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THE ARAKAWA-KANEKO ZETA FUNCTION AND
POLY-BERNOULLI POLYNOMIALS

Y OSHINORI HAMAHATA

Ritsumeikan University, Japan

ABSTRACT. The purpose of this paper is to introduce a generalization
of the Arakawa—Kaneko zeta function and investigate their special values
at negative integers. The special values are written as the sums of
products of Bernoulli and poly-Bernoulli polynomials. We establish the
basic properties for this zeta function and their special values.

1. INTRODUCTION

Let Lix(z) (k € Z) be the formal series defined by

OOm

(1.1) Lip() =Y %

The formal power series Lig(x) is the k-th polylogarithm if k& > 1, and a
rational function if £ < 0. When k£ = 1, we see easily that

(1.2) Liy (z) = —log(1 — z).

The Arakawa—Kaneko zeta function (s, x), for s € C, z > 0, k € Z, is
defined by

1 [®Lig(l—et) __, .,
1.3 = “rhs Ly,

(13) Glon) = g | e
It is defined for Re(s) > 0, x > 0if k > 1, and for Re(s) > 0,z > |k|+1if k <
0. The function & (s, x) is a generalization of the Hurwitz zeta function (s, z)
in that & (s, ) = s((s,x). Especially, & (s) := &k(s, 1), which was defined by
Arakawa and Kaneko [1], is a generalization of the Riemann zeta function
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¢(s) in that &k (s) = sC(s+1). In this paper, we introduce a generalization of
&k(s, ) and investigate their special values at negative integers.

To counsider the special values of &k (s, ), we recall Bernoulli and poly-
Bernoulli polynomials. Bernoulli polynomials B, (z) are defined by the

generating function
= t
=2 Bula)
n=0

These polynomials are related to special values of the Hurwitz zeta function.
There exist some relations among Bernoulli polynomials. For instance, the
following identity is known:

n

n

1) 3 (1) Bia)Bums(9) = e+~ DBaa(o+9) = (0= DBalo+ )

n=0

(see [6, (3.2)]). Dilcher [6] and Chen [4] gave a generalization of this identity
for sums of products of Bernoulli polynomials given by

19 X (i ") Bl B o) B (o),

i1+ Fim=n
n n!
Tyeeeslm i1l i)

U1yeeybm >
are multinomial coefficients.
We next recall poly-Bernoulli polynomials introduced in [3,5]. For

where

every integer k, we define polynomials B,(lk) (z), which we call poly-Bernoulli
polynomials, by

(1.6) M i ®) (3

1—e"

We remark that B (x) are defined in [5] by replacing e** by e~ *' in the
left-hand side of (1.5). By definition, it is easy to see that for any n > 0

(L.7) By (z) = (=1)"B{Y (—a),
or equivalently
(1.8) BM(z) = Bu(z +1).

The numbers B,gk) = B,gk) (0) are called poly-Bernoulli numbers. These
numbers are introduced by Kaneko [8], and then investigated in [1,2]. Poly-
Bernoulli polynomials B (z) were defined in [3] to generalize the properties
of Bernoulli polynomials and poly-Bernoulli numbers.
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The purpose of this paper is to introduce a generalization of & (s, z) and
describe the special values at negative integers in terms of

n
s = 5 (i ") Bl BB ),
i14+"'-|jim>=0n N 2700

where + = 1 + --- + x,. Since S,(jf)(n;x) is a generalization of (1.5), it is
of interest to investigate S,(jf) (n;x). We show the outline of this paper. In
Section 2, after some preparations of notations needed later, we present the
basic properties for Sﬁ,]f) (n;x). In Sections 3, 4 and 5, the proofs of these
results are given. In Section 6, we introduce a generalization of & (s, z) and

investigate the special values at negative integers in terms of Sﬁf ) (n;z).

2. SUMS OF PRODUCTS OF BERNOULLI AND POLY-BERNOULLI
POLYNOMIALS

2.1. Preliminaries. Let x1,...,z,, be variables and set x = 1+ - -+ x;,.
For n > 0, set

n
s = 5 (i ") Bl BB ),
i14+"'-|jim>=0n sy lm

where (z " ; ) are multinomial coefficients defined by
1y-++stm

n B n!
21y ey lm 721"Lm'
When m = 1, Sy(jf)(n) is nothing other than ng) (x). By definition, we have
t \" ' Ligl—et) ,, & tn
xt _ (k) (e )L
(etl) 1—et © —X%Sm (n,x)n!.

m

l

For m > 1, the Stirling numbers of the first kind [ } are defined by

x(m+1)...(m+m1)im ol

=0

and {77] =0for!>m+ 1 and ! < —1. These numbers satisfy
m m
- o 7]t e

(2.2) {mfl} = [lml] +m [ﬂ (m> 1,1 € Z).
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Let us introduce a differential operator by
d
D(z)=— —
(@) = =

For the exponential generating function Y a,t"/n! of a sequence {a,}, it

holds that
x) (Zoanm> = Z(a"“ - man)m.
n—=

n=0

Fix k € Z. We denote by Py the set of z! B{" () (I,n >0). Let U and V be
maps of Py to itself with the conditions

U'BY (@) = «' By (2), V(@'BP(2)) =2'"'BP(a).
2.2. Results. We are now ready to state our results.
THEOREM 2.1. We have
m
> (-1 [”;jf] S0 (i)

=0
m+1 (k)
§ U—Vl k
'l 1 |:l+]-:| )anm(x)a n>_m
0, 0<n<m-1

The proof is given in Section 3.
EXAMPLE 2.2.
— 88 (ny2) + SV (ny2) = nBF (2) —naBW (2) (n>1),
255" (n; ) — 398V (n; ) + S (ns )
=n(n—1) [BP (@) + 3 - 20)B, (2) + (22 - 30) B, (@) (n>2),
— 65 (n;2) + 1185 P (n:2) — 658V (i) + 58 (n; 2)
=n(n—1)(n—2) [Bff)(x) +(6—32)BM, (2)
+(11 — 122 + 3932)37(1@2(93) — (11z — 62° + :ES)BT(Z?L;(IE)} (n > 3).

THEOREM 2.3. For k> 1 and n > 1, we have

(2.3) S (n; ) = BV (a),
k
(2.4) Sék)(n;x) =B,(z+1) —nZB,(LJ) —I—chB(])
j=1
k—1

(2.5) SS (nyx) = B (x + 1)+nZB7(; +n:cZB( Dz
=0
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The proof is given in Section 4.
THEOREM 2.4. For k > 1 and n > 2, we have
(2.6) 8 (n;2) = — (n = 1)BO (@) + naBLY, (2),
@7 8P me) = @2 neBuo(e) — (0~ 1)Ba(x)]
— (1= 27M)n(@ + 1)Bu (o + 1)
—(n—1)Bp(z+1)]

k
tan—1) (1 -2 [B,gj)(x)

v,_.

(@) + (2 = 2)BDy(@)]
28) S5 (mx) = (2-2) [neBu_1(2) — (n— 1)B, ()]
—(1=2")[n(z+1)By1(z+1)
—(n— 1)B (x +1)]

n(n—1) 22’”1 {B(J)()
Jj=1

+a—2m3$?@»+@2—m3&2@ﬂ,

(g

+(1 - 22)B,”

where Sé_l)(n;:c) =n(x+1)Bp_1(x+1)— (n—1)Bp(z +1).
The proof is given in Section 5.
REMARK 2.5. It is difficult to find a formula for S’ (n;z) when m > 4.

2.3. Corollaries. We present some results derived from Theorems 2.1, 2.3
and 2.4.

2.3.1. Sums of products of Bernoulli and poly-Bernoulli numbers. Let k
be an integer. For m > 1 and n > 0, set

n
Sv(vlf)(n) = Z (i1 .. im) Bi, - .Bim,—lB'L(ft)

i1+t =n
D1 yeenyim >0

When m =1, S5 (n) becomes B, By definition, we have

t lelfelt t
<et—1) 1—e~ ZS _'

Putting = 0 in Theorem 2.1, we have the following theorem.
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THEOREM 2.6 (Kamano [7]). For k € Z and m > 1, we have

S [y st
=0
(2.9) mor
n(n—l)u'(n*erl)Z [J Br(ji)mﬂ, n>m

0, 0<n<m-1

Putting £ = 0 in Theorem 2.3, we obtain the following theorem.

THEOREM 2.7 (Kamano [7]). For k>1 andn > 1, we have

(2.10) 5 (n) = BY,
k
(2.11) S$9(n) =BY —n > BY,
j=1
k—1
(2.12) S5 () = BY 41 S B,
§=0

In Theorem 2.4, replacing B,,_1(z+1) by (—=1)""!B,,_1(—2) and putting
x = 0, we obtain the following theorem.

THEOREM 2.8 (Kamano [7]). For k> 1 and n > 2, we have

(2.13) $m) = — (n—1)B,,
(2.14) S (n) = n(1 —27F)(=1)"Bu_1 — (n — 1)B,

(1—27-*1(BY + BY ),

-

Il
—

+n(n—1)

(2.15) S () = n(2* = 1)(=1)"'B,_y — (n— 1)B,

N —

e
|

(=1 =B + B,
Jj=

(=}

where 557V (n) = n(=1)""'B,_1 — (n — 1)B,.

REMARK 2.9. In the proofs of Theorems 2.6, 2.7 and 2.8, the operator
D(0) = d/dt was used. On the other hand, in the proofs of Theorems 2.1, 2.3
and 2.4, D(z) = d/dt — x will be used.
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2.3.2. Sums of products of Bernoulli polynomials. The identity (2.4) for
k =1 turns into

n

> (?) Bi(w1)Bn—i(z2 +1)

i=0
=n(x1 +22)Bp_1(x1 + 22+ 1) — (n — 1) By (21 + 22 + 1).

Putting « = 1 and y = z2 + 1, (1.4) is gained.
Similarly, using (2.7) for k =1 and n > 2, we obtain the following result:

> ( i )Bi1($1)3i2($2)3i3(303)

=MD 1) (e - 2)Baae)
+ g (3n —3 —2nx + ) Bp_1(z) + ;n(z —1)B,-1(z—1)
n?—1

+

3
5 B, (z) — i(n —1)B,(z —1).

3. PROOF OF THEOREM 2.1

Let G(t,z) be the generating function of poly-Bernoulli polynomials of
index k given by the left-hand side of (1.6). For example, we have

te(:c-i—l)t
et —1°

The following lemma is a key result in the proofs of Theorems 2.1, 2.3 and
2.4.

G_i(t,z) =Dt Go(t,x) =@V Gy(t,x) =

LEMMA 3.1. For k € Z, we have

(3.1) D(x)Gy(t, x) = (Gr-1(t,2) = Gi(t, 2)).

et —1
PROOF. For Fy(t) = Lig(1 —e~t)/(1 — e~ ), Kamano [7] proved
d 1

EFk(t) =] (Fe-1(t) — Fr(t)) .
From this, we deduce
d
EGk(t,x) =7 (Gr—1(t,z) — Gi(t,x)) + G (t, x).

Let us generalize the lemma just proved.
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THEOREM 3.2. For k € Z and m > 1, it holds that

(W D(x)™ + [m”j 1} D(z)™ 4+ m D(:c)> Gi(t, z)

= (e_%)m ;(—1)m‘l [”;jll] Cr(t, ).

Proor. We prove the theorem by induction on m. The case m = 1
follows from the lemma stated above. Assume that (3.2) holds for case m. By
(2.2), the left-hand side of (3.2) for case m + 1 is

(s, ot o 1] )

m m—1

(3.2)

+m <m D(x)™ + -+ m D(m)) Gi(t, z).

Thanks to the assumption for case m, this becomes

pto (e S0 1] )
=0

m m—t1 |Mm+1
+ W;(q) ! [Hl} Gri(t, ).

Applying Lemma 3.1 to the first term gives
—me! " pym—t | M+ 1 Gt
m;(— ) 141 | Gri(ts@)

+ W Z(_l)m_l [lel] (Gr—i—1(t, ) — G (t,x))
=0

m . m—t |m—+1
e el (A L

. —m—1 i met |m+1
T (et —1)mHt 170(71) [ 141 ] Gr—i(t, )
1 - m—l1 m+1
+ (ef — 1ym+T Z(*l) 141 Gr_i—1(t, )
1=0
1 S m41— m+1
CENG >_ (1™ (m+ 1) {l+ 1 } Gr-i(t,x)
1=0
1 m+1 o m 41
N EET > (=t l{ z }le(t,:ﬂ).
=1
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. m-+1  |m+1| . . .
Using {m i 2} = [ 0 } = 0, the right-hand side turns into

m+1

i e (e ] [ o

which yields the claim for case m + 1.
Let us return to the proof of Theorem 2.1. We see that

)Gy (t, ) ZB(k) (k)

nl’

> - v)BY <:c>—",
n=0

Since D(z) and U — V are commutative, for [ > 0 we obtain

[ee] tn
l — —_ g
D(x)'Gy(t,z) = nEZO(U V)'B, (ac)n'
For m > 0, we have
m l = n! 1 (k) "
t"D(x)' Gg(t,x) = E 7(71 — m)!(U -V) anm(z)ﬁ.

Therefore the theorem follows from Theorem 3.2.

4. PROOF OF THEOREM 2.3

PROOF OF (2.3): This case follows from Gg(t,z) = e(+1?t,
PROOF OF (2.4): By Lemma 3.1,
d 1
EGj(t,x) = et——l (ijl(t,l‘) - G](t,l‘)) + LL‘G]'(t, SL')
Summing over j from 1 to k, we have

k k
d 1
g EGj(t’x) =51 (Go(t,x) — Gi(t,z)) + x E G;(t, x)

257
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Multiplying by ¢, we have

t & ¢
Gt = Y Bale 1) -S> BE@
n=0 n=1 j=1
0o k ) n
5 30 eI
n=1 j=1

which yields the result.
PROOF OF (2.5): By Lemma 3.1,

d
EG_j(t,x) = p— (G_j_l(t,x) - G_j(t,$)) + $G_j(t, x).
Summing over j from 0 to k — 1, we get
=1y 1 k—1
Z 2 Gi(t.2) = o (G_k(t,7) = Go(t,2)) +2 Z G_(t,x),
7=0 7=0
or equivalently
1 e(1+1)t k-1
et—lG k(t,x) = —I—Zdt _th—acZG_jtac

Multiplying both sides of this identity by ¢, we have the result.

5. PROOF OF THEOREM 2.4
PROOF OF (2.6): Using Go(t,x) = et and G4 (t, ) = te@ Dt /(ef 1),
t2

mGo(t, x) =

(t,2),
which implies

Séo)(n,x) = Sél)(n; z) = Bp(z+1) —nBWM (z) + nachll_)l(x)
By (1.8), we obtain (2.6).

PROOF OF (2.7): By Theorem 3.2 for m = 2, we have

(D@)? + D)) (1, 2)
= 7o (26,(0:2) = Gy (0.2) = (2654 (1.2) — Gya(t. ).

Summing over j from 1 to [,

2Gi(t,x)  Gii(t,x)  2Go(t,x) — G_i(t +§l:

e — 12 (et—12 (et — 1) ()G (¢t ).

j=1
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Multiplying both sides by 2!~! and summing over [ from 1 to k, we have

@-102 (o (e 1)
+ Z ol—1 Z(D(x)2 + D(z))G,(t, x)
=1 j=1

(@M - 2)Go(tr) (28— DG_i(tx)
(ef —1)2 (e =1)

k
+3 32 D(@)? + D(@)Gj(t, @),

Jj=11=j

2*Gi(t,x)  Golt,x) (zkal 1) 2Go(t, z) — G_1(t, )

Using Go(t,z) = eVt and G_; (¢, 2) = @+ it holds that

Gilt,z) (272%) elz+1)t . elz+2)t
CERE (=12 (=12

D(x)* + D(2))Gj (¢, ).

+
<.
i M?r
I
l\:)
K)
?T‘
H

We multiply both sides by ¢2, and calculate each term of the right-hand side:

3

t (z+1)t m

(5.1) e =Lt Z (nwBy1(z) = (n — 1)By(x)) —.
(z+2 )t o0 "
(5.2) Eet—12 1+nZ::1 n(z+1)B,— 1(x+1)f(nf1)3n(x+1))%,

(5.3)  t2D(z)*Gj(t, )

(o)
tn
= Zn(n 1) (B(])(x) - QIB(j)l(x) + IQB,,(IJ)Q(I)) —
n=2
> . . m
(5:4) £D@)G,(t.2) =Y nln—1) (B, (@) — 2B, (2)) —.
n=2 ’
Here (5.1) follows from
th(QL‘-‘rl)t tea;t te:ct d tea;t
= AR Tl (e
(et —1)2 i dt(et 1)

From these, when n > 2, we obtain (2.7).
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PROOF OF (2.8): Using Theorem 3.2 for m = 2, we have

(D(2)* + D(x))G—;(t, )

1
G
Summing over j from 0 to [,
2G,l,1(t,l‘) G_ 1— Q(t, ) 2G0(t,ﬂ?) - Gfl(t,l‘)

e N ) N SV

l
— > (D()® + D(2))G—;(t,z).

Jj=0

QG—j(tvx) - G—j—l(tvx)) - (QG—j—l(ta I) - G—j—Q(ta I))] .

Multiplying both sides by 27! and summing over [ from 0 to k — 2, we have
2G_1(t,z)  27FF2G i (t,x)
@-17  (@- 1)2

<Z2 ) 2Go( t x) 22 ZZ )G_j(t,x)

22(1 — 2~ ’““)Go(t,m) 2(1f2 k+1)G,1(t,x)

(et —1)? (e = 1)
k—2k—2
=3 Y 274D(x)* + D(x))G (¢, ).

=0 1=j

Using Go(t,z) = eVt and G_;(t,z) = e@+2? we obtain

(z+1)t (z+2)t

Gk( ) (2_2k)e _(1_2k)e
(e - (= 1P (= 1P

k—2
+ Z(Q’H*1 —1)(D(x)? + D(2))G_;(t, z).

We multiply both sides by 2, and calculate each term of the right-hand side:
above all, we see easily that

t2D(x)2G_;(t,x)

(5.5) Z (n—1) ( )( ) — 2:cB( J)( )+x2B£L__j2)(ﬂC)) 2_7:7
(5.6) £2D(z)G Z (B( H(2) - 2By D (= ));,

Combining (5.1), (5.2), (5.5), (5.6) with right-hand side of G_(t, z)/(e! —1)2,
the identity (2.8) can be established for n > 2.
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6. A GENERALIZATION OF THE ARAKAWA-KANEKO ZETA FUNCTION

Let k£ be an integer and m be a positive integer. We introduce zeta
functions by means of the Laplace—Mellin integral.

DEFINITION 6.1. For k € Z and m > 1, define

[e%} m—1 . _
Eem(s,x) = ﬁ/o < t ) Lip(1 —e t)efmttsfldt,

et —1 1—et

«sk,m<s>=«sk,m<s,1)=i) /0 Oo( ! )m_l Lis(1 =€) ooy

(s et —1 et—1

The zeta function & (s, z) is defined for Re(s) > 0 and x > 0if k > 1,
and for Re(s) > 0 and = > |k| + 1 if & < 0. Hence &g m(s) is defined for
Re(s) > 0 and k£ > 1. It should be noted that & 1(s,x) is just the zeta
function & (s, x), and & 1(s) is the zeta function &x(s) defined in Section 1.

THEOREM 6.2. When k > 1 (resp. k < 0), suppose x > 0 (resp. x >
|k|4+1). Then the function s — &k m(s,x) can be analytically continued to the
whole complex s-plane as an entire function and its values at negative integers
are given by

Erom(—n, ) = (=1)"SH) (n; —x) (n=1,2,3,...).
PROOF. We express & m (s, x) as the sum of two integrals:

1 m—1 ;. _
o (s,7) = 1)/0< t > Lig(l —e t)e*””ttsfldt

I'(s et —1 1—et

1/ ¢t \" 'Lig(l—et) ..,
— SR T E ) ematys—lgy
+F(s)/l <et—1) 1_et ©

For any s € C, the second integral converges absolutely and the second term
on the right-hand side becomes zero thanks to I'(s)~!. If Re(s) > 0, then the
first term on the right-hand side is written as

1 i Wi —z) 1
T(s) = il its

From this, for a non-negative integer n, we get

Eeom(—n,x) = < lim 1 > 57(7]:) (n; —2)

s=—nT(s)(n + s) ] = (1" (n; —).

O

Letting = 1 in Theorem 6.2, we get an extension of a result by Arakawa—
Kaneko (see [1, Theorem 6 (i)]).
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THEOREM 6.3. Assume k > 1 and x > 0. Then the function s —
Ekm(s,x) can be analytically continued to the whole complex s-plane as an
entire function and its values at negative integers are given by

Eem(—n) = 2(71)’“ <:f> Sy (n=1,2,3,...).
r=0

PrRoOOF. The part of analytic continuation of the zeta function follows
from the last theorem. Noting the generating function of Sﬁf ) (n;—1) is

(Ssonty) et =3 (e ()swo) &
n=0 : :

n=0 \r=0
we have the result about special values from the last theorem. 0

We conclude this section by giving a few identities for & (s, x).

THEOREM 6.4 (Difference identity). Let m > 2. With the hypothesis of
Theorem 6.2, we have

(61) €k,m(3a T+ 1) - §k7m(3, I) = _Sgk,m—l(s + 1,$)
PRrROOF. The left-hand side becomes

-1, _
_ /Oo LT L =) gy,
(s) J, et —1 1—et

which is the right-hand side. O

Putting s = —n in (6.1), we obtain the following.

COROLLARY 6.5. Let m > 2. With the hypothesis of Theorem 6.2, we
have

Sﬁf)(n; —r—1)— Sﬁf)(n; —x) = fnngl(n —1;—z) (n=1,2,3,...).
THEOREM 6.6 (Raabe’s identity). Let m > 2. With the hypothesis of
Theorem 6.2, we have

1
(6.2) /o Eom (s, +w)dw = & m-1(s,x + 1),

1
(6.3) / S (n; —x — w)dw = Sf,lf)_l(n; —x—1) (n=1,2,3,...).
0

PROOF. As for (6.2), the left-hand side is

0o m—1 1. —t 1
1 / t Lix(1 - ™) / e~ @ty ) ¢ 1dt,
I(s) Jo \et—1 1—et 0

which is equal to &g m(s, =+ 1).
As for (6.3), it is sufficient to combine Theorem 6.2 and (6.2) for s = —n.
O
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