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Abstract. We investigate positive solutions (x, y) of the Diophantine
equation x2 − (k2 + 1)y2 = k2 that satisfy y < k − 1, where k ≥ 2. It has
been conjectured that there is at most one such solution for a given k.

1. Introduction

We consider the diophantine equation

(1.1) x2 − (k2 + 1)y2 = k2,

where k ≥ 2 and x ≥ 1, y ≥ 1.
In 2009, Andrej Dujella remarked that (1.1) always has the solution

(x, y) = (k2 − k+1, k− 1) and conjectured that there is at most one positive
solution (x, y) with y < k − 1. We call such a solution an exceptional
solution and refer to this conjecture as the unicity conjecture. We have
verified the conjecture for k ≤ 250, with 23, 935, 816 values of k possessing a
unique exceptional solution. As pointed out by Professor Dujella, the unicity
conjecture implies the D(−1) quadruples conjecture (see Section 17). The
unicity conjecture has been proved for k2 + 1 = pn or 2pn, p an odd prime
and when k = p2i+1 or 2p2i+1, (no exceptional solutions) and when k = 2p2i, p
an odd prime, where the exceptional solution is (2p3i + pi, pi). See [5].

In section 2 we obtain formulae for the exceptional solutions in terms of
solutions (p, q) with gcd(p, q) = 1, of the diophantine equation ap2 − bq2 =
2k/d, where a > 2, b > 2, gcd(a, b) = 1 and ab = k2 + 1. Then p/q is either

a convergent to the continued fraction expansion of
√

b/a if d > 1 (which is
the case if k is odd), or a near convergent if d = 1.
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The continued fraction expansion of
√

b/a has some interesting properties
and in section 5 we state Conjecture 5.3, which relates the solubility of ap2 −
bq2 = 2k with gcd(p, q) = 1, to all the partial quotients being even. Also
in section 7, we state Conjecture 7.1 (i) and (ii) which imply the unicity
conjecture.

In section 8, we introduce the idea of a Type 1 exceptional solution
(k, x, y), i.e., where y2+1 divides either x+y or x−y. The Type 1 exceptional
solutions where y divides x are easy to describe explicitly, while those where
y does not divide x, in fact satisfy gcd(x, y) = 1 and can also be described
explicitly.

In section 15, we show that the exceptional solutions form a forest of
trees, each arising from a trivial solution as root node: those with root node
(t, t, 0), t ≥ 2 are the solutions with gcd(x, y) = t, whereas those with root
node (t, t2 − t+ 1, t− 1), t ≥ 2 or (t, t2 + t+ 1, t+ 1), t ≥ 1 are the ones with
gcd(x, y) = 1.

Finally, by studying an extended version of a table of p/q such as Table
1 and using the On–Line Encyclopedia of Integer Sequences OEIS, we were
able to guess some families of exceptional solutions, where a, b, p, q and the
continued fraction expansion of

√

b/a are given explicitly.

2. The parameters d, a, b, p, q

In this section, we derive formulae for the exceptional solution in terms
of parameters d, a, b, p, q. The special case of squarefree k was dealt with in
[1, §27].

Proposition 2.1. Suppose (x, y) satisfies equation (1.1). Let d = gcd(x+
k, x− k) and define a, b, p, q by

a = gcd((x+ k)/d, k2 + 1), b = gcd((x − k)/d, k2 + 1),

p2 = (x + k)/da, q2 = (x− k)/db.

Then p and q are integers and

x = d(ap2 + bq2)/2, y = dpq,

2k = d(ap2 − bq2), gcd(p, q) = 1,

ab = k2 + 1, gcd(a, b) = 1,

k odd =⇒ d even.

Proof. (i) x2 − (k2 + 1)y2 = k2 implies (x + k)(x − k) = (k2 + 1)y2.
Then with d = gcd(x + k, x − k), we have x + k = du, x − k = dv, where
gcd(u, v) = 1. We note that if k is odd, then x is odd and so d is even. Then

(2.1) d2uv = (k2 + 1)y2.
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Let a = gcd(u, k2 + 1), b = gcd(v, k2 + 1). We prove ab = k2 + 1. Clearly
ab divides k2 + 1, as gcd(a, b) = 1. We have d divides 2k. If d is odd,
then d divides k and gcd(d, k2 + 1) = 1. If d = 2D, then D divides k and
gcd(D, k2+1) = 1. Hence if k is even, gcd(d, k2+1) = 1. In both cases, (2.1)
implies d divides y and so k2 + 1 divides uv. Finally, assume k is odd. Then

2D2uv = (k2+1)
2 y2, so y = 2z. Then

uv = (k2 + 1)(z/D)2

and k2+1 divides uv. Hence in all cases, k2+1 divides the product gcd(u, k2+
1) gcd(v, k2 + 1) = ab.

Now let R = u/a, S = v/b. Then

uv = abRS = (k2 + 1)RS,

d2uv = d2(k2 + 1)RS = (k2 + 1)y2.

Hence d2RS = y2, so y = dY and RS = Y 2. Then gcd(R,S) = 1 gives R =
p2, S = q2, Y = pq and y = dpq. We note that gcd(ap2, bq2) = gcd(aR, bS) =
gcd(u, v) = 1. Also

2x = d(u + v) = d(ap2 + bq2) and 2k = d(u− v) = d(ap2 − bq2).

3. Some properties of exceptional solutions

Lemma 3.1. If (x, y) is an exceptional solution of (1.1), then a > 2 and
b > 2. Also d 6= k and d 6= 2k.

Proof. (i) First note that d = k or 2k would imply k divides x + k
and hence k divides x. This in turn implies k divides y, contradicting
y < k − 1.

(ii) Suppose a = 1. Then b = k2 + 1 and p2 − (k2 + 1)q2 = 2k/d. Then
p2 > (k2 + 1)q2 > k2, so p > k and y = dpq = pq > k, which is a
contradiction.

(iii) Suppose b = 1, Then a = k2 + 1 and (k2 + 1)p2 − q2 = 2k/d. Then
q2 = (k2 + 1)p2 − 2k/d ≥ k2 + 1 − 2k = (k − 1)2, so q ≥ k − 1 and
y = dpq ≥ k − 1, which is a contradiction.

The cases a = 2 and b = 2 are dealt with similarly.

Lemma 3.2. For an exceptional solution, p and q satisfy the following
inequalities:

(3.1) p2 < (k2 + 1)/da, q2 < (k − 1)2/db.

Proof. If (k, x, y) is an exceptional solution, then y < k − 1, so x <
k2 − k + 1. Hence

p2 = (x+ k)/da < (k2 + 1)/da,

q2 = (x− k)/db < (k − 1)2/db.
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4. Exceptional y are small

Proposition 4.1. If (x, y) is an exceptional solution of (1.1), then

(4.1) y ≤ 2k −
√

3k2 + 4.

Hence y < (2−
√
3)k < 0.268k.

Proof. Equation (1.1) gives

x2 = k2y2 + k2 + y2 = (ky + 1)2 + (k − y)2 − 1.

From y < k − 1, we have k − y > 1 and so x > ky + 1. This gives

(ky + 1)2 + (k − y)2 − 1 ≥ (ky + 2)2,

or

y2 − 4ky + k2 − 4 ≥ 0,

from which inequality (4.1) immediately follows.

The example k = 30 with exceptional solution x = 242, y = 8, shows that
inequality (4.1) is sharp.

5. Connections with continued fractions

Lemma 5.1. ([6, p. 81]) Suppose Q0 divides D and
√
D/Q0 > 1. Then

√
D/Q0 = [a0, a1, . . . , al−1, 2a0].

Let (Pm +
√
D)/Qm denote the m–th complete quotient in the continued

fraction expansion and let Am/Bm denote the m–th convergent. Then we
have palindromic symmetries for the three sequences

a1, a2, . . . , al−2, al−1,

P1, P2, . . . , Pl−1, Pl,

Q0, Q1, . . . , Ql−1, Ql.

Lemma 5.2. Consider the equation

ap2 − bq2 = 2k/d,

where a, b, k, p, q are positive, D = ab = k2 + 1, gcd(a, b) = 1 = gcd(p, q) and
d is even if k is odd.

(i) If d ≥ 2, then p/q = Am/Bm, a convergent of
√

b/a. Also

(5.1) Qm+1 = 2k/d,

where m is odd.
(ii) If d = 1, then p/q = (Am + eAm−1)/(Bm + eBm−1), where e = ±1.

Also

(5.2) (−1)m(Qm −Qm+1 + 2ePm+1) = 2k.
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Proof. Since ap2 − bq2 = 2k/d implies

p/q −
√

b/a =
2k

d(p
√
a+ q

√
b)q

√
a
,

we have

(5.3) 0 < p/q −
√

b/a <
2k

d(2q
√
b)q

√
a
=

2k

2dq2
√
k2 + 1

<
1

dq2
.

Hence if d ≥ 2, we have |p/q −
√

b/a| < 1/2q2 and hence p/q = Am/Bm, a

convergent to
√

b/a. Also

aA2
m − bB2

m = (−1)m+1Qm+1 = 2k/d,

so Qm+1 = 2k/d and m is odd.

If d = 1, inequality (5.3) gives |p/q −
√

b/a| < 1/q2 and hence by the
Worley–Dujella lemma [2], we have

p/q = (Am + eAm−1)/(Bm + eBm−1),

where e = 0 or ±1 and m ≥ 0. If e = 0, then Qm+1 = 2k. Now (Pm+1 +√
D)/Qm+1 is reduced, as it is the complete quotient of a purely periodic

quadratic irrational ([6, Satz 3.3]). Hence

(Pm+1 +
√
D)/Qm+1 > 1 and − 1 < (Pm+1 −

√
D)/Qm+1 < 0.

Hence
√
D > Pm+1 > 2k −

√
D > k − 1, which implies Pm+1 = k. However

D − P 2
m+1 ≡ 0 (mod Qm+1), i.e., k2 + 1 − k2 ≡ 0 (mod 2k), giving the

contradiction 1 ≡ 0 (mod 2k).
Finally,

2k = ap2 − bq2 = a(Am + eAm−1)
2 − b(Bm + eBm−1)

2

= (−1)m(Qm −Qm+1 + 2ePm+1).(5.4)

(See [4, Lemma 2].)

Conjecture 5.3. Suppose a > 1, b > 1, ab = k2 + 1, gcd(a, b) = 1, where
k is even and that the equation ap2 − bq2 = 2k has a relatively prime solution
(p, q). Then in the continued fraction expansion of

√

b/a, all Qi are odd.

Remark 5.4. This is equivalent to the Pi being even, by the identity
QiQi−1 = D − P 2

i ([6, p. 69]) and the fact that k is even here, so that D is
odd. The evenness of the Pi is further equivalent to all partial quotients ai
being even, by the identity Pi+1 = aiQi − Pi ([6, p. 70]).

Table 1 lists the (k, a, b, d, p/q) which correspond to exceptional solutions for
k ≤ 1000 via Proposition 2.1 and Lemma 5.2.
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k x y a b d p/q Type
8 18 2 13 5 2 A1/B1 = 1/1 1

12 17 1 29 5 1 (A1 − A0)/(B1 − B0) = 1/1 1
18 57 3 25 13 3 A1/B1 = 1/1 1
21 47 2 34 13 2 A1/B1 = 1/1 1
30 242 8 17 53 4 A1/B1 = 2/1 2
32 132 4 41 25 4 A1/B1 = 1/1 1
50 255 5 61 41 5 A1/B1 = 1/1 1
55 123 2 89 34 2 A1/B1 = 1/1 1
70 99 1 169 29 1 (A1 − A0)/(B1 − B0) = 1/1 1
72 438 6 85 61 6 A1/B1 = 1/1 1
80 253 3 37 173 1 (A0 + A

−1)/(B0 + B
−1) = 3/1 1

98 693 7 113 85 7 A1/B1 = 1/1 1
105 1893 18 37 298 6 A1/B1 = 3/1 2
112 3362 30 193 65 2 A3/B3 = 3/5 2
119 1433 12 194 73 2 A3/B3 = 2/3 2
128 1032 8 145 113 8 A1/B1 = 1/1 1
144 322 2 233 89 2 A1/B1 = 1/1 1
154 487 3 641 37 1 (A1 − A0)/(B1 − B0) = 1/3 1
162 1467 9 181 145 9 A1/B1 = 1/1 1
200 2010 10 221 181 10 A1/B1 = 1/1 1
203 837 4 130 317 2 A1/B1 = 2/1 1
208 4373 21 509 85 1 (A2 + A1)/(B2 + B1) = 3/7 2
242 2673 11 265 221 11 A1/B1 = 1/1 1
252 8068 32 65 977 8 A1/B1 = 4/1 2
288 3468 12 313 265 12 A1/B1 = 1/1 1
333 1373 4 853 130 2 A1/B1 = 1/2 1
338 4407 13 365 313 13 A1/B1 = 1/1 1
377 843 2 610 233 2 A1/B1 = 1/1 1
392 5502 14 421 365 14 A1/B1 = 1/1 1
408 577 1 985 169 1 (A1 − A0)/(B1 − B0) = 1/1 1
414 2111 5 101 1697 1 (A0 + A

−1)/(B0 + B
−1) = 5/1 1

418 46818 112 241 725 4 A3/B3 = 7/4 2
450 6765 15 481 421 15 A1/B1 = 1/1 1
495 24755 50 101 2426 10 A1/B1 = 5/1 2
512 8208 16 545 481 16 A1/B1 = 1/1 1
546 4402 8 1237 241 4 A1/B1 = 1/2 2
578 9843 17 613 545 17 A1/B1 = 1/1 1
612 64263 105 865 433 3 A3/B3 = 5/7 2
616 3141 5 3757 101 1 (A1 − A0)/(B1 − B0) = 1/5 1
648 11682 18 685 613 18 A1/B1 = 1/1 1
684 2163 3 949 493 3 A1/B1 = 1/1 1
697 8393 12 505 962 2 A1/B1 = 3/2 2
722 13737 19 761 685 19 A1/B1 = 1/1 1
737 4483 6 290 1873 2 A1/B1 = 3/1 1
800 16020 20 841 761 20 A1/B1 = 1/1 1
858 61782 72 145 5077 12 A1/B1 = 6/1 2
882 18543 21 925 841 21 A1/B1 = 1/1 1
968 21318 22 1013 925 22 A1/B1 = 1/1 1
987 2207 2 1597 610 2 A1/B1 = 1/1 1

Table 1. Exceptional solutions (k, x, y), k ≤ 1000.

6. On the continued fraction expansion of
√

b/a

Lemma 6.1. Let
√

b/a = [a0, a1, . . . , al−1, 2a0], where b > a and
gcd(a, b) = 1. Then

bBl−1 = a(a0Al−1 +Al−2),(6.1)

Al−1 = a0Bl−1 +Bl−2.(6.2)

In particular, a divides Bl−1.
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Proof.
√

b/a = [a0, . . . , al−1, 2a0 + (
√

b/a− a0)]

= [a0, . . . , al−1, a0 +
√

b/a]

=
Al−1(a0 +

√

b/a) +Al−2

Bl−1(a0 +
√

b/a) +Bl−2

.

The desired result then follows by cross-multiplying and equating correspond-
ing coefficients.

Lemma 6.2. Suppose 1 < a < b, gcd(a, b) = 1, ab = k2 + 1, D = ab. Then

(i) The period–length l of
√

b/a is odd.
(ii) Al−1/Bl−1 = k/a.
(iii) Al−2/Bl−2 = (b− ka0)/(k − aa0).
(iv) Al/Bl = (b+ ka0)/(k + aa0).

Proof. Let (x, y) = (k, a). Then gcd(k, a) = 1 and

ax2 − by2 = a(k2 − ab) = a(k2 − (k2 + 1)) = −a.

A standard argument shows that x/y is a convergent k/a = At−1/Bt−1 of
√

b/a. Then aA2
t−1 − bB2

t−1 = (−1)tQt = −a, Qt = a and t is odd. Then
DBt−1 = (At−1Pt +At−2Qt)Q0 by [6, p. 70]. This gives

(6.3) ab = kPt +At−2a.

Hence a divides kPt and so a divides Pt. Suppose Pt = aP . Then as ξt =
(Pt +

√
D)/Qt = P + (

√
D)/a is reduced, we have P = ⌊(

√
D)/a⌋ = a0. So

ξt = a0 + ξ0 and we have found a period for (
√
D)/a of length t. Let l be the

least period–length. Then l ≤ t. Also by Lemma 6.1, a = Bt−1 divides Bl−1

and so t ≤ l. Consequently l = t and hence l is odd.
Next, from (6.3), we have b = ka0 +At−2, so At−2 = b− ka0. Also from

[6, p.70], PtBt−1 = At−1Q0 − QtBt−2, so Pt = aa0 = k − Bt−2 and hence
Bt−2 = k − aa0. Finally,

Al = alAl−1 +Al−2 = 2a0k + (b− ka0) = b+ ka0,

Bl = alBl−1 +Bl−2 = 2a0a+ (k − aa0) = k + aa0.

The next result narrows down the search for p and q, which correspond
to an exceptional solution.

Corollary 6.3. Let l be the period length of the continued fraction
expansion for

√

b/a, where ab = k2 + 1, gcd(a, b) = 1 and 1 < a < b.

(i) If d > 1, then p/q = Am/Bm, where m ≤ l − 2.
(ii) If d = 1, then p/q = (Am + eAm−1)/(Bm + eBm−1), e = ±1, where

m ≤ l − 1.
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Proof. From Lemma 3.2, we have p2 < (k2 + 1)/2d.
(i) If d > 1, we know from Lemma 5.2 that p/q = Am/Bm and p2 <

(k2 + 1)/4 < k2. Hence Am = p < k = Al−1 and so m < l− 1.
(ii) If d = 1, Lemma 5.2 implies p/q = (Am + eAm−1)/(Bm + eBm−1).

If e = 1, then p = Am + Am−1 < Al−1 and so Am < Al−1, as before. If
e = −1, then p = Am −Am−1 ≥ Am−2, and m− 2 < l− 1. Hence m ≤ l. But
m = l implies p = Al − Al−1 = (b + ka0)− k ≥ b > k, which contradicts the
inequality p2 < (k2 + 1)/2. Hence m ≤ l − 1.

7. Experimental results for ap2 − bq2 = 2k/d, gcd(p, q) = 1

Conjecture 7.1. Consider the family of equations ap2 − bq2 = ±2k/d,
where d divides 2k (with d even if k is odd), gcd(a, b) = 1, D = ab = k2+1, 2 <
a < b.

(i) Then there is at most one (a, b, d) for which solubility occurs with
gcd(p, q) = 1.

(ii) Let (p0, q0) and (p1, q1) be the least and second least positive solutions.
Then dp0q0 < k − 1 < dp1q1.

(iii) Let ap20 − bq20 = N . Then there are two classes of primitive solutions
for ap2−bq2 = N with fundamental solutions (±p0, q0). Also there are
two classes of primitive solutions for ap2−bq2 = −N with fundamental
solutions (±p1, q1).

Example 7.2. (i) k = 8. Then k2 + 1 = 65 and only (a, b, d) =
(5, 13, 2) give solubility of ap2 − bq2 = ±2k/d with gcd(p, q) = 1 and
2 < a < b, ab = 65, gcd(a, b) = 1.

√

13/5 = (0 +
√
65)/5 = [1, 1, 1, 1, 1, 2].

m am (Pm +
√
D)/Qm Am/Bm

0 1 (0 +
√
65)/5 1/1

1 1 (5 +
√
65)/8 2/1

2 1 (3 +
√
65)/7 3/2

3 1 (4 +
√
65)/7 5/3

4 1 (3 +
√
65)/8 8/5

5 2 (5 +
√
65)/5 21/13

From the first period

5A2
0 − 13B2

0 = (−1)1Q1 = −8,

5A2
3 − 13B2

3 = (−1)4Q4 = 8.

Then (p0, q0) = (A0, B0) = (1, 1) is the smallest primitive solution of
5p2 − 13q2 = −8, while (p1, q1) = (A3, B3) = (5, 3) is the smallest
primitive solution of 5p2−13q2 = 8. Also (p0, q0) gives the exceptional
solution (x0, y0) = (18, 2) of x2 − 65y2 = 64.
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(ii) k = 12. Here D = k2 + 1 = 145 and only (a, b, d) = (5, 29, 1) give
solubility of ap2 − bq2 = ±2k/d with gcd(p, q) = 1 and 2 < a < b,
ab = 145, gcd(a, b) = 1.

√

29/5 = (0 +
√
145)/5 = [2, 2, 2, 4].

m am (Pm +
√
D)/Qm Am/Bm

0 2 (0 +
√
145)/5 2/1

1 2 (10 +
√
145)/9 5/2

2 2 (8 +
√
145)/9 12/5

3 4 (10 +
√
145)/5 53/22

From the first period we read off

5(A0 −A−1)
2 − 29(B0 −B−1)

2 = (−1)0(Q0 −Q1 − 2P1) = −24,

5(A2 +A1)
2 − 29(B2 +B1)

2 = (−1)2(Q2 −Q3 + 2P3) = 24.

Then (p0, q0) = (A0−A−1, B0−B−1) = (1, 1) is the smallest primitive
solution of 5p2 − 29q2 = −24, while (p1, q1) = (A2 + A1, B2 + B1) =
(17, 7) is the smallest primitive solution of 5p2−29q2 = 24. Also (p0, q0)
gives the exceptional solution (x0, y0) = (17, 1) of x2 − 145y2 = 144.

8. Type 1 and Type 2 exceptional solutions

We can rewrite equation (1.1) as

(8.1) x2 − y2 = (y2 + 1)k2.

Definition 8.1. If (x, y) is an exceptional solution of (1.1) such that

(8.2) x ≡ ǫy (mod y2 + 1),

where ǫ = ±1, we call (x, y) a Type 1 solution of (1.1). Any other exceptional
solution is called a Type 2 solution.

In the range 2 ≤ k ≤ 1000, there are 37 Type 1 and 12 Type 2 exceptional
solutions (see Table 1) while in the range 2 ≤ k ≤ 250, there are 23, 862, 782
Type 1 and 73, 034 Type 2 exceptional solutions.

9. Exceptional solutions where y divides x.

It is easy to derive formulae for k and x in terms of y, when y divides x.

Theorem 9.1. Suppose (x, y) is an exceptional solution of (1.1) such that
y divides x. Then

(9.1) x+ k
√

y2 + 1 = y(2y2 + 1 + 2y
√

y2 + 1)n,

where ny > 1. Conversely if k, x, y satisfy (9.1) where ny > 1, then (x, y) is
an exceptional solution of (1.1) with y dividing x.
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Proof. If (x, y) is a solution of (1.1) such that y divides x, then we see
that y2 divides k2 and hence y divides k. From (1.1) we have

(9.2) (x/y)2 − (y2 + 1)(k/y)2 = 1.

This is a Pell equation whose positive solutions (x/y, k/y) are given by

(x/y) + (k/y)
√

y2 + 1 = (2y2 + 1 + 2y
√

y2 + 1)n, n ≥ 1.

Hence (9.1) holds.
Suppose n = 1. Then k = 2y2 > y + 1 and hence y > 1. Consequently

ny > 1.
Conversely, assume k, x, y satisfy (9.1), where ny > 1. Then

(9.3) x− k
√

y2 + 1 = y(2y2 + 1− 2y
√

y2 + 1)n.

Multiplying corresponding sides of (9.1) and (9.3) gives

x2 − k2(y2 + 1) = y2((2y2 + 1)2 − (2y)2(y2 + 1))n = y2,

so (x, y) satisfies (1.1). Also the formula

(9.4) x = y

n
∑

i=0

i even

(

n

i

)

(2y2 + 1)n−i(2y)i(y2 + 1)i/2

reveals that y divides x. Hence y divides k and y ≤ k. But we cannot
have y = k as this gives x2 = k4 + 2k2 and so (k2 + 1)2 − x2 = 1. Hence
(k2+1+x)(k2+1−x) = 1, which clearly gives a contradiction. Also y = k−1
implies k − 1 divides k, so k = 2, y = 1, x = 3. Then (9.1) becomes

3 + 2
√
5 = (3 + 2

√
5)n,

which implies n = 1 and hence ny = 1.

Example 9.2. (a) n = 1, y > 1 gives x = 2y3+y and k = 2y2, an example
in [5], where it was proved that the exceptional solution (x, y) is unique if y
is a prime.

(b) n = 2 gives x = 8y5 + 8y3 + y and k = 8y4 + 4y2.

Theorem 9.3. The solutions (x, y) given by (9.1) are of Type 1.

Proof. On considering (9.4) (mod y2+1), only the term i = 0 remains
and we get

x ≡ (−1)ny (mod y2 + 1),

showing that (x, y) is a Type 1 solution.
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10. The structure of Type 1 exceptional solutions

Lemma 10.1. There is a one–to–one correspondence between the Type 1
solutions (x, y), x ≡ ǫy (mod y2 + 1), ǫ = ±1 and integer pairs (r, s) which
satisfy 1 < r < s and

r2 + s2 = k2 + 1,(10.1)

s ≡ ǫ (mod r),(10.2)

given by

(10.3) r =
x− ǫy

y2 + 1
, s =

xy + ǫ

y2 + 1
,

where we take ǫ = 1 if y = 1. The inverse is given by the equations

x = r + ys,(10.4)

s = yr + ǫ.(10.5)

Remark 10.2. It follows that the unicity conjecture implies that k2 + 1
is expressible in at most one way as r2 + s2, where 1 < r < s, gcd(r, s) = 1
and r divides s± 1.

Proof. Assume (x, y) is a Type 1 solution and that (r, s) is given by
(10.3). Then it is easy to check that (10.1), (10.2), (10.4) and (10.5) hold.

(i) Clearly x > y, hence r > 0. But r = 1 implies y2 + 1 = x − ǫy, x =
ǫy+y2+1. Then equation (1.1) implies (ǫy+y2+1)2−(y2+1)k2 = y2,
which gives

(y2 + 1)(y2 + 1 + 2ǫy − k2) = 0.

Hence y2 + 1 + 2ǫy − k2 = 0, so (y + ǫ)2 = k2 and y + ǫ = k, a
contradiction, as y ≤ k − 2. Hence r > 1.

(ii) We have the equivalence

(10.6) r < s ⇐⇒ x− ǫy < xy + ǫ ⇐⇒ −ǫ(y + 1) < x(y − 1).

Case 1. Assume y > 1. Then

x2 = k2y2 + y2 + k2 > y2 + 2y + 1 = (y + 1)2,

so x > y+1. Hence x(y−1) > (y+1)(y−1) ≥ y+1 and (10.6) implies
r < s.
Case 2. Assume y = 1. Then r = (x− 1)/2 < (x+ 1)/2 = s.
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Conversely, assume r2 + s2 = k2 + 1, where s ≡ ǫ (mod r) and 1 < r < s.
With y defined by s = yr + ǫ and x = r + ys, we have

x2 − (k2 + 1)y2 = (r + ys)2 − (r2 + s2)y2

= r2 + 2sry − r2y2

= r2 + 2s(s− ǫ)− (s− ǫ)2

= r2 + s2 − 1 = k2.

Also x− yǫ = (r + ys)− yǫ = r + y2r = r(1 + y2) and it follows that (x, y) is
a Type 1 solution to (1.1).

Finally we have to prove y < k − 1, or (s− ǫ)/r < k − 1. We have s < k.
Hence s− ǫ ≤ k and (s− ǫ)/r ≤ k/2 < k − 1.

Lemma 10.3. Assume (x, y) is a Type 1 solution with gcd(x, y) = 1. Then
x is odd.

(i) If y is even, then r = u2, where u is odd and k = uv, where gcd(u, v) =
1.

(ii) If y is odd and x + ǫy ≡ 0 (mod 4), then r = u2, where u is odd,
k = uv, v is even and gcd(u, v) = 1.

(iii) If y is odd and x + ǫy ≡ 2 (mod 4), then r = 2u2, where u is odd,
k = uv, v is even and gcd(u, v) = 1.

Proof. Assume (x, y) satisfies gcd(x, y) = 1 and is a Type 1 exceptional
solution. If y is even, then x is odd. Also if y is odd, the equation x2 =
y2 + (y2 + 1)k2 shows x is odd.

Now let d = gcd(x− y, x+ y). Then d = 1 if y is even, while d = 2 if y is
odd.

We have

(10.7)

(

x− ǫy

y2 + 1

)

(x+ ǫy) = k2.

(i) Assume y is even. Then (10.7) gives r = u2, x+ǫy = v2, where gcd(u, v) =
1 and k = uv.
Assume y is odd. Then x− ǫy = 2X, x+ ǫy = 2Y , with gcd(X,Y ) = 1. Then

(

X

(y2 + 1)/2

)

(2Y ) = k2

and k = 2K say. Hence
(

X

(y2 + 1)/2

)

Y = 2K2.

(ii) Assume x + ǫy ≡ 0 (mod 4). Then Y is even, Y = 2V 2, X is odd and
r = X/((y2 +1)/2) = u2, where u is odd, k = 2uV = uv, where v is even and
gcd(u, v) = 1.
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(iii) Assume x+ ǫy ≡ 2 (mod 4). Then Y is odd, Y = V 2, X/2 is odd and

r/2 = (X/2)/((y2 + 1)/2) = u2,

where u is odd. Then r = 2u2, k = 2uV = uv, where u is odd, v is even and
gcd(u, v) = 1.

11. Type 1 solutions (x, y) have gcd(x, y) = y or 1.

In this section, we prove that if (x, y) is a Type 1 solution for which y
does not divide x, then gcd(x, y) = 1.

Lemma 11.1. With r defined as in Lemma 10.1, let h = k − ry. Then
r > h ≥ 0.

Proof.

r > h ⇐⇒ r > k − ry

⇐⇒ r(y + 1) > k

⇐⇒ r2(y2 + 2y + 1) > k2 = r2 + s2 − 1 = r2 + (yr + ǫ)2 − 1

⇐⇒ 2ry(r − ǫ) > 0.

However r − ǫ ≥ 1 and consequently r > h.
Also ry + ǫ = s ≤ k − 1, so 0 ≤ 1 + ǫ ≤ k − ry = h.

Theorem 11.2. For a Type 1 solution (x, y) of (1.1), either y divides x
or gcd(x, y) = 1.

Proof. We present the proof in the form of an algorithm which
terminates by determining that either y divides x or gcd(x, y) = 1. First
we note that from x = r + ys, we have gcd(x, y) = gcd(r, y).

Let r0 = r, h0 = h. Then r0 > h0 ≥ 0 by Lemma 11.1. Also substituting
s = ry + ǫ and k = ry + h in r2 + s2 = k2 + 1 gives

(11.1) r20 − 2r0y(h0 − ǫ)− h2
0 = 0.

If h0 = 0, (11.1) implies r0(r0 + 2yǫ) = 0 and so r0 = −2yǫ and y divides r0
and hence x. Also equation (11.1) implies r0 divides h2

0; so h0 = 1 implies
r0 = h0, contradicting Lemma 11.1. Hence we can now assume r0 > h0 > 1
and inductively define rn and hn for n ≥ 0.

If n ≥ 0, |rn| > |hn| > 1 and rn is a root of

(11.2) Pn(R) = R2 − 2Ry(hn − ǫ)− h2
n,

we define rn+1 to be the other root of Pn(R):

(11.3) rn+1 = −rn + 2y(hn − ǫ).

Then
|rn||rn+1| = h2

n,

so 1 ≤ |rn+1| < |hn|.
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If |rn+1| = 1, then rn ≡ ±1 (mod 2y) and by (11.3) it follows inductively
that r0 ≡ ±1 (mod 2y). Hence gcd(r0, y) = 1 and so gcd(x, y) = 1 and we
exit the algorithm. We note for future reference that r0 is odd in this case.

If |rn+1| > 1, we define the polynomial

(11.4) Qn(H) = H2 + 2rn+1yH − 2rn+1yǫ− r2n+1.

Then Qn(hn) = 0 and we let hn+1 be the other root of Qn(H):

(11.5) hn+1 = −hn − 2rn+1y.

Then

(11.6) h2
n+1 + 2rn+1yhn+1 − 2rn+1yǫ− r2n+1 = 0.

Now |hn+1| = 1 implies |rn+1| = 1, as by (11.6), rn+1 divides hn+1. This
contradicts our assumption that |rn+1| > 1.

Hence |hn+1| 6= 1 and we let Hn = hn − ǫ. Then

HnHn+1 = hnhn+1 − ǫ(hn + hn+1) + 1

= −2rn+1yǫ− r2n+1 + 2rn+1yǫ+ 1

= 1− r2n+1.

Hence |Hn||Hn+1| = r2n+1 − 1 > 0. Also

|Hn| = |hn − ǫ| ≥ |hn| − 1 ≥ |rn+1|.
Hence

|hn+1 − ǫ| = |Hn+1| =
r2n+1 − 1

|Hn|
≤ r2n+1 − 1

|rn+1|
< |rn+1|,

so |hn+1| ≤ |rn+1|. Assume |hn+1| = |rn+1|. Then (11.6) implies hn+1 = ǫ,
which gives the contradiction |rn+1| = 1. Hence |hn+1| < |rn+1|.

If hn+1 = 0, then (11.6) implies −2rn+1yǫ − r2n+1 = 0, so rn+1 = −2yǫ.
Then as rn + rn+1 = 2y(hn − ǫ), it follows inductively that r0 ≡ 0 (mod 2y).
Then y divides r0 and hence x and we exit the algorithm. We note for future
reference that in this case, r0 is even.

Hence

1 < |hn+1| < |rn+1| < |hn| < |rn|,
so both |hn+1| and |rn+1| have strictly decreased.

Eventually the algorithm reaches |ri| = 1 or hi = 0 for some i ≥ 0 and
terminates.

Corollary 11.3. For a Type 1 solution (x, y) of (1.1), if y > 1 and
gcd(x, y) = 1, then r = u2, where u is odd and k = uv, where gcd(u, v) = 1
and v > u > 1. Also

(11.7) v2 − (y2 + 1)u2 = 2yǫ.
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Proof. We saw in the proof of Theorem 11.2, that either r ≡ ±1
(mod 2y) or r ≡ 0 (mod 2y). Hence if gcd(x, y) = 1 and y > 1, then r ≡ x 6≡ 0
(mod y), so we must have r ≡ ±1 (mod 2y) and hence r is odd. Then parts
(i) and (ii) of Lemma 10.3 give r = u2, where k = uv and gcd(u, v) = 1. Also

(11.8) s2 − 1 = k2 − r2 = u2v2 − u4.

Then, as s > 1, (11.8) gives u2v2 − u4 > 0 and hence v > u.
Finally, s = yr + ǫ = yu2 + ǫ, so

(11.9) s2 − 1 = u2(y2u2 + 2yǫ).

Then (11.8) and(11.9) give

v2 − (y2 + 1)u2 = 2yǫ.

We can now derive explicit formulae for x, y and k for a Type 1 solution (x, y)
with gcd(x, y) = 1 and y > 1.

Theorem 11.4. If (x, y) is a Type 1 exceptional solution of equation (1.1),
with gcd(x, y) = 1 and y > 1, then k = unvn, where

(11.10) vn + un

√

y2 + 1 = f(g(y + ǫ) +
√

y2 + 1)(2y2 + 1 + 2y
√

y2 + 1)n,

where n ≥ 1 and one of the following four possibilities holds:

(a) f = g = 1, ǫ = 1.
(b) f = g = 1, ǫ = −1.
(c) f = 1, g = −1, ǫ = −1.
(d) f = g = −1, ǫ = 1.

Proof. Assume (x, y) is a Type 1 exceptional solution of equation (1.1),
with gcd(x, y) = 1 and y > 1. Then by Corollary 11.3 and equation 11.7,
k = uv, where

v2 − (y2 + 1)u2 = 2yǫ.

We now apply Lemma 3.6 of [7]. This was stated with y > 2 and ǫ = −1, but
also holds with y > 1 and ǫ = ±1. We have

(11.11) v + u
√

y2 + 1 = f(g(y + ǫ) +
√

y2 + 1)(2y2 + 1 + 2y
√

y2 + 1)n,

where f = ±1, g = ±1, n an integer. Clearly n 6= 0 as n = 0 implies u = 1.
This gives 16 possibilities for f, g, ǫ and the sign of n. We then eliminate

all 8 cases where n < 0. Of the 8 cases where n ≥ 1, only (a)–(d) remain. See
section 12 for the proof of one case with n > 0 and for one case with n < 0.
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12. Two examples of sign determination

(1) We prove that if n ≥ 1 and f = 1, g = −1, ǫ = 1, then v and u given
by (11.10) satisfy v < 0 and u < 0. Let

vn + un

√

y2 + 1 = (−(y + 1) +
√

y2 + 1)(2y2 + 1 + 2y
√

y2 + 1)n.

Then v1 = −(2y2 − y + 1) < 0, u1 = −(2y − 1) < 0. Also
vn+1 = (2y2 + 1)vn + 2y(y2 + 1)un, un+1 = 2yvn + (2y2 + 1)un.
It follows by induction on n ≥ 1 that vn < 0 and un < 0.
(2) We prove that if n = −N < 0 and f = 1, g = 1, ǫ = 1, then v and u

given by (11.10) satisfy v > 0 and u < 0. Let v′N = vn, u
′

N = un.

v′N + u′

N

√

y2 + 1 = (y + 1 +
√

y2 + 1)(2y2 + 1− 2y
√

y2 + 1)N .

Then v′1 = 2y2 − y + 1 > 0, u′

1 = −(2y − 1) < 0. Also

v′N+1 = (2y2 + 1)v′N − 2y(y2 + 1)u′

N , u′

N+1 = −2yv′N + (2y2 + 1)u′

N .

It follows by induction on N ≥ 1 that v′N > 0 and u′

N < 0.

13. Removal of parameters f and g

Let D = y2 + 1. Then equation (11.10) with conjugation gives

vn + un

√
D = (a+ b

√
D)αn,(13.1)

vn − un

√
D = (a− b

√
D)βn,(13.2)

where a = fg(y + ǫ), b = f and

(13.3) α = 2y2 + 1 + 2y
√
D, β = 2y2 + 1− 2y

√
D.

Note that αβ = 1. First we remove f .

Lemma 13.1. If (k, x, y) is a Type 1 exceptional solution satisfying
gcd(x, y) = 1, y > 1, then (x, k) = (xn, kn), where

(13.4) xn + kn
√
D = (y2 + ǫy + 1 + g(y + ǫ)

√
D)α2n, n ≥ 1,

and g = ±1, ǫ = ±1.

Proof. We know that

xn + kn
√
D = u2

nD + yǫ+ vnun

√
D

= un

√
D(vn + un

√
D) + yǫ

=
((a+ b

√
D)αn − (a− b

√
D)βn)

2
(a+ b

√
D)αn + yǫ

=
(a+ b

√
D)2

2
α2n − (a2 − b2D)

2
+ yǫ

=
(a+ b

√
D)2

2
α2n
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=
(fg(y + ǫ) + f

√
D)2

2
α2n

=
(y + ǫ)2 + 2g(y + ǫ)

√
D + y2 + 1

2
α2n

= (y2 + ǫy + 1 + g(y + ǫ)
√
D)α2n.

Now we remove g.

Corollary 13.2. If (k, x, y) is a Type 1 exceptional solution with
gcd(x, y) = 1, y > 1, then (x, k) = (Xm,Km), where

(13.5) Xm +Km

√
D = (y2 + ǫy + 1 + (y + ǫ)

√
D)αm,

where m ≥ 1 and ǫ ± 1. Conversely if (Xm,Km) is given by (13.5), where
y > 1, then (Km, Xm, y) is a Type 1 exceptional solution with gcd(Xm, y) = 1.

Proof. If g = 1, formula 13.4 gives

(13.6) xn + kn
√
D = (y2 + ǫy + 1 + (y + ǫ)

√
D)α2n.

If g = −1, formula 13.4 gives

(13.7)

xn + kn
√
D = (y2 + ǫy + 1− (y + ǫ)

√
D)α2n

= (y2 + ǫy + 1− (y + ǫ)
√
D)α2n−1α

= (y2 + ǫy + 1− (y + ǫ)
√
D)(2y2 + 1 + 2y

√
D)α2n−1

= (y2 − ǫy + 1 + (y − ǫ)
√
D)α2n−1.

Then (13.6) and (13.7) combine into one formula (13.5).
Conversely, formula (13.5) implies

Xm ≡ (−1)mǫy (mod y2 + 1).

Also Xm > 0,Km > y + 1, gcd(Xm,Km) = 1 all follow by induction, using
the recurrence relations

Xm+1 = (2y2 + 1)Xm + 2yDKm,

Km+1 = (2y2 + 1)Km + 2yXm.

14. Constructing exceptional solutions

The construction starts from the following trivial solutions:

(i) (t, t, 0), t ≥ 2,
(ii) (t, t2 − t+ 1, t− 1), t ≥ 2,
(iii) (t, t2 + t+ 1, t+ 1), t ≥ 1.

Definition 14.1. Let (k, x, y) be a solution of (1.1). Then
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(i) g+(k, x, y) = (K,X, Y ), where Y = k and

(14.1) X +K
√

k2 + 1 = (x+ y
√

k2 + 1)(2k2 + 1 + 2k
√

k2 + 1).

(ii) g0(k, x, y) = (K,X, Y ), where Y = y and

(14.2) X +K
√

y2 + 1 = (x+ k
√

y2 + 1)(2y2 + 1 + 2y
√

y2 + 1).

(iii) g−(k, x, y) = (K,X, Y ), where Y = k and

(14.3) X +K
√

k2 + 1 = (x− y
√

k2 + 1)(2k2 + 1 + 2k
√

k2 + 1).

Remark 14.2. In all three cases gcd(X,Y ) = gcd(x, y).

Lemma 14.3. Suppose (k, x, y) is an exceptional solution of (1.1). Then
g+(k, x, y), g0(k, x, y) and g−(k, x, y) are exceptional solutions. Morever with
T = (2Y 2 + 1)K − 2Y X,

(i) g+(k, x, y) = (K,X, Y ) where 0 < T < Y − 1.
(ii) g0(k, x, y) = (K,X, Y ) where Y + 1 < T .
(iii) g−(k, x, y) = (K,X, Y ) where −(Y − 1) < T < 0.

In all cases, we have K > k.

Proof. (i) We have

K = 2kx+ (2k2 + 1)y, X = (2k2 + 1)x+ (k2 + 1)2ky, Y = k.

Taking norms in (14.1) gives X2 − (k2 + 1)K2 = x2 − (k2 + 1)y2 = k2, so
X2 − (Y 2 + 1)K2 = Y 2.

AlsoK > 2k ≥ k+1 = Y +1,X > 0 and hence (K,X, Y ) is an exceptional
solution. Next, 0 < y < k− 1, y = (2Y 2+1)K− 2YX = T , so 0 < T < Y − 1.
Clearly K > k here.

(ii) We have

K = 2yx+ (2y2 + 1)k, X = (2y2 + 1)x+ (y2 + 1)2yk, Y = y.

Taking norms in (14.2) gives X2 − (y2 + 1)K2 = x2 − (y2 + 1)k2 = y2, so
X2 − (Y 2 + 1)K2 = Y 2.

Also K > 2y2 + 1 > y + 1 = Y + 1, X > 0 and hence (K,X, Y ) is
an exceptional solution. Next, y + 1 < k, k = (2Y 2 + 1)K − 2Y X = T , so
Y + 1 < T . Clearly K > k here.

(iii) We have

K = 2kx− (2k2 + 1)y, X = (2k2 + 1)x− (k2 + 1)2ky, Y = k.

Taking norms in (14.3) gives X2 − (k2 + 1)K2 = x2 − (k2 + 1)y2 = k2, so
X2 − (Y 2 + 1)K2 = Y 2. Also

X > (2k2 + 1)y
√

k2 + 1− (k2 + 1)2ky

= y(2k2 + 1− 2k
√

k2 + 1)
√

k2 + 1 > 0.
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We now have to prove K > Y + 1 = k + 1, i.e.,

2kx > (2k2 + 1)y + k + 1.

On squaring both sides, using x2 = (k2 + 1)y2 + k2, this becomes

(14.4) 4k4 > y2 + 2(2k2 + 1)y(k − 1) + (k + 1)2.

However the RHS of (14.4) is < 4(k4 − 2k3 + 2k2 − k + 1) < 4k4, if k > 1.
Hence (K,X, Y ) is an exceptional solution.
Finally, as −(k − 1) < −y < 0 and y = −(2Y 2 + 1)K + 2Y X = −T , we have
−(Y − 1) < T < 0. Also K > k here.

Lemma 14.4. Let T = (2Y 2 + 1)K − 2Y X.

(i) If (K,X, Y ) = g+(t, t, 0), with t ≥ 2, then T = 0.
(ii) If (K,X, Y ) = g+(t, t

2 − t+ 1, t− 1), with t ≥ 2, then T = Y − 1.
(iii) If (K,X, Y ) = g+(t, t

2 + t+ 1, t+ 1) with t ≥ 1, then T = Y + 1.

In each case (K,X, Y ) is an exceptional solution.

Proof. (i) g+(t, t, 0) = (2t2, 2t3 + t, t) = (K,X, Y ).
Then K = 2t2, X = 2t3 + t, Y = t and

T = (2Y 2 + 1)K − 2Y X

= (2t2 + 1)2t2 − 2t(2t3 + t) = 0.

Also if t ≥ 2, then Y = t < 2t2 − 1 = K − 1, so (K,X, Y ) is an exceptional
solution. Similarly for (ii) and (iii).

Corollary 14.5. If xn and kn are defined for n ≥ 1 by

(14.5) xn + kn
√

t2 + 1 = t(2t2 + 1 + 2t
√

t2 + 1)n,

where t ≥ 2, then

(i) (k1, x1, t) = g+(t, t, 0).
(ii) (kn+1, xn+1, t) = g0(kn, xn, t).
(iii) (kn, xn, t) is an exceptional solution for n ≥ 1.

Proof. (i) g+(t, t, 0) = (2t2, 2t3 + t, t) = (k1, x1, t).

(ii) g0(kn, xn, t) = (2txn + (2t2 + 1)kn, (2t
2 + 1)xn + (t2 + 1)2tkn, t)

= (kn+1, xn+1, t).

(iii) We use induction on n ≥ 1. We know (k1, x1, t) is an exceptional solution.
Now assume (kn, xn, t) is an exceptional solution. Then Lemma 14.3 shows
that (kn+1, xn+1, t) is also an exceptional solution.

In a similar fashion, we have
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Corollary 14.6. If xn and kn are defined for n ≥ 1 by

xn + kn
√

t2 + 1 = (t2 + ǫt+ 1+ (t+ ǫ)
√

t2 + 1)(2t2 + 1 + 2t
√

t2 + 1)n,

where t ≥ 1 if ǫ = 1 and t ≥ 2 if ǫ = −1, then

(i) (k1, x1, t) = g+(t, t
2 + ǫt+ 1, t+ ǫ).

(ii) (kn+1, xn+1, t) = g0(kn, xn, t).
(iii) (kn, xn, t) is an exceptional solution for n ≥ 1.

Remark 14.7. Recall that an exceptional solution (k, x, y) is of Type 1,
if y2 +1 divides x+ y or x− y. Any other exceptional solution is called Type
2. Then we proved in Theorem 9.1 that the exceptional solutions (kn, xn, t)
in Corollary 14.5 are the (k, x, y) for which y divides x and y > 1 and that
these are Type 1 solutions. Contrastingly, we proved in Corollary 13.2 that
those in Corollary 14.6 are the Type 1 exceptional solutions (k, x, y) for which
gcd(x, y) = 1.

Lemma 14.8. (i) Suppose that (k, x, y) is an exceptional solution.
Then g+(k, x, y) and g−(k, x, y) are Type 2 exceptional solutions.

(ii) Suppose that (k, x, y) is a Type 2 exceptional solution. Then g0(k, x, y)
is a Type 2 exceptional solution.

Proof. (i) g+(k, x, y) and g−(k, x, y) have the form (K,X, k), with X =
Rx+ eDSy, e = ±1. We have to prove that X ± k are not divisible by k2 +1.

X − k = Rx+ eDSy − k ≡ −x− k (mod k2 + 1),

X + k = Rx+ eDSy + k ≡ −x+ k (mod k2 + 1).

Also x < k2 − k + 1, as y < k − 1. Also x 6= k here. So

0 < |x− k| < x+ k < k2 + 1

and neither x− k nor x+ k is divisible by k2 + 1.
(ii) Suppose (k, x, y) is a Type 2 exceptional solution. Then

g0(k, x, y) = (2yx+ (2y2 + 1)k, (2y2 + 1)x+ (y2 + 1)2yk, y)

= (K,X, Y ).

Also Y = y and

X ± Y = (2y2 + 1)x+ (y2 + 1)2y ± y

≡ −x± y 6≡ 0 (mod y2 + 1).
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15. The recursive construction

In the previous section, we have established the following. Let E be the
set of exceptional solutions (k, x, y). Then with R = 2Y 2 + 1, S = 2Y and
T = RK − SX ,

(i) g0 maps E one–to–one into {(K,X, Y ) ∈ E |Y + 1 < T }.
(ii) g+ maps E one–to–one into {(K,X, Y ) ∈ E |0 < T < Y − 1}.
(iii) g− maps E one–to–one into {(K,X, Y ) ∈ E | − (Y − 1) < T < 0}.
(iv) g+ maps {(t, t, 0)|t ≥ 2} one–to–one into {(K,X, Y ) ∈ E |T = 0}.
(v) g+ maps {(t, t2 − t + 1, t − 1)|t ≥ 2} one–to–one into {(K,X, Y ) ∈

E |T = Y − 1}.
(vi) g+ maps {(t, t2 + t + 1, t + 1)|t ≥ 1} one–to–one into {(K,X, Y ) ∈

E |T = Y + 1}.
It is easy to check that these mappings are surjective.

We construct a forest of exceptional solutions, as follows. We start from
an exceptional solution obtained by applying g+ to each of the trivial solutions
(a) (t, t, 0), t ≥ 2, (b) (t, t2 − t+ 1, t− 1), t ≥ 2, (c) (t, t2 + t+ 1, t+ 1), t ≥ 1.
Then recursively, from an exceptional solution (k, x, y), we produce three
further exceptional solutions.

Because of Remark 14.2, the solutions in trees with root node (a) will
have gcd(x, y) = t ≥ 2, while those with root node (b) or (c), will have
gcd(x, y) = 1.

Figures 1–3 give fragments of the forest of exceptional solutions. We

(2,2,0)

(8,18,2) (144,322,2)

(546,4402,8)

(30,242,8)

(175682,25298818,144)

(2584,5778,2)

(9790,1409794,144)

(7742,62418,8)

(28928,868322,30)

(112,3362,30)

(9576848,5228967778,546)

(140866,1135698,8)

(37120,20267554,546)

Figure 1. Tree fragment starting from (t, t, 0) = (2, 2, 0).

now show that all exceptional solutions occur in the forest and are reached
by a unique path from a root node.

Lemma 15.1. If (K,X, Y ) is an exceptional solution and T = RK − SX
where R = 2Y 2 + 1 and S = 2Y , then

(a) −(Y − 1) < T ,
(b) T 6= Y .
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(2,3,1)

(21,47,2) (377,843,2)

(3740,78629,21)

(208,4373,21)

(1204140,453962377,377)

(6765,15127,2)

(67104,25298297,377)

(367330,7722671,21)

(3636277,756354357,208)

(2059,428277,208)

(1175624141,4396834444509,3740)

(6604838,138858767,21)

(665699,2489714349,3740)

Figure 2. Tree fragment starting from (t, t2 − t+ 1, t− 1) = (2, 3, 1).

(1,3,2)

(12,17,1) (70,99,1)

(697,8393,12)

(119,1433,12)

(23661,1656439,70)

(408,577,1)

(4059,284159,70)

(68783,828257,12)

(680930,81033531,119)

(1178,140187,119)

(23359270,16281427947,697)

(402865,4851137,12)

(40414,28168587,697)

Figure 3. Tree fragment starting from (t, t2 + t+ 1, t+ 1) = (1, 3, 2).

Proof. First we prove (a).

− (Y − 1) < T ⇐⇒ −T = SX −RK < Y − 1

⇐⇒ 2Y X < (2Y 2 + 1)K + Y − 1

⇐⇒ 4Y 2X2 < (4Y 4 + 4Y 2 + 1)K2 + 2K(2Y 2 + 1)(Y − 1) + (Y − 1)2

⇐⇒ 4Y 4 < K2 + 2K(2Y 2 + 1)(Y − 1) + (Y − 1)2.

However, the last inequality follows from K > Y + 1.
(b) Now assume T = Y . Then (2Y 2 + 1)K − 2Y X = Y , so Y divides K.

Hence Y divides X . Let K = YW and X = Y Z. Then

(2Y 2 + 1)W − 2Y Z = 1,

Z2 − (Y 2 + 1)W 2 = 1.

Eliminating Z gives 4Y 2(W+1) = (W−1)2. HenceW is odd, W = 2U+1 and
2Y 2(U +1) = U2. Then U+1 divides U2, which contradicts gcd(U+1, U2) =
1.

Definition 15.2. Let (K,X, Y ) be an exceptional solution. Let R =
2Y 2 + 1, S = 2Y,D = Y 2 + 1 and T = RK − SX. Then

(15.1) h(K,X, Y ) =











g−1
0 (K,X, Y ) if Y + 1 < T ,

g−1
+ (K,X, Y ) if 0 ≤ T ≤ Y + 1, T 6= Y ,

g−1
−

(K,X, Y ) if −(Y − 1) < T < 0.
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Remark 15.3. By virtue of Lemma 15.1, h is well–defined and h(K,X, Y )
= (k, x, y) is either an exceptional solution with k < K, or one of the trivial
solutions (Y, Y 2 + ǫY + 1, Y + ǫ) or (Y, Y, 0).

It follows that repeated application of h on an exceptional solution
(K,X, Y ) will eventually reach a trivial solution (k, x, y) and consequently
(K,X, Y ) occurs in the tree whose root node is (k, x, y). As the path from
(K,X, Y ) back to a root node is uniquely defined, the forest of exceptional
solutions contains every exceptional solution just once. Dujella’s conjecture
means that no two nodes can have the same K.

The forest can be used to check that Dujella’s conjecture holds for all k
not exceeding a given bound. For as one travels along a path from a root
node, the value of k increases; also as t is increased in one of the three types
of root node (k, x, y), so does the size of K, where g+(k, x, y) = (K,X, Y ).

It is clear by induction that the exceptional solutions have the form
(K(t), X(t), Y (t)), where the components are polynomials with integer coeffi-
cients, corresponding to the three types of root node:

(t, t, 0), t ≥ 2; (t, t2 − t+ 1, t− 1), t ≥ 2; (t, t2 + t+ 1, t+ 1), t ≥ 1.

16. Families of k with explicit exceptional solutions

The following examples were suggested by an extension of Table 1 to
k ≤ 232. We use the terminology of Proposition 2.1. The continued fraction
identities were proved using formula (iv) of Lemma 6.2.

Example 16.1. g+(t, t, 0) = (k, x, y) = (2t2, 2t3 + t, t), t ≥ 2. Then

d = t, a = 2t2 + 2t+ 1, b = 2t2 − 2t+ 1, p = 1, q = 1.

Then
√

b/a = [0, 1, t− 1, 1, 1, t− 1, 2], period length 5.

Also Q2 = 4t = 2k/d and p/q = A1/B1.

t 2 3 4 5
k 8 18 32 50

Example 16.2. g0g+(t, t, 0) = (k, x, y) = (8t4+4t2, 8t5+8t3+t, t), where
t ≥ 2. Then

d = t, a = 8t4 + 8t3 + 8t2 + 4t+ 1, b = 8t4 − 8t3 + 8t2 − 4t+ 1, p = 1, q = 1.

Then
√

b/a = [0, 1, t− 1, 1, 1, t− 1, 1, 1, t− 1, 1, 1, t− 1, 2], period length 11.

Also Q2 = 16t3 + 8t = 2k/d and p/q = A1/B1.

t 2 3 4 5
k 144 684 2112 5100



288 K. R. MATTHEWS, J. P. ROBERTSON AND J. WHITE

Example 16.3. g+(t, t
2 + t+ 1, t+ 1) = (k, x, y), t ≥ 1. Then

k = 4t3 + 4t2 + 3t+ 1, x = 4t4 + 4t3 + 5t2 + 3t+ 1, y = t

and d = 1 if t is odd, whereas d = 2 if t is even.

a =

{

(4t4 + 8t3 + 9t2 + 6t+ 2)/2 if t is even,

4t4 + 8t3 + 9t2 + 6t+ 2 if t is odd.

b =

{

8t2 + 2 if t is even,

4t2 + 1 if t is odd.

Then p = 1 and q = t/2 if t is even, whereas q = t if t is odd.

(i) If t is even,
√

b/a = [0, t/2, 1, 1, t− 1, 1, 1, t− 1, 1, 1, t], period length 9.

Also Q2 = 4t3 + 4t2 + 3t+ 1 = k = 2k/d and p/q = A1/B1.
(ii) If t is odd,

√

b/a = [0, t+ 1, 2t, 2t, 2t+ 2], period length 3.

Also Q1 = b = 4t2 +1, Q2 = 4t2 +4t+1, P2 = 4t3 +4t2 + t+1. Hence
Q2 −Q1 + 2P2 = 2k and p/q = (A1 −A0)/(B1 −B0).

t 1 2 3 4 5
k 12 55 154 333 616

17. The unicity conjecture implies the D(−1) conjecture

The D(−1) quadruples conjecture states that there do not exist four
distinct positive integers such that the product of any two is one plus a
square. The following argument was supplied by Andrej Dujella. Assume
that the unicity conjecture is true and let a, b, c, d be a D(−1)-quadruple with
0 < a < b < c < d. Then a = 1 by [3] and hence

b = r2 + 1, c = s2 + 1, d = t2 + 1.

Now consider the equation (y2 + 1)(t2 + 1) = x2 + 1, i.e.,

x2 − (t2 + 1)y2 = t2.

By the unicity conjecture, this diophantine equation has at most one solution
with 0 < y < t− 1.

But by assumption, it has at least two solutions with 0 < y < t, namely,
y = r and y = s, and hence we must have s = t− 1.

However this contradicts a gap property [3, Lemma 9] which implies that
d > c2. For the inequality

d = t2 + 1 > c2 = ((t− 1)2 + 1)2

does not hold for any t > 2.
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