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Abstract. Generalizing some earlier results, we find all the coprime
integer solutions of the Diophantine inequality

∣

∣X2 − cXY 2 + Y 4
∣

∣ ≤ c+ 2, (X, Y ) = 1,

except when c ≡ 2 (mod 4), in which case we bound the number of integer
solutions. Our work is based on the results on the Diophantine equation

AX4 − BY 2 = C,

where A,B are positive integers and C ∈ ±{1, 2, 4}.

1. Introduction

In recent years, several results have been established concerning solutions
of quartic Thue equations and inequalities, see [10, 16, 17] and the references
given there. Let c be a positive integer. In [7], Cusick resolved an infinite
family of Diophantine equations X4 − cX2Y 2 + Y 4 = 1 and this result was
generalized by Cohn [6] and Walsh [21] to the equations X2 − cXY 2 + Y 4 =
±1,±2,±4, cf. Lemma 2.1. Further, here we would like to mention two other
theorems related to the quartic Thue inequalities. In 1997, Wakabayashi
[20, Theorem 2] proved that the only primitive solutions (i. e. (X,Y ) = 1) of
the Thue inequality

|X4 − a2X2Y 2 + Y 4| ≤ a2 − 2 (a ≥ 8)
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are (X,Y ) = (0, 0), (±1, 0), (0,±1), (±a,±1), (±1,±a), (±1,±1) with mixed
signs. Dujella, Ibrahimpašić and Jadrijević [8] resolved the Thue inequality

|X4 − 2(n2 − 1)X2Y 2 + Y 4| ≤ 2n+ 3,

where n ≥ 0 is an integer.
As a common generalization of the previous inequalities, let us consider

the Diophantine equation

(1.1) X2 − cXY 2 + Y 4 = µ, |µ| ≤ c+ 2.

Determining completely the integer solutions of equation (1.1) depends
on a conjecture on the number of solutions to Diophantine equation

(1.2) aX4 − bY 2 = 1.

In 2005, Togbé, Voutier and Walsh [18] made the following conjecture.

Conjecture 1.1. Let t > 1 denote a positive integer. Then the only

positive integer solution to

(t+ 1)X4 − tY 2 = 1

is (X,Y ) = (1, 1), unless t = m2 +m for some positive integer m, in which

case there is also the solution (X,Y ) = (2m+ 1, 4m2 + 4m+ 3).

We note that using the function SIntegralLjunggrenPoints in the computer
algebra program package MAGMA [5] that the conjecture above is true for
1 < t ≤ 1000 apart from the possible values of

t ∈ {388, 502, 634, 702, 744, 772, 820, 829, 878, 883, 953, 955, 956, 957, 993}.
In these exceptional cases MAGMA failed to find all integer points on the
quatric, because it was not able to compute the rank of the corresponding
elliptic curve.

Our main result is the following.

Theorem 1.2. For a positive integer c ≥ 3, all of the coprime integer

solutions (X,Y ) of Diophantine equation (1.1) are given by

(1.3) (X,±Y ) = (−1, 0), (1, 0), (0, 1), (−1, 1), (1, 1), (c−1, 1), (c, 1), (c+1, 1),

expect for the following cases:

1. If c = 338, then equation (1.1) has the additional integer solution

(X,±Y ) = (114243, 6214), (13051348805, 6214).
2. If c = n2, then equation (1.1) has the additional integer solution

(X,±Y ) = (1, n), (n4 − 1, n).
3. If c = n2 − 1, then equation (1.1) has the additional integer solution

(X,±Y ) = (1, n), (n4 − n2 − 1, n).
4. If c = n2 + 1, then then equation (1.1) has the additional integer

solution (X,±Y ) = (1, n), (n4 + n2 − 1, n).
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5. c ≡ 2 (mod 4) is not as in (1.2), with µ = −c+ 2. In this exceptional

case, there are at most two additional solutions (X,Y ) to equation

(1.1). Under Conjecture 1.1, there is no other additional solution.

For c = 1 and 2 we can give all the solutions by using elementary
considerations. Indeed, if c = 2 then we have

x2 − 2xy2 + y4 =
(

x− y2
)2 ≤ 4

and x− y2 = 0,±1,±2, so all the solutions are

(x, y) = (m2,m), (m2 ± 1,m), (m2 ± 2,m),

where m is an integer. For c = 1 we obtain

∣

∣x2 − xy2 + y4
∣

∣ =
x2 + (x− y2)2 + y4

2
≤ 3,

and a straightforward calculation shows that all the solutions are

(x, y) = (±1,±1), (−1, 0), (1, 0), (0,±1), (0, 0), (2,±1).

The organization of this paper is as follows. In Section 2, we will recall
some useful results, particularly results related to the Diophantine equation

AX4 −BY 2 = C,

where A,B are positive integers and C ∈ ±{1, 2, 4}. The proof of Theorem 1.2
will be done in Section 3 by the means of the results cited in Section 2.

2. Preliminaries

In 1995, Cohn [6] considered the Diophantine equation

x2 − cxy2 + y4 = 1,

where c is an odd positive integer. Walsh [21] solved the equation with c an
even positive integer.

Lemma 2.1 (Cohn 1995, Walsh 1999). The only solutions to x2 − cxy2 +
y4 = 1 in non-negative integers (x, y) are (c, 1), (1, 0), (0, 1), unless either c
is a perfect square, in which case there are also the solutions (1,

√
c), (c2 −

1,
√
c), or c = 338 in which there are the solutions (x, y) = (114243, 6214),

(13051348805, 6214).

We will also recall some classical results on the quartic Diophantine
equation

(2.1) aX2 − bY 4 = ±1, ±2, ±4.

We will consider the positive values of the constants in equation (2.1) and
recall two results.

The result on the Diophantine equation

(2.2) aX2 − bY 4 = 4, 2 ∤ ab,
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was obtained by Luo and Yuan [15]. Let (x1, y1) be the minimal positive
integer solution of equation ax2 − by2 = 4. We define xk, yk by

(2.3)

(

x1

√
a+ y1

√
b

2

)k

=
xk

√
a+ yk

√
b

2
, 2 ∤ k.

Lemma 2.2 (Luo and Yuan, 2007). 1. If y1 is not a square, then the

equation (2.2) has no positive integer solution expect for the case y1 =
3 and by21 +3 = 3 , when (X,Y ) = (x3,

√
y3) is the only solution of

(2.2).
2. if y1 is a square, then equation (2.2) has at most one positive integer

solution other than (X,Y ) = (x1,
√
y1), which is either (X,Y ) =

(x3,
√
y3) or (X,Y ) = (x2,

√
y2), the latter occurring if and only if

x1 and y1 are both squares and a = 1, b 6= 5.

For the Diophantine equation

(2.4) aX2 − bY 4 = 2, 2 ∤ ab,

Ljunggren [12] proved that the equation has at most two solutions in positive
integers (X,Y ). Luca and Walsh [14] obtained a more precise result. In fact,
let (u1, v1) be the minimal positive integer solution of equation ax2− by2 = 2.
We also define uk, vk by

(

u1

√
a+ v1

√
b√

2

)k

=
uk

√
a+ vk

√
b√

2
, 2 ∤ k.

Lemma 2.3 (Luca and Walsh, 2001). 1. If v1 is not a square, then

equation (2.4) has no solutions.

2. If v1 is a square and v3 is not a square, then (X,Y ) = (u1,
√
v1) is the

only solution of equation (2.4).
3. If v1 and v3 are both squares, then (X,Y ) = (u1,

√
v1) and (u3,

√
v3)

are the only solutions of equation (2.4).

We recall here another result obtained Ljunggren [12].

Lemma 2.4 (Ljunggren, 1954). The Diophantine equation aX2−bY 4 = 1
has at most one positive integer solution (X,Y ) with a > 1.

For the negative values of the constants in equation (2.1), first we consider
the equation

(2.5) aX4 − bY 2 = 4.

We proceed like for Lemma 2.2 by considering the definition of x1, y1 and
that of of xk, yk given by equation (2.3). Ljunggren [13] proved the following
result.

Lemma 2.5 (Ljunggren, 1967). If 2 ∤ ab, then the Diophantine equation

aX4− bY 2 = 4 has at most two positive integer solutions (X,Y ) with 2 ∤ XY .
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1. If x1 = h2 and ax2
1 − 3 = s2, there are only two solutions, namely,

(X,Y ) = (
√
x1, y1), (

√
x3, y3).

2. If x1 = h2 and ax2
1 − 3 6= s2, then (X,Y ) = (

√
x1, y1) is the only

solution.

3. If x1 = 5h2 and a2x4
1 − 5ax2

1 + 5 = 5s2, then the only solution is

(X,Y ) = (
√
x5, y5).

In 2009, Yuan and Li [22] confirmed a conjecture posed by Akhtari, Togbé
and Walsh [2, 3]. See also [19].

Lemma 2.6 (Yuan and Li, 2009). If 2 ∤ ab, then the Diophantine equation

aX4 − bY 2 = 2 has at most one positive integer solution (X,Y ).

The most difficult equation in (2.1) is

(2.6) aX4 − bY 2 = 1.

The upper bound of the number of solutions to equation (2.6) is obtained by
Akhtari [1] and Yuan-Zhang [23], independently. They showed the following
result.

Lemma 2.7 (Akhtari 2009, Yuan and Zhang 2010). The Diophantine

equation (2.6) has at most two positive integer solutions (X,Y ).

A special case of the equation was studied by Bennettt, Togbé and Walsh
[4].

Lemma 2.8 (Bennett, Togbé, and Walsh, 2006). Let m be a positive

integer. Then the only positive integral solutions to the equation

(m2 +m+ 1)X4 − (m2 +m)Y 2 = 1

are given by (X,Y ) = (1, 1) and (X,Y ) = (2m+ 1, 4m2 + 4m+ 3).

3. Proof of Theorem 1.2

If one of the variables X and Y is zero, under the condition (X,Y ) = 1,
then the other variable is ±1. So we will assume that XY 6= 0.

From (1.1) we have
(

2X − cY 2
)2 −

(

c2 − 4
)

Y 4 = 4µ.

So we will consider the equation

(3.1) x2 −
(

c2 − 4
)

y2 = 4µ, |µ| ≤ c+ 2,

where x = |2X − cY 2|, y = Y 2.
Using the same argument as in [9, Section 3], if equation (3.1) has a

solution (x, y), then we have

µ = 1,−c+ 2 or c+ 2.
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3.1. The case µ = 1. By the work of Cohn and Walsh, stated as Lemma
2.1, the only solutions are (X,±Y ) = (0, 1), (1, 0), (c, 1), and the exceptional
solutions in the cases (1.2) and (1.2) of Theorem 1.2.

3.2. The case µ = c+ 2. From the equation

x2 −
(

c2 − 4
)

y2 = 4(c+ 2),

we see that (c + 2)|x2. Put c + 2 = gh2 with g square-free. Then we have
x = ghz with integers g, h, and z. Therefore, the above equation can be
rewritten into

(3.2) gz2 − (c− 2)y2 = 4.

One can see that the minimal solution is (z, y1) = (h, 1). By some results on
Pellian equations, for any possible common divisor of gz and (c − 2)y, all of
positive integer solutions to equation (3.2) are given by

z
√
g + y

√
c− 2

2
=

(

z1
√
g + y1

√
c− 2

2

)k

=
zk
√
g + yk

√
c− 2

2
, 2 ∤ k.

Using the above equality or classical properties of Lucas-Lehmer numbers [11],
we have z1|zk, i.e. h|z. Thus, equation (3.2) becomes

(c+ 2)x′2 − (c− 2)y2 = 4.

Combining this and equation (3.1), we will study the equation

(3.3) (c+ 2)x′2 − (c− 2)Y 4 = 4,

where x′ = |2X−cY
2|

c+2
.

It is easy to see that (x′,±Y ) = (1, 1) is a positive integer solution of the
above equation. From

2X = cY 2 ± (c+ 2) = c± (c+ 2),

we get the solutions (X,±Y ) = (−1, 1), (c+ 1, 1) listed in Theorem 1.2. We
will try to find the solutions of equation (3.3) satisfying (x′,±Y ) 6= (1, 1).

• If 2 ∤ c, then the minimal solution of the equation

(c+ 2)x2 − (c− 2)y2 = 4

is (x1, y1) = (1, 1). We will apply Lemma 2.2. As
(
√
c+ 2 +

√
c− 2

2

)3

=
(c− 1)

√
c+ 2 + (c+ 1)

√
c− 2

2
,

we get (x′, Y ) = (c− 1,
√
c+ 1), if c+ 1 is a square. Put c+ 1 = (2s)2, s ∈ N.

Therefore, we have the solutions in the exceptional case (1.2) of Theorem 1.2,
with n even.

• If 4|c, then equation (3.3) becomes

(c/2 + 1)x′2 − (c/2− 1)Y 4 = 2.
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Using Lemma 2.3 and an argument similar to that of the above case, we obtain
the solutions in the exceptional case (1.2) of Theorem 1.2, with n odd.

• If c ≡ 2 (mod 4), then from equation (3.3) we deduce

((c/2 + 1)/2)x′2 − ((c/2− 1)/2)Y 4 = 1

or
(c1 + 1)x′2 − c1Y

4 = 1,

where c = 4c1 + 2. By Lemma 2.4, there is no solution satisfying (x′,±Y ) 6=
(1, 1).

3.3. The case µ = −c+ 2. From the equation

x2 −
(

c2 − 4
)

y2 = 4(−c+ 2),

as in the case µ = c + 2, we can see that (c − 2)|x. So, there exists x′′ ∈ N
such that x = (c− 2)x′′. Then we have

(c+ 2)y2 − (c− 2)x′′2 = 4.

Now, since y = Y 2, the equation becomes

(3.4) (c+ 2)Y 4 − (c− 2)x′′2 = 4,

where x′′ = |2X−cY
2|

c−2
. The trivial solution (x′′,±Y ) = (1, 1) provides

2X = cY 2 ± (c− 2) = c± (c+ 2).

We obtain the solutions (X,±Y ) = (1, 1), (c − 1, 1) listed in Theorem 1.2.
Also, let us assume (x′′,±Y ) 6= (1, 1) in the following discussion.

• Case 2 ∤ c: We need to consider the equation

(c+ 2)Y 4 − (c− 2)x′′2 = 4.

To apply Lemma 2.5, we notice that (x1, y1) = (1, 1) is the minimal solution
to

(c+ 2)y2 − (c− 2)x′′2 = 4.

Moreover, in general it is not true that ax2
1 − 3 = x3. Using an argument

similar to that of the case µ = c + 2 and 2 ∤ c, we have x3 = c − 1. So the
additional solution comes from ax2

1−3 = c−1, where c−1 is a square. Put c =
(2s)2+1, s ∈ N. Then we get the solution (Y, x′′) = (2s, (2s)2+2) of equation
(3.4). This is corresponding to the solutions (X,±Y ) = ((2s)4+(2s)2− 1, 2s)
and (X,±Y ) = (1, 2s) seen in the case (1.2) of Theorem 1.2, with n even.

• Case 4|c: Equation (3.4) becomes

(c/2 + 1)Y 4 − (c/2− 1)x′′2 = 2.

By Lemma 2.6, there is no additional solution.
• The most difficult case in the paper is c ≡ 2 (mod 4). From equation

(3.4), we deduce

((c/2 + 1)/2)Y 4 − ((c/2− 1)/2)x′′2 = 1.
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We cannot explicitly solve it. But we can use Lemma 2.7 to see that there is
at most one non-trivial integer solution (Y, x′′). This will possibly provide at
most two integer solutions to equation (1.1). This corresponds to case (1.2)
of Theorem 1.2.

Finally, when (c/2+ 1)/2 = s2 + s+1, by Lemma 2.8, we obtain the case
(1.2) of Theorem 1.2, with n odd. This completes the proof of Theorem 1.2.
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