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THE ARAKAWA–KANEKO ZETA FUNCTION AND

POLY-BERNOULLI POLYNOMIALS

Yoshinori Hamahata

Ritsumeikan University, Japan

Abstract. The purpose of this paper is to introduce a generalization
of the Arakawa–Kaneko zeta function and investigate their special values
at negative integers. The special values are written as the sums of
products of Bernoulli and poly-Bernoulli polynomials. We establish the
basic properties for this zeta function and their special values.

1. Introduction

Let Lik(x) (k ∈ Z) be the formal series defined by

(1.1) Lik(x) =
∞
∑

m=1

xm

mk
.

The formal power series Lik(x) is the k-th polylogarithm if k ≥ 1, and a
rational function if k ≤ 0. When k = 1, we see easily that

(1.2) Li1(x) = − log(1− x).

The Arakawa–Kaneko zeta function ξk(s, x), for s ∈ C, x > 0, k ∈ Z, is
defined by

(1.3) ξk(s, x) =
1

Γ(s)

∫ ∞

0

Lik(1− e−t)

1− e−t
e−xtts−1dt.

It is defined for Re(s) > 0, x > 0 if k ≥ 1, and for Re(s) > 0, x > |k|+1 if k <
0. The function ξk(s, x) is a generalization of the Hurwitz zeta function ζ(s, x)
in that ξ1(s, x) = sζ(s, x). Especially, ξk(s) := ξk(s, 1), which was defined by
Arakawa and Kaneko [1], is a generalization of the Riemann zeta function
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ζ(s) in that ξk(s) = sζ(s+1). In this paper, we introduce a generalization of
ξk(s, x) and investigate their special values at negative integers.

To consider the special values of ξk(s, x), we recall Bernoulli and poly-
Bernoulli polynomials. Bernoulli polynomials Bn(x) are defined by the
generating function

text

et − 1
=

∞
∑

n=0

Bn(x)
tn

n!
.

These polynomials are related to special values of the Hurwitz zeta function.
There exist some relations among Bernoulli polynomials. For instance, the
following identity is known:

(1.4)
n
∑

n=0

(

n

i

)

Bi(x)Bn−i(y) = n(x+ y − 1)Bn−1(x+ y)− (n− 1)Bn(x+ y)

(see [6, (3.2)]). Dilcher [6] and Chen [4] gave a generalization of this identity
for sums of products of Bernoulli polynomials given by

(1.5)
∑

i1+···+im=n
i1,...,im≥0

(

n
i1, . . . , im

)

Bi1(x1) · · ·Bim−1
(xm−1)Bim(xm),

where
(

n
i1, . . . , im

)

=
n!

i1! · · · im!

are multinomial coefficients.
We next recall poly-Bernoulli polynomials introduced in [3, 5]. For

every integer k, we define polynomials B
(k)
n (x), which we call poly-Bernoulli

polynomials, by

(1.6)
Lik(1 − e−t)

1− e−t
ext =

∞
∑

n=0

B(k)
n (x)

tn

n!
.

We remark that B
(k)
n (x) are defined in [5] by replacing ext by e−xt in the

left-hand side of (1.5). By definition, it is easy to see that for any n ≥ 0

(1.7) Bn(x) = (−1)nB(1)
n (−x),

or equivalently

(1.8) B(1)
n (x) = Bn(x+ 1).

The numbers B
(k)
n := B

(k)
n (0) are called poly-Bernoulli numbers. These

numbers are introduced by Kaneko [8], and then investigated in [1, 2]. Poly-

Bernoulli polynomials B
(k)
n (x) were defined in [3] to generalize the properties

of Bernoulli polynomials and poly-Bernoulli numbers.
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The purpose of this paper is to introduce a generalization of ξk(s, x) and
describe the special values at negative integers in terms of

S(k)
m (n;x) =

∑

i1+···+im=n
i1,...,im≥0

(

n
i1, . . . , im

)

Bi1(x1) · · ·Bim−1
(xm−1)B

(k)
im

(xm),

where x = x1 + · · · + xn. Since S
(k)
m (n;x) is a generalization of (1.5), it is

of interest to investigate S
(k)
m (n;x). We show the outline of this paper. In

Section 2, after some preparations of notations needed later, we present the

basic properties for S
(k)
m (n;x). In Sections 3, 4 and 5, the proofs of these

results are given. In Section 6, we introduce a generalization of ξk(s, x) and

investigate the special values at negative integers in terms of S
(k)
m (n;x).

2. Sums of products of Bernoulli and poly-Bernoulli

polynomials

2.1. Preliminaries. Let x1, . . . , xm be variables and set x = x1+ · · ·+xm.
For n ≥ 0, set

S(k)
m (n;x) =

∑

i1+···+im=n
i1,...,im≥0

(

n
i1, . . . , im

)

Bi1(x1) · · ·Bim−1
(xm−1)B

(k)
im

(xm),

where

(

n
i1, . . . , im

)

are multinomial coefficients defined by

(

n
i1, . . . , im

)

=
n!

i1! · · · im!
.

When m = 1, S
(k)
m (n) is nothing other than B

(k)
n (x). By definition, we have

(

t

et − 1

)m−1
Lik(1− e−t)

1− e−t
ext =

∞
∑

n=0

S(k)
m (n;x)

tn

n!
.

For m ≥ 1, the Stirling numbers of the first kind

[

m
l

]

are defined by

x(x+ 1) · · · (x+m− 1) =

m
∑

l=0

[

m
l

]

xl

and

[

m
l

]

= 0 for l ≥ m+ 1 and l ≤ −1. These numbers satisfy

[

m
0

]

= 0,

[

m
m

]

= 1 (m ≥ 1),(2.1)

[

m+ 1
l

]

=

[

m
l − 1

]

+m

[

m
l

]

(m ≥ 1, l ∈ Z).(2.2)
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Let us introduce a differential operator by

D(x) =
d

dt
− x.

For the exponential generating function
∑∞

n=0 ant
n/n! of a sequence {an}, it

holds that

D(x)

(

∞
∑

n=0

an
tn

n!

)

=

∞
∑

n=0

(an+1 − xan)
tn

n!
.

Fix k ∈ Z. We denote by Pk the set of xlB
(k)
n (x) (l, n ≥ 0). Let U and V be

maps of Pk to itself with the conditions

U(xlB(k)
n (x)) = xlB

(k)
n+1(x), V (xlB(k)

n (x)) = xl+1B(k)
n (x).

2.2. Results. We are now ready to state our results.

Theorem 2.1. We have
m
∑

l=0

(−1)m−l

[

m+ 1
l + 1

]

S
(k−l)
m+1 (n;x)

=











n!

(n−m)!

m
∑

l=1

[

m+ 1
l+ 1

]

(U − V )lB
(k)
n−m(x), n ≥ m

0, 0 ≤ n ≤ m− 1

.

The proof is given in Section 3.

Example 2.2.

− S
(k)
2 (n;x) + S

(k−1)
2 (n;x) = nB(k)

n (x)− nxB
(k)
n−1(x) (n ≥ 1),

2S
(k)
3 (n;x)− 3S

(k−1)
3 (n;x) + S

(k−2)
3 (n;x)

= n(n− 1)
[

B(k)
n (x) + (3 − 2x)B

(k)
n−1(x) + (x2 − 3x)B

(k)
n−2(x)

]

(n ≥ 2),

− 6S
(k)
4 (n;x) + 11S

(k−1)
4 (n;x)− 6S

(k−2)
4 (n;x) + S

(k−3)
4 (n;x)

= n(n− 1)(n− 2)
[

B(k)
n (x) + (6− 3x)B

(k)
n−1(x)

+(11− 12x+ 3x2)B
(k)
n−2(x)− (11x− 6x2 + x3)B

(k)
n−3(x)

]

(n ≥ 3).

Theorem 2.3. For k ≥ 1 and n ≥ 1, we have

S
(0)
2 (n;x) = B(1)

n (x),(2.3)

S
(k)
2 (n;x) = Bn(x+ 1)− n

k
∑

j=1

B(j)
n (x) + nx

k
∑

j=1

B
(j)
n−1(x),(2.4)

S
(−k)
2 (n;x) = Bn(x+ 1) + n

k−1
∑

j=0

B(−j)
n (x) + nx

k−1
∑

j=0

B
(−j)
n−1 (x).(2.5)
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The proof is given in Section 4.

Theorem 2.4. For k ≥ 1 and n ≥ 2, we have

S
(0)
3 (n;x) = − (n− 1)B(1)

n (x) + nxB
(1)
n−1(x),(2.6)

S
(k)
3 (n;x) = (2− 2−k)[nxBn−1(x)− (n− 1)Bn(x)](2.7)

− (1 − 2−k)[n(x+ 1)Bn−1(x+ 1)

− (n− 1)Bn(x+ 1)]

+ n(n− 1)

k
∑

j=1

(1 − 2j−k−1)
[

B(j)
n (x)

+(1− 2x)B
(j)
n−1(x) + (x2 − x)B

(j)
n−2(x)

]

,

S
(−k)
3 (n;x) = (2− 2k) [nxBn−1(x)− (n− 1)Bn(x)](2.8)

− (1 − 2k)[n(x+ 1)Bn−1(x+ 1)

− (n− 1)Bn(x+ 1)]

+ n(n− 1)

k−2
∑

j=1

(2k−j−1 − 1)
[

B(−j)
n (x)

+(1− 2x)B
(−j)
n−1 (x) + (x2 − x)B

(−j)
n−2 (x)

]

,

where S
(−1)
3 (n;x) = n(x+ 1)Bn−1(x+ 1)− (n− 1)Bn(x+ 1).

The proof is given in Section 5.

Remark 2.5. It is difficult to find a formula for S
(k)
m (n;x) when m ≥ 4.

2.3. Corollaries. We present some results derived from Theorems 2.1, 2.3
and 2.4.

2.3.1. Sums of products of Bernoulli and poly-Bernoulli numbers. Let k
be an integer. For m ≥ 1 and n ≥ 0, set

S(k)
m (n) =

∑

i1+···+im=n
i1,...,im≥0

(

n
i1, . . . , im

)

Bi1 · · ·Bim−1
B

(k)
im

.

When m = 1, S
(k)
m (n) becomes B

(k)
n . By definition, we have

(

t

et − 1

)m−1
Lik(1− e−t)

1− e−t
=

∞
∑

n=0

S(k)
m (n)

tn

n!
.

Putting x = 0 in Theorem 2.1, we have the following theorem.
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Theorem 2.6 (Kamano [7]). For k ∈ Z and m ≥ 1, we have

(2.9)

m
∑

l=0

(−1)m−l

[

m+ 1
l + 1

]

S
(k−l)
m+1 (n)

=











n(n− 1) · · · (n−m+ 1)
m
∑

l=1

[

m
l

]

B
(k)
n−m+l, n ≥ m

0, 0 ≤ n ≤ m− 1

.

Putting x = 0 in Theorem 2.3, we obtain the following theorem.

Theorem 2.7 (Kamano [7]). For k ≥ 1 and n ≥ 1, we have

S
(0)
2 (n) = B(1)

n ,(2.10)

S
(k)
2 (n) = B(1)

n − n

k
∑

j=1

B(j)
n ,(2.11)

S
(−k)
2 (n) = B(1)

n + n

k−1
∑

j=0

B(−j)
n .(2.12)

In Theorem 2.4, replacing Bn−1(x+1) by (−1)n−1Bn−1(−x) and putting
x = 0, we obtain the following theorem.

Theorem 2.8 (Kamano [7]). For k ≥ 1 and n ≥ 2, we have

S
(0)
3 (n) = − (n− 1)Bn,(2.13)

S
(k)
3 (n) = n(1− 2−k)(−1)nBn−1 − (n− 1)Bn(2.14)

+ n(n− 1)

k
∑

j=1

(1− 2j−k−1)(B(j)
n +B

(j)
n−1),

S
(−k)
3 (n) = n(2k − 1)(−1)n−1Bn−1 − (n− 1)Bn(2.15)

+ n(n− 1)

k−2
∑

j=0

(2k−j−1 − 1)(B(−j)
n +B

(−j)
n−1 ),

where S
(−1)
3 (n) = n(−1)n−1Bn−1 − (n− 1)Bn.

Remark 2.9. In the proofs of Theorems 2.6, 2.7 and 2.8, the operator
D(0) = d/dt was used. On the other hand, in the proofs of Theorems 2.1, 2.3
and 2.4, D(x) = d/dt− x will be used.
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2.3.2. Sums of products of Bernoulli polynomials. The identity (2.4) for
k = 1 turns into

n
∑

i=0

(

n

i

)

Bi(x1)Bn−i(x2 + 1)

= n(x1 + x2)Bn−1(x1 + x2 + 1)− (n− 1)Bn(x1 + x2 + 1).

Putting x = x1 and y = x2 + 1, (1.4) is gained.
Similarly, using (2.7) for k = 1 and n ≥ 2, we obtain the following result:

∑

i1+i2+i3=n
i1,i2,i3≥0

(

n
i1, i2, i3

)

Bi1(x1)Bi2(x2)Bi3 (x3)

=
n(n− 1)

2
(x− 1)(x− 2)Bn−2(x)

+
n

2
(3n− 3− 2nx+ x)Bn−1(x) +

3

2
n(x− 1)Bn−1(x− 1)

+
n2 − 1

2
Bn(x)−

3

2
(n− 1)Bn(x− 1).

3. Proof of Theorem 2.1

Let Gk(t, x) be the generating function of poly-Bernoulli polynomials of
index k given by the left-hand side of (1.6). For example, we have

G−1(t, x) = e(x+2)t, G0(t, x) = e(x+1)t, G1(t, x) =
te(x+1)t

et − 1
.

The following lemma is a key result in the proofs of Theorems 2.1, 2.3 and
2.4.

Lemma 3.1. For k ∈ Z, we have

(3.1) D(x)Gk(t, x) =
1

et − 1
(Gk−1(t, x)−Gk(t, x)).

Proof. For Fk(t) = Lik(1 − e−t)/(1 − e−t), Kamano [7] proved

d

dt
Fk(t) =

1

et − 1
(Fk−1(t)− Fk(t)) .

From this, we deduce

d

dt
Gk(t, x) =

1

et − 1
(Gk−1(t, x)−Gk(t, x)) + xGk(t, x).

Let us generalize the lemma just proved.
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Theorem 3.2. For k ∈ Z and m ≥ 1, it holds that

(3.2)

([

m
m

]

D(x)m +

[

m
m− 1

]

D(x)m−1 + · · ·+

[

m
1

]

D(x)

)

Gk(t, x)

=
1

(et − 1)m

m
∑

l=0

(−1)m−l

[

m+ 1
l + 1

]

Gk−l(t, x).

Proof. We prove the theorem by induction on m. The case m = 1
follows from the lemma stated above. Assume that (3.2) holds for case m. By
(2.2), the left-hand side of (3.2) for case m+ 1 is
([

m
m

]

D(x)m+1 +

[

m
m− 1

]

D(x)m + · · ·+

[

m
1

]

D(x)2
)

Gk(t, x)

+m

([

m
m

]

D(x)m + · · ·+

[

m
1

]

D(x)

)

Gk(t, x).

Thanks to the assumption for case m, this becomes

D(x)

(

1

(et − 1)m

m
∑

l=0

(−1)m−l

[

m+ 1
l + 1

]

Gk−l(t, x)

)

+
m

(et − 1)m

m
∑

l=0

(−1)m−l

[

m+ 1
l + 1

]

Gk−l(t, x).

Applying Lemma 3.1 to the first term gives

−met

(et − 1)m+1

m
∑

l=0

(−1)m−l

[

m+ 1
l + 1

]

Gk−l(t, x)

+
1

(et − 1)m+1

m
∑

l=0

(−1)m−l

[

m+ 1
l+ 1

]

(Gk−l−1(t, x) −Gk−l(t, x))

+
m

(et − 1)m

m
∑

l=0

(−1)m−l

[

m+ 1
l+ 1

]

Gk−l(t, x)

=
−m− 1

(et − 1)m+1

m
∑

l=0

(−1)m−l

[

m+ 1
l+ 1

]

Gk−l(t, x)

+
1

(et − 1)m+1

m
∑

l=0

(−1)m−l

[

m+ 1
l + 1

]

Gk−l−1(t, x)

=
1

(et − 1)m+1

m
∑

l=0

(−1)m+1−l(m+ 1)

[

m+ 1
l + 1

]

Gk−l(t, x)

+
1

(et − 1)m+1

m+1
∑

l=1

(−1)m+1−l

[

m+ 1
l

]

Gk−l(t, x).
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Using

[

m+ 1
m+ 2

]

=

[

m+ 1
0

]

= 0, the right-hand side turns into

1

(et − 1)m+1

m+1
∑

l=0

(−1)m+1−l

(

(m+ 1)

[

m+ 1
l + 1

]

+

[

m+ 1
l

])

Gk−l(t, x),

which yields the claim for case m+ 1.

Let us return to the proof of Theorem 2.1. We see that

D(x)Gk(t, x) =

∞
∑

n=1

B(k)
n (x)

tn−1

(n− 1)!
− x

∞
∑

n=0

B(k)
n (x)

tn

n!

=

∞
∑

n=0

(U − V )B(k)
n (x)

tn

n!
.

Since D(x) and U − V are commutative, for l ≥ 0 we obtain

D(x)lGk(t, x) =

∞
∑

n=0

(U − V )lB(k)
n (x)

tn

n!
.

For m ≥ 0, we have

tmD(x)lGk(t, x) =

∞
∑

n=m

n!

(n−m)!
(U − V )lB

(k)
n−m(x)

tn

n!
.

Therefore the theorem follows from Theorem 3.2.

4. Proof of Theorem 2.3

Proof of (2.3): This case follows from G0(t, x) = e(x+1)t.
Proof of (2.4): By Lemma 3.1,

d

dt
Gj(t, x) =

1

et − 1
(Gj−1(t, x)−Gj(t, x)) + xGj(t, x).

Summing over j from 1 to k, we have

k
∑

j=1

d

dt
Gj(t, x) =

1

et − 1
(G0(t, x)−Gk(t, x)) + x

k
∑

j=1

Gj(t, x),

or equivalently

1

et − 1
Gk(t, x) =

e(x+1)t

et − 1
−

k
∑

j=1

d

dt
Gj(t, x) + x

k
∑

j=1

Gj(t, x).
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Multiplying by t, we have

t

et − 1
Gk(t, x) =

∞
∑

n=0

Bn(x+ 1)
tn

n!
−

∞
∑

n=1

n

k
∑

j=1

B(k)
n (x)

tn

n!

+ x

∞
∑

n=1

n

k
∑

j=1

B
(j)
n−1(x)

tn

n!
,

which yields the result.
Proof of (2.5): By Lemma 3.1,

d

dt
G−j(t, x) =

1

et − 1
(G−j−1(t, x)−G−j(t, x)) + xG−j(t, x).

Summing over j from 0 to k − 1, we get

k−1
∑

j=0

d

dt
G−j(t, x) =

1

et − 1
(G−k(t, x)−G0(t, x)) + x

k−1
∑

j=0

G−j(t, x),

or equivalently

1

et − 1
G−k(t, x) =

e(x+1)t

et − 1
+

k−1
∑

j=0

d

dt
G−j(t, x)− x

k−1
∑

j=0

G−j(t, x).

Multiplying both sides of this identity by t, we have the result.

5. Proof of Theorem 2.4

Proof of (2.6): Using G0(t, x) = e(x+1)t and G1(t, x) = te(x+1)t/(et−1),

t2

(et − 1)2
G0(t, x) =

t

et − 1
G1(t, x),

which implies

S
(0)
3 (n, x) = S

(1)
2 (n;x) = Bn(x+ 1)− nB(1)

n (x) + nxB
(1)
n−1(x).

By (1.8), we obtain (2.6).
Proof of (2.7): By Theorem 3.2 for m = 2, we have

(D(x)2 +D(x))Gj(t, x)

=
1

(et − 1)2
[(2Gj(t, x) −Gj−1(t, x)) − (2Gj−1(t, x)−Gj−2(t, x))] .

Summing over j from 1 to l,

2Gl(t, x)

(et − 1)2
−

Gl−1(t, x)

(et − 1)2
=

2G0(t, x) −G−1(t, x)

(et − 1)2
+

l
∑

j=1

(D(x)2 +D(x))Gj(t, x).
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Multiplying both sides by 2l−1 and summing over l from 1 to k, we have

2kGk(t, x)

(et − 1)2
−

G0(t, x)

(et − 1)2
=

(

k
∑

l=1

2l−1

)

2G0(t, x)−G−1(t, x)

(et − 1)2

+

k
∑

l=1

2l−1
l
∑

j=1

(D(x)2 +D(x))Gj(t, x)

=
(2k+1 − 2)G0(t, x)

(et − 1)2
−

(2k − 1)G−1(t, x)

(et − 1)2

+

k
∑

j=1

k
∑

l=j

2l−1(D(x)2 +D(x))Gj(t, x).

Using G0(t, x) = e(x+1)t and G−1(t, x) = e(x+2)t, it holds that

Gk(t, x)

(et − 1)2
= (2− 2−k)

e(x+1)t

(et − 1)2
− (1− 2−k)

e(x+2)t

(et − 1)2

+

k
∑

j=1

(1− 2j−k−1)(D(x)2 +D(x))Gj(t, x).

We multiply both sides by t2, and calculate each term of the right-hand side:

t2e(x+1)t

(et − 1)2
= 1 +

∞
∑

n=1

(nxBn−1(x)− (n− 1)Bn(x))
tn

n!
,(5.1)

t2e(x+2)t

(et − 1)2
= 1 +

∞
∑

n=1

(n(x+ 1)Bn−1(x+ 1)− (n− 1)Bn(x+ 1))
tn

n!
,(5.2)

t2D(x)2Gj(t, x)(5.3)

=

∞
∑

n=2

n(n− 1)
(

B(j)
n (x)− 2xB

(j)
n−1(x) + x2B

(j)
n−2(x)

) tn

n!
,

t2D(x)Gj(t, x) =
∞
∑

n=2

n(n− 1)
(

B
(j)
n−1(x) − xB

(j)
n−2(x)

) tn

n!
.(5.4)

Here (5.1) follows from

t2e(x+1)t

(et − 1)2
=

text

et − 1
+ xt ·

text

et − 1
− t

d

dt

(

text

et − 1

)

.

From these, when n ≥ 2, we obtain (2.7).
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Proof of (2.8): Using Theorem 3.2 for m = 2, we have

(D(x)2 +D(x))G−j(t, x)

=
1

(et − 1)2
[(2G−j(t, x) −G−j−1(t, x))− (2G−j−1(t, x) −G−j−2(t, x))] .

Summing over j from 0 to l,

2G−l−1(t, x)

(et − 1)2
−

G−l−2(t, x)

(et − 1)2
=

2G0(t, x)−G−1(t, x)

(et − 1)2

−

l
∑

j=0

(D(x)2 +D(x))G−j(t, x).

Multiplying both sides by 2−l and summing over l from 0 to k − 2, we have

2G−1(t, x)

(et − 1)2
−

2−k+2G−k(t, x)

(et − 1)2

=

(

k−2
∑

l=0

2−l

)

2G0(t, x)−G−1(t, x)

(et − 1)2
−

k−2
∑

l=0

2−l

l
∑

j=0

(D(x)2 +D(x))G−j(t, x)

=
22(1− 2−k+1)G0(t, x)

(et − 1)2
−

2(1− 2−k+1)G−1(t, x)

(et − 1)2

−

k−2
∑

j=0

k−2
∑

l=j

2−l(D(x)2 +D(x))G−j(t, x).

Using G0(t, x) = e(x+1)t and G−1(t, x) = e(x+2)t, we obtain

G−k(t, x)

(et − 1)2
= (2 − 2k)

e(x+1)t

(et − 1)2
− (1 − 2k)

e(x+2)t

(et − 1)2

+

k−2
∑

j=0

(2k−j−1 − 1)(D(x)2 +D(x))G−j(t, x).

We multiply both sides by t2, and calculate each term of the right-hand side:
above all, we see easily that

(5.5)

t2D(x)2G−j(t, x)

=
∞
∑

n=2

n(n− 1)
(

B(−j)
n (x)− 2xB

(−j)
n−1 (x) + x2B

(−j)
n−2 (x)

) tn

n!
,

(5.6) t2D(x)G−j(t, x) =

∞
∑

n=2

n(n− 1)
(

B
(−j)
n−1 (x)− xB

(−j)
n−2 (x)

) tn

n!
.

Combining (5.1), (5.2), (5.5), (5.6) with right-hand side of G−k(t, x)/(e
t−1)2,

the identity (2.8) can be established for n ≥ 2.
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6. A generalization of the Arakawa–Kaneko zeta function

Let k be an integer and m be a positive integer. We introduce zeta
functions by means of the Laplace–Mellin integral.

Definition 6.1. For k ∈ Z and m ≥ 1, define

ξk,m(s, x) =
1

Γ(s)

∫ ∞

0

(

t

et − 1

)m−1
Lik(1 − e−t)

1− e−t
e−xtts−1dt,

ξk,m(s) = ξk,m(s, 1) =
1

Γ(s)

∫ ∞

0

(

t

et − 1

)m−1
Lik(1− e−t)

et − 1
ts−1dt.

The zeta function ξk,m(s, x) is defined for Re(s) > 0 and x > 0 if k ≥ 1,
and for Re(s) > 0 and x > |k| + 1 if k ≤ 0. Hence ξk,m(s) is defined for
Re(s) > 0 and k ≥ 1. It should be noted that ξk,1(s, x) is just the zeta
function ξk(s, x), and ξk,1(s) is the zeta function ξk(s) defined in Section 1.

Theorem 6.2. When k ≥ 1 (resp. k ≤ 0), suppose x > 0 (resp. x >
|k|+1). Then the function s 7→ ξk,m(s, x) can be analytically continued to the
whole complex s-plane as an entire function and its values at negative integers
are given by

ξk,m(−n, x) = (−1)nS(k)
m (n;−x) (n = 1, 2, 3, . . .).

Proof. We express ξk,m(s, x) as the sum of two integrals:

ξk,m(s, x) =
1

Γ(s)

∫ 1

0

(

t

et − 1

)m−1
Lik(1− e−t)

1− e−t
e−xtts−1dt

+
1

Γ(s)

∫ ∞

1

(

t

et − 1

)m−1
Lik(1− e−t)

1− e−t
e−xtts−1dt.

For any s ∈ C, the second integral converges absolutely and the second term
on the right-hand side becomes zero thanks to Γ(s)−1. If Re(s) > 0, then the
first term on the right-hand side is written as

1

Γ(s)

∞
∑

i=0

S
(k)
m (i;−x)

i!
·

1

i+ s
.

From this, for a non-negative integer n, we get

ξk,m(−n, x) =

(

lim
s→−n

1

Γ(s)(n+ s)

)

S
(k)
m (n;−x)

n!
= (−1)nS(k)

m (n;−x).

Letting x = 1 in Theorem 6.2, we get an extension of a result by Arakawa–
Kaneko (see [1, Theorem 6 (i)]).
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Theorem 6.3. Assume k ≥ 1 and x > 0. Then the function s 7→
ξk,m(s, x) can be analytically continued to the whole complex s-plane as an
entire function and its values at negative integers are given by

ξk,m(−n) =

n
∑

r=0

(−1)r
(

n

r

)

S(k)
m (r) (n = 1, 2, 3, . . .).

Proof. The part of analytic continuation of the zeta function follows

from the last theorem. Noting the generating function of S
(k)
m (n;−1) is

(

∞
∑

n=0

S(k)
m (n)

tn

n!

)

e−t =

∞
∑

n=0

(

n
∑

r=0

(−1)n−r

(

n

r

)

S(k)
m (r)

)

tn

n!
,

we have the result about special values from the last theorem.

We conclude this section by giving a few identities for ξk,m(s, x).

Theorem 6.4 (Difference identity). Let m ≥ 2. With the hypothesis of
Theorem 6.2, we have

(6.1) ξk,m(s, x+ 1)− ξk,m(s, x) = −sξk,m−1(s+ 1, x).

Proof. The left-hand side becomes

−
1

Γ(s)

∫ ∞

0

(

t

et − 1

)m−1
Lik(1− e−t)

1− e−t
e−xtts+1dt,

which is the right-hand side.

Putting s = −n in (6.1), we obtain the following.

Corollary 6.5. Let m ≥ 2. With the hypothesis of Theorem 6.2, we
have

S(k)
m (n;−x− 1)− S(k)

m (n;−x) = −nS
(k)
m−1(n− 1;−x) (n = 1, 2, 3, . . .).

Theorem 6.6 (Raabe’s identity). Let m ≥ 2. With the hypothesis of
Theorem 6.2, we have

∫ 1

0

ξk,m(s, x+ w)dw = ξk,m−1(s, x+ 1),(6.2)

∫ 1

0

S(k)
m (n;−x− w)dw = S

(k)
m−1(n;−x− 1) (n = 1, 2, 3, . . .).(6.3)

Proof. As for (6.2), the left-hand side is

1

Γ(s)

∫ ∞

0

(

t

et − 1

)m−1
Lik(1− e−t)

1− e−t

(
∫ 1

0

e−(x+w)tdw

)

ts−1dt,

which is equal to ξk,m(s, x+ 1).
As for (6.3), it is sufficient to combine Theorem 6.2 and (6.2) for s = −n.
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