequality for α = 1+
√
d

2 , d ∈ N, d ≡ 1
(mod 4) and d is not a perfect square. In Table 1 we show upper bounds for

ℓ
(3)
b , obtained by experiments, and corresponding d’s (we tested all d’s smaller
then 106). Other experiments (we tested all m’s until 20) give similar upper

bounds, but b(m)(
√
d) is not a monotonic function in m. Experimental results

lead to the conclusion that for every positive integer m ≥ 3 and every positive
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integer b there exist a positive integer d such that b(m)(
√
d) = b. Moreover,

obtained upper bounds for
ℓ
(m)
b

b suggest that

(5.2) sup
{ ℓ

(m)
b

b
: b ≥ 1

}

≤ 2

for all m ≥ 2. In case m = 2 families of examples where constructed which
show that for every positive integer b there exist a positive integer d such that
b(2)(

√
d) = b and b(m)(

√
d) > ℓ(

√
d)/2. To prove the inequality (5.2) for each

m ≥ 3 in a similar manner seems nearly impossible because b(m)(
√
d) depends

not only on d but also on m (see Example 5.1).
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