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HOUSEHOLDER’S APPROXIMANTS AND CONTINUED
FRACTION EXPANSION OF QUADRATIC IRRATIONALS
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ABSTRACT. There are numerous methods for rational approximation
of real numbers. Continued fraction convergent is one of them and
Newton’s iterative method is another one. Connections between these two
approximation methods were discussed by several authors. Householder’s
methods are generalisation of Newton’s method. In this paper, we will show
that for these methods analogous connection with continued fractions hold.

1. INTRODUCTION AND MAIN RESULTS

Let o be a quadratic irrational, i.e., « = ¢ +Vd, ¢,d € Q, d > 0 and d is
not a square of a rational number. It is well known that continued fraction
expansion of « is periodic, i.e., has the form

a=[ag,a1,...,0n, Ghi1, Ght2s -5 Chtt |-

Here ¢ = ¢(«) denotes the length of the shortest period in the expansion of a.
We will observe quadratic irrationals whose period begins with a;. We will

say that period is palindromic if it holds a1 = ay_1, as = ay_o, ..., i.e., the
period without the last term is symmetric.
Continued fraction convergents % = [ag,a1,...,a,] give good rational

approximations of «. Another approximation method we obtain using the
Householder’s iterative method of order p. This method is a numerical
algorithm for solving the nonlinear equation f(x) = 0, where f(z)isap+1
times continuously differentiable function and « is a zero of f but not of its
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derivative. Householder’s method of order p consists of a sequence of iterations

(1/ )PV (@)

(1/£)®) (@)
beginning with an initial guess xg. Householder’s method of order 1 is just
Newton’s method and for Householder’s method of order 2 one gets Halley’s
method.

In this paper we study connections between continued fraction convergents
of quadratic irrational @ = ¢ + v/d and Householder’s iterative method of
order m — 1, m € N, m > 2 (with rate of convergence m) for the equation
f(z) = (z—a)(x—a’) = 0, where o’ = ¢—+/d. Precisely, if the initial iteration

o = 22 is the nth continued fraction convergent of «, the principal question
Qn

Tig1 =T +p-

is whether the first iteration R%m) = x7 also a convergent of «. In that case
(m) . :
we say that R, "’ is a good approzimant.
We will show that for quadratic irrational @ whose period of the length ¢
begins with a1, there is a good approximant at the end of the period, i.e., it
holds

(1.1) RUM = Pmkl g all ke N,
qmke—1

and when period is palindromic and has even length, say ¢ = 2¢, there is a
good approximant in the half of the period, i.e., it holds

(1.2) RU™ = Pmkt=l o all k e N
gmkt—1

In Section 3 we show

THEOREM 1.1. To be a good approximant is a periodic property, i.e., for
all k € N it holds

DPs (m) Pkme+s
RUm) _ s — R =
" gs ké+n Qkmi+s

and when period is palindromic, it is also a palindromic property, i.e., it holds

R;m) — & — R§72172 — M
qs qme—s—2

When ¢ < 2, from (1.1) and (1.2) it follows that then every approximant
is good, and then it holds R\™ = Z’”E"% for all n > 0. So if R\™ is a good
approximant, one might expect that it hits convergent with m-times larger

index. However, this is not always true. If R%m) =2

j,(Lm) = j,(Lm)(a) as half of the distance from convergent with m times larger

index

we can define numbers

)
s

my S+ 1—m(n+1)
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We prove that it is unbounded by constructing an explicit family of quadratic
irrationals, which involves the Fibonacci numbers.

THEOREM 1.2. Let F; denote the £-th Fibonacci number. Let £ > 3,0 =
+1 (mod 6). Then for dy = (W)2 + Fy_3Fy_1+1 and M € N it holds
0(\/dy) = ¢ and

GEMTI () = 8 (Vo) = 58T (V) = 52 M.

Connection between Newton’s iterative method

f(xi)

f'(@s)

for solving nonlinear equations f(z) = 0 and continued fractions was discussed

by several authors. So, let us briefly mention what is known in the case m = 2.
It is well known that for @ = v/d, d € N, d not a perfect square, and the

corresponding Newton’s approximant RS = %(% + ?—n"‘) it follows that (see
e.g. [1, p. 468])

Titl = Tj —

(1.4) R =Pl g k> 1
q2ke—1

It was proved by Mikusiriski [9] (see also Elezovié¢ [4]) that if £ = 2¢, then

(1.5) R =PIl g k>
q2kt—1

These results imply that if 6(\/&) < 2, then all approximants Rg) are
convergents of v/d. In 2001, Dujella [2] proved the converse of this result.
Namely, if all approximants Rg) are convergents of v/d, then E(\/E) < 2.
Thus, if 6(\/&) > 2, we know that some of approximants Rg) are convergents
and some of them are not. Using a result of Komatsu [8] from 1999, Dujella
also showed that being a good approximant is a periodic and a palindromic
property, so he defined the number b(\/ﬁ) as the number of good approximants
in the period. Formulas (1.4) and (1.5) suggest that R'? should be convergent
whose index is twice as large when it is a good approximant. However, this is
not always true, and Dujella defined the number j(v/d) as half of the distance
from two times larger index. He also pointed out that j(v/d) is unbounded.
In 2005, Dujella and the author [3] proved that b(v/d) is unbounded, too.

In 2011, the author [13] proved the analogous results for & = HT‘/E, d e N,
d not a perfect square and d =1 (mod 4).

Sharma [15] observed arbitrary quadratic surd « = ¢ + \/E7 c,d € Q,
d > 0, d is not a square of a rational number, whose continued fraction period
of the length ¢ begins with a;. He showed that for every such a and the
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2 /2
corresponding Newton’s approximant B> = % it holds

RP P2l g k>,
q2ke—1

and when ¢ = 2¢ and the period is palindromic then it holds

R;(j),l = %, for k > 1.
q2kt—1
Frank and Sharma [6] discussed generalization of Newton’s formula. They
showed that for every quadratic irrational «, whose period begins with aq, it
holds
_ a(pre—1 — &' qre—1)™ — ' (Pro—1 — OQro—1)™
(1.6) Dmkt=t _ (Pre—1 /le 1) (Pre—1 — aqre—1) Cfor kom e N,
Qmke—1 (Pre—1 — &/ qre—1)™ — (Pre—1 — aqre—1)™

and when ¢ = 2t and the period is palindromic then it holds

= , for k,m e N.
Gmkt—1 (Prt—1 — &' qre—1)™ — (Pre—1 — AQri—1)™

(17) Pmkt=t _ a(Pri—1 — &' qre—1)" — o (pre—1 — aqre—1)™

2. HOUSEHOLDER’'S METHODS

Householder’s iterative method (see [14], [7, §4.4]) of order p for rootsolv-
ing, consists of a sequence of iterations

(1/ )@~V ()
(1/£)P) (i)

(where (1/f)®) denotes p-th derivative of 1/ f) beginning with an initial guess
xo. Let f(z) be a p + 1 times continuously differentiable function and «
is a zero of f but not of its derivative, then, in a neighborhood of «, the
convergence has rate p + 1.

Analogous to Newton’s method, we will start with function f(z) = (z —
a)(xz — '), which satisfies the above conditions. Let us first observe p-th
derivative of the function 1/ f

1/f)® = (m)(m - a_la/<$ia N x—la’)(p)

_ (—1)”p!(( 1 1 )

w1 =HP(z;) =2 +p-

a—ao \(x—qa)pt! B (x — o/ )ptl

So we have
P () = 2 — (z—a)P —(z—a) r—a)(z—ao
H ( ) (1, — O/)erl — (1, R Oz)erl ( )( )
a(z — /)P — o/ (z — a)Pt!
(x — )P+l — (x — @)Pt!

(2.1)
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It is not hard to show that it holds
rH®P) (z) — aa/

2.2 HPY () =
( ) (f) H®) (:E) Yr—a—o

, forpeN.

Formula (1.6) shows that for an arbitrary quadratic surd, whose period
begins with a; and k € N, m =2,3,..., it holds

(2.3) Fm=1) (Pkeq) _ Pmhe—1
Qke—1 Qmke—1’

and when period is palindromic, and has even length, say ¢ = 2¢, from (1.7)
it follows

(2.4) Fm=1) (pktq) _ Pmkt—1
qkt—1 qmkt—1

Let us recall the definition

RY = p—n, and form >1 R(™ = gm=Y (p—n),

An An

and we say that Rslm) is good approximation, if it is a convergent of . From
(2.3) and (2.4) it follows (1.1) and (1.2). From (2.1) we have

a(pn - O/Qn)m - O/(pn - QQn)m

2.5 R(™ =
( ) (pn - a/Qn)m - (pn - QQn)m

and formula (2.2) says

R%l)R%m) — aad’
Rgll) + Rslm) —a—ao

(2.6) R;mﬂ): , formeN n=0,1,....
3. GOOD APPROXIMANTS ARE PERIODIC AND PALINDROMIC

From now on, we assume that « is quadratic irrational whose period of
the length ¢ begins with a;. From formula [15, (8)] we obtain

(3.1) (ar — ao)pre—1 + Pro—2 = —ad qre—1,
(3.2) (ar — a0)qre—1 + Qre—2 = Pre—1 — (@ + & )qre—1,
for all k£ € N.

LEMMA 3.1. Form,ke N andi=1,2,...,¢, it holds
Ré’?fleTf —aad’

RN o Ep—y

(3:3) Rgﬁiq =

Proor. For m = 1, statement of the lemma is proven in [5, Thm. 2.1].
Suppose that (3.3) holds for some m € N, and let us show that it holds for
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m+1 too. Using the notation s = R&ll, S = R;(J,)p t= Rgi)l and T = RZ(TI),
we have

(1) (m) / st—aa’ | _ST—aa' _ ’

R(m"l‘l) (2.6) Rk@-i-i—le@-H—l — oo _ st+t—a—a’  S+T—a—ao oo
kl+i—1 — (1) (m) - _st—aa’ ST—aa’
Rpvi i+t Ry —a—d  SFiao T5iraa ¢

o (st—aa’)(ST—aa’)—ad (s+t—a—a')(S+T—a—a')
T (st—ad)(SHT—a—a’)+(ST—aa’)(s+t—a—a’)—(a+a’)(s+t—a—a’ ) (S+T—a—a’)
_ (sS—aa’)(tT—ad')—ad (s+S—a—a')(t+T—a—a')
T (sS—ad)(t+T—a—a!)+(tT—aa’)(s+S—a—a')—(at+a’)(s+S—a—a’)(t+T—a—a')

sS—aa’ | _tT—aa’ / (m+1) p(m+1) /

_ s+S—a—a’ t+T—a—a’ o (276) Rké—l Ri—l — oo
sS—aa’ tTr—aa! (m+1) (m+1) '
s+S—a—a’ + t+T—a—a’ @ @ Rké—l + Ri—l —a—ao

O
We have (see e.g. [12, §23]) —(a — ao)’ = [@g, Ge—1,---, a2, a1, and so
1
= [alfla s 5a2;a1;al]'

ag —ay — o’

So when period is palindromic, we have a+ o’ = 2ag — ag, thus formulas (3.1)
and (3.2) in palindromic case become

(3.4) aoPre—1 + Pri—2 = (@ + & )pre—1 — ad qre—1,
aoqke—1 + qQke—2 = Pko—1-

LEMMA 3.2. For m,k € N and i = 1,2,...,£ — 1, when period is
palindromic, it holds

_ R (R o~ o) +ad

(3.6) R, =
e R™ — R},

PRrROOF. For m = 1 we have

1) DPre—i—1 _ 0 pre—i + Pre—i—1
Ry, = = = [ao,a1,...,Gke—i—1, Gre—i, 0]
qre—i—1 0 qre—i + qre—i—1
= [0/07 A1y ey Aff—iy Qfl—i+415 -+ -5 Akl—1, A0, 0) —ag, —ai, ..., —A;—1 ]
Pi—1
:[a07a17"'7akf7i;ak‘lfi+17"';ak‘lflva()7 ]
qi—1
(1) (1) (1) ’ /
~ pee—1(a0 — RiTh) + pre—2 3.4) Ry (R0 —a—d') + oa

qu,l(ao — Rii)l) + Qre—2 (3:5) Rfi)l - R/(flﬁ)—l
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Suppose that (3.6) holds for some m € N, and let us show that it holds
for m + 1 too. With the same notation as in the proof of Lemma 3.1, we have
/

1 m
Rm+D) (2-6) Rl(cl)fiflRl(clf)ifl oo

kl—i=1 = (1) (m) /
Ry syt Ry g —a—a
s(t—a—a')+aa’ S(T—a—a')+aad’ ’
_ t—s ) T—S — o
T s(t—a—a’/)taa’ S(T—a—a)+aa’
t—s + T-S a—a

_ (s(t—a—a/)+aa’)(S(T—a—a')taa’)—ad/ (t—s)(T—S)

(s(t—a—a’)+aa’ ) (T—S)+(S(T—a—a’)+aa’)(t—s)—(at+a’)(t—s)(T—S)
_ (8S—ad)(tT—ad'—(a+a’)(t+T—a—a'))+aa’ (s+S—a—a') (t+T—a—a’)
- (tT—aa’)(s+S—a—a’)—(sS—aa)(t+T—a—a’)

sS—aa’ tT—ac’ ’
_ s+S—a—a (tJrTfosz/ a—a ) +aa
- tT—aa’ _sS—aa’

t+T—a—a’ s+S—a—a’
@6 RV R —a — o) + ad
o (m+1) (m+1)
RiTl - szb—l

O

Let us show that each approximant can be expressed as the combination
of convergent with m times larger index and carefully selected numbers ﬁi(m),
which are periodic (so we take them for ¢ =1,...¢—1).

PROPOSITION 3.3. Let m € N. Fori=1,2,...,¢—1 let
7pmi—1 - RETEQmi—l

Pmi — RETEsz

Bm =

Then it holds

(m) 5§m)pm(ke+i) + Pm(kt4i)—1
(3.7) Ryl =~ , for all k >0,

5i(m)qm(ke+i) + G (keti)—1

and when period is palindromic, then

(m) _ Pm(kt—i)—1 — 5i(m)pm(ke—i)—2
(3.8) Ry, . = , forall k> 1.

A (kt—i)—1 — BZ‘(m)Qm(kéfi)72

PROOF. Let us first consider the continued fraction expansion of ﬁi(m).

gm — | Pmi — RZ(-Tl)qmi
' Pmi—1 — Rng)(Zmi—l
s gm. i - [Oa Amiy Ami—15- -, 01,00 — RETE}

= [0, —Qmis —Qmi—1y---,—0A1, —Q0 + RETE ] .
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If K = 0 we have

(m)

i , + Pmi— m
6 Prmi Pmi1 = [GO;ala"'aami—laamiaBi( )}
B'(m)Qmi + qmi—1

= [ao, A1y .-y Qmi—1, Ama, 07 —Amiy, —Gmi—1y- - -

,—a1,—ag + R ] = R,
and if £ > 0 we have
51-(m)pm(u+i) + P (keti)—1

5§m)qm(ke+i) + G (keti)—1
= [aoaala-~-7amk271;amk€7amkl+la~- am(k£+i)aﬁl‘(m)]
(m)}

= [ao,a1,. .., @mke—1, Gmke — ao + R
_ Prmke— 1(amke—ao+R( ))+pmk€ 2

Imkt—1(@mrke — ao + R( )) + @mre—2

(3.1)  DPmkt— 1Rf ™) — ad gie—1

B2 proke—1 + Gmke— 1(R<T) —a—ao)

(2.3) Ry R — o Lm.3.1 p(m)
- ké+i—1

B R(m)l +R(m) — o
When period is palindromic we have
Pm(kt—i)—1 — ﬁgm)pm(u%)fz 1
= a07a17---,am(k47¢)717—w
i

Um(kt—i)—1 — 5§m)qm(ke—i)—2
Q1,00 — RET”

= [ao, a1y -y O (kt—iy—15 050, Qmiy i1, - - -
= [a0,a1, ., Gon(t—i)— 15 G (lt—i) s T (ob—i) 15 - - - > Gamkt—1, G0 *R(m)}
~ Pmke—1(ao — RETl)) + Pmke—2 (3.4) pmkeq(Rg_l - o) + ad gmpe—1
- Imie—1(ao — RETl)) + gmike—2 (3.5) qmuqRETl) — Pmki—1
(2.3) Rl(c?—)ﬂRz(Tf —a—d)tad L, 132 p(m)

fl—i—1"

O

[8, Thm. 1] and [13, Thm. 2] are special cases of the last

REMARK 3.4.
1+2‘/3 , respectively.

proposition for m =2 and & = V/d and a =

PrROOF OF THEREOM 1.1. The first part for n = ¢ — 1 is (1.1) and for
n =0,1,...,¢ — 2 follows from (3.7). The second part follows similarly as

in [2, Lm. 3], but we have three cases. Let R%m) = % = [ag,a1,...,as].
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If s = m(n+1)—1, from (3.7) we have B +1 = 0, so from (3.8) we have

R(m) _ Pm(l—n—1)—1 __ Pme—s—2
L—n—2" Gut—n—1)—1  dme—s—2 "

If s >m(n+1)— 1, then from (3.7) we have

ﬂn—i—l [ G (n41) 41> A (nt1)+25 - -+ 5 Os |
- [am(é—n—l)—la am(@—n—l)_g, ey Qo—s ]

From (3.8) we have

_ Pm@—n—-1)—1 — B»,(:_nf)lpm(éfnfl)72

(m)
Rl n—2 m)
Qm(é—n—l)—l - ﬁn+1qm(5_n_1)_2
1
= ao,al,...,am(zfnil)il
Bn-i-l
= [aO; A1y« Aml—n—1)—1, 07 —Am(l—n—1)—1> " Am(l—n—1)—2, -+ 70’7774275}
Pme—s—2
= [ao,al, e ,ame_s_l,o] = mi‘s
qme—s—2

If s <m(n+1)—1, then from (3.8) we have

(m)
in—1 = [ Om(nt1)—1> Om(ng1)—2 - - - U542 ]

= [am(ffnfl)Jrla Am(l—n—1)+25 -+ Adml—s—2 ]

From (3.7) we have

ﬂ@ n—1Pm(t—n— 1)+pm(€ n—1)—1 pm€7572

(m)
Rf n—2 =
5@ n—19m—n—1) + Gm@E—n—-1)—1 qmi—s—2

O

Let us show how Theorem 1.1 can be applied. The first example shows
palindromic situation, the second is not palindromic (but we accidentally get
good approximation in the half of the period), and the third shows that good
approximants do depend on m.

EXAMPLE 3.5. Let us observe v/44 = [6,1,1,1,2,1,1,1,12]. The period
is palindromic and we have £ = 8. Let us consider e.g. the case m = 5. From
(2.5) we have

R5) _ Po+440p%g; + 9680pna;
"7 Bphqn + 440p2¢3 1 1936¢7

From (1.2) we have
RO _ D1 _ 3160100 (5) P3g _ 4993116004999
’ q19 476 403 439 752740560150
5 Ps9 5 5) _ D20k— 1
R

— k—1 —
Q79 420k — 1
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Since, Ré5) =B = LU From Theorem 1.1 we have R( ) = = Do = 1ada959 e
and also R} = P22 and RE) ) = Diok-to,

Rf’) = 23355540817 is not a convergent of v/44, so neither Rék)Jrl nor Rék) 5 will
be.

Ré5) = % is not a convergent of \/ﬂ, so neither Réi)w nor Réi)_ 4
will be.

EXAMPLE 3.6. Let us observe @ = E’*T‘/ﬁ =19,5,6,1,2] and m = 3.

(3) __ 37p% —4572p,q> +23368¢°
From 2.5 we have Ry, = S1p2 qn—1242p, 2 1482445 "

W (3) _ puii _ 44004659 ()  _ pizk—1 R

e have R3 qaii 435564 and so R4k71 = qen_1’ The perlod 1S
. pB) _ pr _ 36409 (: : :

not palindromic, and accidentally we have: R,” = & = 3960 (in palindromic

. 3
case it would be 22) and so Rik)ﬂ = Dizhi7
as q12k+7

EXAMPLE 3.7. Let us observe a = 711 = [2 75 1,3,1,3,1]. Form = 3

3)  _ pisk—1. p(3) _ pr (3 Pi8k+7
we have Ry, | = P Ry = p and Ry’ | = P
4 4 5
For m = 4 we have: R} , = b=t R _ ps gpq R — paunes,
q24k—1 g5 q24k+5
(4) _ pun (4) P11, p(4) _ pir (4) P2ak+17
Ry = q11 R6k+1 T qaaky11’ ; R q17 and R6k+3 T Qeartir’

4. WHICH CONVERGENTS MAY APPEAR?

From now on, let us observe only quadratic irrationals of the form o = V/d,
d € N, d not a perfect square. It is well known that period of such « begins
with a; and is palindromic.

LEMMA 4.1. a) R%m) < Vd if and only if n is even and m is odd.
Therefore, R%m) can be an even convergent only if n is even and m is
odd.

b)

(4.1) IR, — V| < |R(™ — Vd|.

PROOF. a) From (2.5) we have

(4.2) R™ _\/d = 2Vd(pn — gnV/d)"™
. N = .

(pn + Qn\/a) - (pn - Qn\/g)m
On the right side of (4.2), denominator is always greater than 0, and
nominator is less than 0 if and only if n is even (then we have p,, — Vdg, < 0)
and m is odd.

b) Let us observe (4.2). From 1 <py<p1 <pa <... and 1 <go < q1 <
g2 < ... we have 2 < pg 4+ Vdqo < p1 + Vdg: < .... On the other hand, we
have 1 > |po — Vdqo| > |p1 —Vdqi| > ... (see e.g. [12, §15]), so it holds (4.1).

O
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Let us observe the definition (1.3). The number j,(Lm) is an integer, by
Lemma 4.1 a). Using Theorem 1.1 we have

(4.3) j,(Lm) = jgxn, and in palindromic case jflm) = fjéT%_Q.

PROPOSITION 4.2. Forn >0 and m € N we have

‘]ém)(\/a)‘ < m@/; - 1).

PRrOOF. Let R{™ = DPmGtbe2i-t - According to (4.3), it suffices to
dm(n+1)+2j—1

consider the case j > 0 and n < £.
Assume first that £ is even, that is £ = 2¢. We have RﬁTl) = Pmt=l and

dmt—1
Réiq = Zﬁ For n < t—1, using (4.1) we have m(n+1)+2j—1 < mt—1,
and 2 <m(t—1)—1. Forn=¢—1and n = ¢ — 1 we have j = 0, and for
t—l<n</{—1lwehavem(n+1)+2j—1<ml—1,or2j <ml—m(n+1) <
m(t — 1), so again we get j < w.
Let £ is odd, e.g. £ =2t + 1. If for some n,0 < n < t holds j >
we would have s :== m(n+ 1)+ 2j —1 > m¢/2 — 1. By Theorem 1.1 it

follows RETBHQ = Dmi==2 " and ml — s —2 < ml/2 — 1. Now it holds

m(£/2—1)
2 )

dme—s—2

|\/Ef % < ‘\/Ef zmj%:ﬂ, thus ‘\/EfR;m)‘ < ‘\/EfRéTBI_Q . This is not
possible by (4.1), since £ —n —2 >t. Fort —1 < n < £ — 1, the proof is the
same as in the even case. O

PrRoOPOSITION 4.3. Let £ € N and ay,...,a¢—1 € N such that a1 = ap_1,
as = ag_o, .... The number [ag,a1,az,...,ar_1,2a0] is of the form \/d,
d € N if and only if
(4.4) 2a0 = (—1)""'p)_5qs_5 (mod pj_,),
where ’;—E" =la1,a2,...,an-1,a,]. Then it holds

20/ / + /
(4.5) d=q2+ 2P T s
Py
PROOF. See [12, §26] O

LEMMA 4.4. Let I}, denote the k-th Fibonacci number. Let n € N and
k>1,k=1,2 (mod3). Fordi(n) = (22=UB4)? 4 (9p _ 1)F, 4 +1 it
holds £(\/di(n)) = k and

dyp(n) = [E=UEAL T UL (20— 1) E, 1.
—_—

k—1 times
ProOF. From (4.4), it follows
200 = (—1)* 1 F 1 Fo = (-1 Y E_ (Fy — Fr_1)
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= (—1)’“_1(—Fk271) (mod Fy,).
Now from Cassini’s identity FyFjy_o — F,f_l = (=1)*"! we have 2a9 = 1
(mod Fy). When 3 | k, this congruence is not solvable, and if 3 { k, the
solution is ag = £t (mod Fy), ie.,
. F,+1
2
From (4.5) it follows

(277, — 1)Fk + 1)2 n ((27l — 1)Fk + ].)kal + Fj_o

2n — 1) F; 1
+(n—1)Fk:(n$, n € N.

ao

i~

2 Fr
o — 1)Fj, + 112
- (%) +(2n— 1) Fey + 1.

O

REMARK 4.5. Periodic continued fractions involving Fibonacci numbers
with all a; = 1, ¢ = 1,...,£/ — 1 were known earlier. First example was
shown in [16]. Construction of such examples, using Pellian equations was

given in several papers by Mollin, see e.g. [11] and [10]. However, in all such

1+vd
2

part of the period, but for the numbers of the form v/d there is at least one
a; # 1. In [13, Lemma 5] we constructed, in a similar was as in Lemma 4.4,

all numbers of the form 1+2\/3, d €N, d=1 (mod 4), with all a; = 1 in

symmetric part of the period. We have shown that all such numbers are of
the form H_fd;(n), where dj (n) = 4((n Fe+1)2%+n- Fk_g) +1,kneN
or 2n € N when 3 | k. Some of those numbers was also given in [11, Example
5] Di(n) = 4F}3n? + (20F2 + 8(—1)*)n + 5, i.e., it is not hard to show that
it holds Dy (n) = dj,(n). It turns out that for the numbers in Lemma 4.4 it
holds dy(n) = +d; (2%L), and when 3 { k, continued fraction of /dj(n) have

1 2
desired form (and there is no other number with such period).

examples, the numbers are of the form with all a; = 1 in symmetric

PROOF OF THEOREM 1.2. By (1.3), we have to prove
3M—1 DPnme—2 3M Pme—1 3M41 Pare
RPM—L) - DME-2 REM) — EMEL RBMTY - DML
qMe—2 qme—1 qme

We have ag = w, and since 3 1 ¢, Fy;_3 is odd, thus by Lemma 4.4 it

holds
\Vdy = [ao,l,l,...,l,l,an}.
——

£—1 times

From Cassini’s identity, since £ is odd (¢ = £1 (mod 6)), it follows
200 = Fy_s(Fpo1 + Froo) + 1 = F} g+ Fo_3Fp_o = Fy_1F,_o,
d—a2=F, 3F, 1 +1=F7?,.
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So we get
=,
qo0
2 2 2 2
+d ag +d d—a, F,_ _
RéQ):pO 9% _ % —ag+ 0 — g0+ -2 _ Pe 2,
2poqo 2ag 2a0 Frov qoeo
46 R® _ po(pg + 3dg3) _ ao(ag + 3d) . 2a0(d — aj)
(4.6) * qo(3pf + daj) 3ak +d 4a3 +d —ad
Fi 1 F}, Fy 1 Fpo Fy 1 Fp o
IR 7 - I L s U L Ty )
Foy pe
= ag + ==L
*TR qe—1

Let us prove the theorem using induction on M. For proving the inductive
step, first observe that from (2.6) for m > 3 we have

) R}(€2)RI(€m—2) +d ) R](f)R](gm_S) +d

(4.7) R™ = — R{™ = @), pm3)
RY + R RY + R
Suppose that for some i € {0, —2,£ — 1} it holds % = Rémfg).
We have
Dasiti = aOalvla"'71a17a0+pi(M_l)e-H
qMe+i — q(M—1)e+i

£—1 times

— [ao,l,l,...,1,1,a0+R(()m_3)]
————
£—1 times
_ pe—1(ao + R(()m%)) + P2 (3.4) pe—1R(()m73) +dge—1
qe—1(ao + R(()m%)) + qr—p 35 Qe—1R(()m73) + pe—1
@6) RVRY" ™ +d @1) )

oo = Iy
Ry + RV

O

COROLLARY 4.6. Let £(\/d) = { be the length of the shortest period of the
continued fraction expansion of \/d. Then for each m > 2 it holds

-(m)
Sdl,l'rrz) {\37({")(\/3)\} = 00, lin;yiup {%} > %
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5. NUMBER OF GOOD APPROXIMANTS
Analogously as in [2], let us define
b () = {n:0<n<e-1, R(™ is a convergent of o}].

For arbitrary m experimental results suggest that similar properties could
hold as for m = 2. However, there are some differences, as the following
example shows.

EXAMPLE 5.1. We have ¢(1/45) = 6 and

b (V/A5) = 4, ifm=2 (mod4),
16, ifm#2 (mod4).

PROOF. We have 45 = [6,1,2,2,2,1,12] = [6,1,2,2,2,1,6,0]. We
will denote convergents of regular expansion with Z—”. Using (2.3) and (2.4),
Rgm) Z 2= and R(m) 22’% are good approximants, and by Theorem 1.1,

we only have to check Rém) and RY”). The first few convergents of v/45 are

sequentially %, %, %, 4—77, 11—174, %, and let us observe how other convergents

look like ([...]as denote matrix form of convergents: [ag,a1,...,anln =
1 1 n 1 n P . 3k
(af 0) (af 0) (al 0) = (Zn Zﬂi)), and let us write (—7"'%/5) =

k
161 1080 76
6,1,2,2,2,1,6,0]5,(6,1
[7;75757][] (24161)(11)

7+W+7/7 Qf 6+W+7/6 Q\ﬁ

= v7+5ﬁﬂ,7 5/? V6+5ﬁ77,6 gﬁ 5

V45 V45

Dokes Pobes 747+7W+7/47 7\/45 20+3\ﬁ+7/20 345

( > = AT+7V/45 AT— 7\/? 204345 20— 3f )
qd6k+3 46k+2 R 2 - 2 R 2 - 2

/a5 V45
161424145 /161—24V45  114+17/45 1 114—1745
2 +7 2 v 2 +7 2

(p6k+1 pcsk)
d6k+1 g6k

DP6k+5 D6k+4 v
= 16142445 ,161—24/45 114+17/45 ,114—17/45
q6k+5 46k+4 b 2 - 2 R 2 il 2

V45 V45

From (2.5) we have R{™ = otV +(n=02 VAN /75 Wo see now

(pn"l'Qn\/R)m'_(pn_Qn\/‘E)m
that R(m) (Ziﬁ; E; \/‘/:;n V45 is always a good approximant. Namely,

from (HEQr) = 47i;‘ﬁ and (H[;/R) 161 + 24+/45, since I, 4 and 18

1’
) _ Pem-1
q2m—1"

are convergents of v/45, we have Rgm
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. (m) _ (6+v45)"+(6—V45)™ .
Finally, let us see when Ry~ = v (6—va)™ v 45 is a convergent.
First consider

(5.1) (%)4 = 161 + 24V/45 = (HT\/E)‘3

From (5.1) we see Ré4m) = Z:‘:}% and Ré4m+1) = bom and since (6++/45)3 =

9(114 £ 17v/45) and L& is a convergent of v/45, we have RU™T3) = pomss

g6m—+4 "

From (6 + v/45)? = 3(27 + 4/45), and since 2 is not a convergent of v/45,
neither Ré4m+2) will be a convergent. O

Let us define
El()m) — min{/ : there exists d € N such that £(v/d) = £ and "™ (v/d) = b}.

@)
In [3] Dujella and the author proved that sup{e”T : b > 1} < 2, and in

b [ <] a [ Ppm<|o]| P <] a | Pp<
3] 5 13 | 1.666667 | 18 | 36 | 30420 | 2.941176
41 6 21 | 1.5 19| 71 | 313157 | 3.736842
5| 11 | 1625 |22 20| 44 | 193648 | 2.2
6| 6 45 | 1.0 21| 41 | 21125 | 1.952381
7| 11 | 36125 | 1571429 |[ 22 | 46 | 796500 | 2.0909091
8 | 12 |558000 | 1.5 23 | 157 | 221425 | 6.826087
9 | 21 | 277 [2.333333([ 24| 66 | 740880 |2.75
10| 14 | 500 |14 25 | 97 | 490625 | 3.88

11 37 | 828325 | 3.363636 || 26 | 50 29403 | 1.923077
12 20 2548 | 1.666667 || 27 | 113 | 460525 | 4.185185
13| 45 74698 | 3.461538 || 28 78 84500 | 2.785714
141 28 10125 | 2.461538 || 29 | 171 | 535517 | 5.896552
15| 41 9125 |2.733333 || 30 | &0 41405 | 2.666667
16 | 28 1125 | 1.75 31 97 | 903125 | 3.129032
17| 67 |260389 | 3.941176 || 32| 88 | 892125 | 2.75

TABLE 1. Upper bounds for 55)3), 3<b< 32

[13] the author showed the same inequality for o = #, deN d=1
(mod 4) and d is not a perfect square. In Table 1 we show upper bounds for

623), obtained by experiments, and corresponding d’s (we tested all d’s smaller
then 10°). Other experiments (we tested all m’s until 20) give similar upper
bounds, but b(™)(v/d) is not a monotonic function in m. Experimental results

lead to the conclusion that for every positive integer m > 3 and every positive
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integer b there exist a positive integer d such that b("™ (v/d) = b. Moreover,

(5.2)

(m)
obtained upper bounds for be suggest that
g(m)
sup{bT:b21}§2

for all m > 2. In case m = 2 families of examples where constructed which
show that for every positive integer b there exist a positive integer d such that
b@ (Vd) = b and b (v/d) > £(v/d)/2. To prove the inequality (5.2) for each
m > 3 in a similar manner seems nearly impossible because b(") (\/E) depends
not only on d but also on m (see Example 5.1).
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