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BIRATIONAL MAPS OF X(1) INTO P2

Damir Mikoč and Goran Muić

University of Rijeka and University of Zagreb, Croatia

Abstract. In this paper we study birational maps of modular curve
X(1) attached to SL2(Z) into the projective plain P2. We prove that every
curve of genus 0 and degree q in P2 can be uniformized by modular forms
for SL2(Z) of weight 12q but not with modular forms of smaller weight,
and that the corresponding uniformization can be chosen to be a birational
equivalence. We study other regular maps X(1) −→ P2 and we compute
the equation of obtained projective curve. We provide numerical examples
in SAGE.

1. Introduction

The idea of using automorphic forms and uniformization theory (via
Poincaré series) to construct holomorphic maps on compact Riemann surfaces
is very old one ([12]). Regarding modular curves, the uniformization of the
modular curves via theta functions has been studied extensively for example
in [3–5, 7]. Furthermore, arithmetic aspects of the theory can be found in a
well–known book of Shimura ([13]). The uniformization of modular curves is
used to compute equations of modular curves X0(N) in [2, 6, 14, 16].

The usual plane models of curves X0(N) are derived using classical
modular j–function [13] but the equations of obtained curves are rather
difficult ([1]). Thus, it is a reasonable problem to search for other plane
models ([11]). A related question is what kind of loci we can get when we
uniformize with modular forms on Γ0(N) of a particular even weight m ≥ 2.
In general, this is rather messy ([11]) but in the case of the modular curve
X(1) = X0(1) (which is a modular curve for Γ0(1) = SL2(Z)) this has a
complete and satisfactory answer which is given in the present paper.
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302 D. MIKOČ AND G. MUIĆ

Before we introduce our main result, we introduce some notation. Let
Mm be the space of all modular forms of weight m for SL2(Z). We introduce
the two Eisenstein series

E4(z) = 1 + 240

∞
∑

n=1

σ3(n)q
n,

E6(z) = 1− 504
∞
∑

n=1

σ5(n)q
n

of weight 4 and 6, where q = exp (2πiz). Then, for any m ≥ 4, we have

(1.1) Mm = ⊕ α,β≥0
4α+6β=m

CEα
4 E

β
6 .

Let H be the upper half–plane and let

X(1) = (H ∪Q ∪ {i∞}) /SL2(Z)

be the corresponding modular curve. The curve X(1) has genus zero. X(1)
is isomorphic to P1 via modular j–function.

Every irreducible complex projective curve is birationally equivalent to
a plane curve. We say that an irreducible curve C ⊂ P2 is uniformized by
modular forms of weight m if there exists f, g, h ∈ Mm such that C is the
image of the holomorphic map X(1) −→ P2 given by

(1.2) z 7−→ (f(z) : g(z) : h(z)).

This forces that C has genus 0 (see Lemma 2.2). The main result of the present
paper is the following theorem:

Theorem 1.1. Let C ⊂ P2 be an irreducible curve of degree q and genus 0.
Then, C can be uniformized by the modular forms of weight 12q but not with
modular forms of smaller weight. More precisely, the uniformization map by
modular forms of weight 12q can be selected to be a birational equivalence.

Theorem 1.1 is proved in Section 2. In Section 3 we give examples of
uniformization for various classes of curves of genus 0.

In the spirit of [6], it is reasonable to study the following problem. Given
three linearly independent modular forms f, g, h ∈ Mm, we construct the map
(1.2). Then, it is reasonable to compute the (reduced) equation of the curve
(of genus zero) obtained as the image of the map (1.2). We discuss these
questions in Section 3 where we take f, g, h from the canonical bases of Mm

(see Proposition 3.1), and in Section 4 where we explore the computational
aspects of the problem using SAGE (see [15]).

We would like to thank the referee for carefully reading the paper and
suggesting some improvements.
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2. Proof of Theorem 1.1

In the proof we use standard results about complex algebraic curves ([9]).
We begin the proof of Theorem 1.1 by recalling the notion of the divisor of a
modular form (in the settings of SL2(Z)) from [8, 2.3].

Let m ≥ 4 be an even integer and f ∈ Mm − {0}. Then νz−ξ(f) is the
order of the holomorphic function f at ξ. The number is constant on the
SL2(Z)–orbit of ξ.

The point ξ is elliptic if the stabilizer SL2(Z)ξ in SL2(Z) when divided
by {±1} is not trivial. In any case, we let

eξ = #(SL2(Z)ξ/{±1}) .

So, ξ is elliptic if and only if eξ > 1. We define

νξ(f) = νz−ξ(f)/eξ.

The numbers eξ and νξ(f) depend only on the SL2(Z)–orbit of ξ. Thus,
if aξ is a projection of ξ to X(1), we may let

νaξ
(f) = νξ(f).

There are just two orbits of elliptic points in SL2(Z): i and eπi/3. We
have ei = 2 and eeπi/3 = 3.

The cusps for SL2(Z) are Q∪ {i∞}. They form a single orbit. We define
νi∞(f) by using the Fourier expansion:

f(z) =

∞
∑

n=0

ane
2πinz.

We let

νi∞(f) = N ≥ 0,

where N is defined by a0 = a1 = · · · = aN−1 = 0, aN 6= 0. It is more
technical to define νx(f) for x ∈ Q but it turns out that νx(f) does not
depend on x ∈ Q ∪ {i∞}.

Finally we define the divisor of f as follows:

div(f) =
∑

a∈X(1)

νa(f)a.

This is a divisor with rational coefficient on the Riemann surface X(1).
Using [8, 2.3], this sum is finite i.e., νa(f) 6= 0 only for finitely many

points. We let

deg(div(f)) =
∑

a∈X(1)

νa(f).

The particular case of [8, Theorem 2.3.3] is the following relation:

deg(div(f)) =
m

12
.



304 D. MIKOČ AND G. MUIĆ

As in the proof [10, Lemma 4-1 (vi)] we prove that

Lemma 2.1. Assume that m ≥ 12 is an even integer and f ∈ Mm, f 6= 0.
Then there exists an integral effective divisor cf ≥ 0 of degree dimMm − 1
such that

div(f) = cf +
(m

4
−
[m

4

])

ai +
(m

3
−
[m

3

])

aeπi/3 .

Now, we begin the proof of Theorem 1.1. The first step in the proof of
Theorem 1.1 is the following lemma:

Lemma 2.2. Assume that m ≥ 12 is an even integer such that dimMm ≥
3. Let f, g, h ∈ Mm be linearly independent. Then, the image of the map
X(1) → P2 given by 1

az 7−→ (f(z) : g(z) : h(z))

is an irreducible projective curve of genus 0 which we denote by C(f, g, h).
Furthermore, the degree of C(f, g, h) is ≤ dimMm − 1 but > 1.

Proof. X(1) has a canonical structure of a smooth projective curve, and
f/h and g/h are rational functions on X(1). Thus, az 7−→ (f(z) : g(z) : h(z))
is the rational map

az 7−→ (f(z)/h(z) : g(z)/h(z) : 1).

But since X(1) is smooth, this map is regular. Consequently, the image,
which is our C(f, g, h), is an irreducible projective curve. By definition, the
genus of C(f, g, h) is the genus of its desingularization (normalization), say C.
Thus, there exists a rational map ϕ : C(f, g, h) −→ C which is a birational
equivalence. This implies that the composition

X(1)
az 7−→(f(z):g(z):h(z))
−−−−−−−−−−−−−−→ C(f, g, h)

ϕ
−−−−→ C

is a non–constant rational map. Hence, the composition is regular and
surjective. By Hurwitz’s formula, the genus of C is less than or equal to
the genus of X(1). This implies that the genus of C is 0. Thus, C(f, g, h) has
genus 0.

We prove the last claim of the lemma. Let us write (x0 : x1 : x2) for
homogeneous coordinates on P2. Since f, g and h are linearly independent,
the degree of C(f, g, h) cannot be one. Let us show that it is ≤ dimMm − 1.
Let l be the line in P2 in general position with respect to C(f, g, h). Then,
it intersects C(f, g, h) in different points a number of which is the degree of
C(f, g, h). We can change the coordinate system so that the line l is x0 = 0.
In new coordinate system, the map az 7→ (f(z) : g(z) : h(z)) is of the form

az 7→ (F (z) : G(z) : H(z)) ,

1In this paper az denotes the projection to X(1) of the point z ∈ H, and ax denotes
the projection to X(1) of the cusp x ∈ Q ∪ {i∞}.
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where F,G,H ∈ Mm are again linearly independent. In particular, F,G,H 6=
0.

We write this map in the form of a regular map X(1) −→ C(F,G,H)

(2.1) az 7→ (1 : G(z)/F (z) : H(z)/F (z)) .

Thanks to Lemma 2.1, the divisors of rational functions F/H and G/H
are easy to compute. We obtain

(2.2)
div(G/F ) = div(G)− div(F ) = cG − cF

div(H/F ) = div(H)− div(F ) = cH − cF ,

where the divisors cF , cG, and cH are integral effective divisors of degree
dimMm − 1.

Now, we intersect C(f, g, h) with the line x0 = 0. Considering the map
in the form (2.1), the intersection is determined by the poles of G/F and
H/F . Since all divisors in (2.2) are effective, the poles of G/F and H/F are
contained among the points in the support of cF . The claim follows at once
since the support of cF cannot have more than dimMm− 1 points because cF
is effective and it has degree dimMm − 1.

Lemma 2.3. Assume that m ≥ 12 is an even integer such that dimMm ≥
2. Let f, g, h ∈ Mm such that two of them are linearly independent but not all
three. Then, the image of the map X(1) → P2 given by

az 7−→ (f(z) : g(z) : h(z))

is a line.

Proof. If for example f and g are linearly independent, then the map
X(1) −→ P1 given by f/g is non–constant, and therefore surjective. In
another words, the map az 7−→ (f(z) : g(z)) is surjective. Since h is by
the assumption a linear combination of f and g, h = λf + µg, the claim
follows from the fact that the map can be factored as follows:

X(1)
az 7→(f(z):g(z))
−−−−−−−−−−→ P1 (s:t) 7→(s:t:λs+µt)

−−−−−−−−−−−→ P2.

Corollary 2.4. Under the assumptions of either Lemma 2.2 or Lemma
2.3, there exists unique up to a scalar homogeneous polynomial P = Pf,g,h in
three variables of degree ≤ dimMm− 1 such that the locus (P (x0, x1, x2) = 0)
is C(f, g, h).

Proof. This follows from Nullstellensatz. We remind the reader that
the degree of P equals the degree of C(f, g, h).

The critical step in the proof of Theorem 1.1 is the following lemma:

Lemma 2.5. Let C ⊂ P2 be an irreducible curve of degree q ≥ 1 and genus
0. Then, C cannot be uniformized by modular forms of weight < 12q.
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Proof. We recall that

dimMm =

{

[

m
12

]

if m ≡ 2 (mod 12)
[

m
12

]

+ 1 if m 6≡ 2 (mod 12),

where [x] denotes the largest integer ≤ x. From this we see that if m < 12q,
then

dimMm < dimM12q = q + 1.

Thus, if dimMm ≥ 2 (to assure that normalization is possible at all), then, by
Lemmas 2.2 and 2.3, it can uniformize the curves of degree ≤ dimMm−1 < q.

The following lemma completes the proof of Theorem 1.1:

Lemma 2.6. Let C ⊂ P2 be an irreducible curve of degree q ≥ 1 and genus
0. Then, C can be uniformized by modular forms of weight 12q such that the
corresponding map is a birational equivalence.

Proof. Since C has a genus 0, there exists a birational map

P1 −→ C.

This map is necessary of the form

(s : t) 7−→ (α(s, t) : β(s, t) : γ(s, t)),

where α, β, and γ are homogeneous polynomials in two variables of the same
degree of homogeneity.

Since C has degree q. We see that α, β, and γ have q as their degree of
homogeneity. Indeed, to see this we just consider the number of points of the
intersection of the curve with a line in a general position. For Zariski open
subset of (A : B : C) ∈ P2, we have that the polynomial

Aα(s, t) +Bβ(s, t) + Cγ(s, t)

must have degree q since it must have q–different solutions (s : t) ∈ P1. But
since α, β, γ are homogeneous, they must have the same degree.

We observe that since above map is birational, at least two of α, β, γ
are linearly independent. But they are homogeneous. Thus, at least two of
α(T, 1), β(T, 1), γ(T, 1) are linearly independent, where T is indeterminate.

The field of rational functions C(X(1)) is given by

C(X(1)) = C(j) ≃ C(T ),

where j is the classical modular j–function

j = E3
4/∆.
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We recall that E4 is defined in the introduction, and ∆ is the Ramanujan
delta function

∆(z) = q

∞
∏

n=1

(1− qn)24, q = exp (2πiz).

Thus, we see that at least two of the following modular functions
α(j(z), 1), β(j(z), 1), γ(j(z), 1) are linearly independent as elements of the
field C(X(1)). Hence, because of homogeneity, the same is true for the
modular forms α(E3

4 (z),∆(z)), β(E3
4 (z),∆(z)), and γ(E3

4(z),∆(z)) of degree
12q. Furthermore, Lemmas 2.2 and 2.3 are applicable to the map

X(1) −→ P1 −→ C

given by

az 7−→(α(j(z), 1) : β(j(z), 1) : γ(j(z), 1))

=(α(E3
4 (z),∆(z)) : β(E3

4 (z),∆(z)) : γ(E3
4(z),∆(z))).

Thus, the curve C
(

α(E3
4 ,∆), β(E3

4 ,∆), γ(E3
4 ,∆)

)

is contained inside C.
Hence, they are equal. This map is a birational equivalence.

3. Examples of uniformization

In this section we consider polynomials in two variables x, y, which we
homogenize in a usual manner x = x1/x0 and y = x2/x0. The examples
constructed in this section are obtained by a direct application of Theorem
1.1. They give a birational equivalence. In the next section we will construct
different type of uniformization and birational equivalence.

Let xq + aq−1x
q−1 + · · · + a1x + a0 − y be a polynomial with complex

coefficients ai. It is easy to see its irreducibility in the ring C[x, y] just by
considering it as a polynomial in y with coefficients in C[x]. The affine curve
(y = xq + aq−1x

q−1 + · · ·+ a1x + a0) is irreducible and we have the obvious
(affine) isomorphism (x, y) 7−→ x which has inverse x 7−→ (x, xq +aq−1x

q−1+

· · · + a1x + a0). The corresponding projective curve C = (x2x
q−1
0 = xq

1 +

aq−1x
q−1
1 x0+· · ·+a1x1x

q−1
0 +a0x

q
0) is irreducible and has degree q. Moreover,

its genus equals zero since the above affine isomorphisms induce birational
map from C to P1.

In terms of projective coordinates, the birational equivalence P1 −→ C is
given by

(3.1) (s : t) 7−→ (sq : sq−1t : tq + aq−1st
q−1 + · · ·+ a1s

q−1t+ a0s
q).

Thus, the birational equivalence between X(1) and C is obtained from the
factorization

X(1)
az 7−→(E3

4(z):∆(z))
−−−−−−−−−−−−→ P1 map (3.1)

−−−−−−→ C.
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Thus, C is uniformized and birationally equivalent to X(1) with aid of

E3q
4 ,∆E3q−3

4 ,∆q + aq−1∆
q−1E3

4 + · · ·+ a1∆E3q−3
4 + a0E

3q
4 ∈ M12q.

Let m,n ≥ 1 be relatively prime integers. Then the curve (xm − yn = 0)
is irreducible and birationally equivalent to the affine line A1. Indeed, we
consider the map

(3.2) A1 x 7→(xn,xm)
−−−−−−−→ (xm − yn = 0).

This map is a birational equivalence since applying the Euclid algorithm it
can be decomposed into a sequence of birational equivalences:

m = k1n+ r1 (xn − yr1 = 0)
(x,y) 7→(y,xyk1)
−−−−−−−−−−→ (xm − yn = 0),

n = k2r1 + r2 (xr1 − yr2 = 0)
(x,y) 7→(y,xyk2)
−−−−−−−−−−→ (xn − yr1 = 0),

· · · · · ·

ri−1 = ki+1ri + ri+1 (xri − yri+1 = 0)
(x,y) 7→(y,xyki+1)
−−−−−−−−−−−→ (xri−1 − yri = 0),

ri = ki+2ri+1 + 1 (xri+1 − y = 0)
(x,y) 7→(y,xyki+2)
−−−−−−−−−−−→ (xri − yri+1 = 0),

A1 x 7→(x,xri+1)
−−−−−−−−→ (xri+1 − y = 0).

Let us assume m > n. We remark that the polynomial xm − yn, or
equivalently xm

1 − xn
2x

m−n
0 is irreducible. This is so because the curve (xm −

yn = 0) is irreducible. This implies that (xm
1 − xn

2x
m−n
0 = 0) is irreducible.

Thus, by Nullstellensatz, xm
1 −xn

2x
m−n
0 is a power of an irreducible polynomial,

a degree of which determines the degree of (xm
1 − xn

2x
m−n
0 = 0). But if we

intersect with the line (x0−x2 = 0), we get m different points of intersection.
This proves the claim.

Thus, still assuming m > n for definiteness, the birational isomorphism
between X(1) and C = (xm

1 −xn
2x

m−n
0 = 0) is obtained from the factorization

X(1)
az 7−→(E3

4(z):∆(z))
−−−−−−−−−−−−→ P1 (s:t) 7→(sm:tnsm−n:tm)

−−−−−−−−−−−−−−−→ C,

where the last map is the birational isomorphism (3.2) in its projective
form. Thus, C is unformized and birationally equivalent to X(1) with aid
of E3m

4 ,∆nE3m−3n
4 ,∆m ∈ M12m.

In the following proposition we describe all curves that can be obtained
by the uniformization using using three forms in the canonical basis (see (1.1))

(3.3) E3q
4 , E3q−3

4 E2
6 , . . . , E

2q
6

of M12q for q ≥ 2.

Proposition 3.1. Let q ≥ 2. We consider the basis of M12q described in
(3.3). Then all curves up to the order of basis elements and uniformization
by smaller M12q′ , q

′ ≥ 2, that can be uniformized by three basis forms of M12q
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are given by (xq′−j′

0 xj′

2 − xq′

1 = 0), where 0 < j < q, (j, q) = d, and q′ = q/d,
and j′ = j/d. The uniformization is a birational equivalence if and only if
d = 1.

Proof. First, let us consider the case q = 2. In this case we are dealing
with M12q and the canonical basis is E6

4 , E
3
4E

2
6 , E

4
6 . It is obvious that we have

E6
4E

4
6 −

(

E3
4E

2
6

)2
= 0. Thus, we obtain the curve x0x2 − x2

1. This proves the
claim for q = 2.

In general, let us consider the curve obtained from E3q−3i
4 E2i

6 , E3q−3j
4 E2j

6 ,

E3q−3k
4 E2k

6 , where 0 ≤ i < j < k ≤ q, in that order. If i > 0 or k < q, then
every form is divisible by E2

6 or E3
4 , respectively. But this means that the

resulting equation comes from the corresponding forms in M12(q−1). So, it
is already on the list. Thus, we conclude that a contribution of M12q is by

means of the triples E3q
4 , E3q−3j

4 E2j
6 , E2q

6 , where 0 < j < q. In this case, we
let (j, q) = d, q′ = q/d, and j′ = j/d. Then we obtain the following:

(

E3q
4

)q′−j′ (

E2q
6

)j′

−
(

E3q−3j
4 E2j

6

)q′

=
(

E3q′d
4

)q′−j′ (

E2q′d
6

)j′

−
(

E3q′d−3j′d
4 E2j′d

6

)q′

= 0.

Using the second example in this section, we conclude that

C(E3q
4 , E3q−3j

4 E2j
6 , E2q

6 ) = (xq′−j′

0 xj′

2 − xq′

1 = 0).

We discuss the birational equivalence. Put f = E3q
4 , g = E3q−3j

4 E2j
6 ,

and h = E2q
6 . The map az 7−→ (f(z) : g(z) : h(z)) can be considered as a

regular map from the smooth projective curve X(1) (explained in the proof
of Lemma 2.2) which is surjective. On the level of fields of rational functions,
this implies the following:

C

(

xq′−j′

0 xj′

2 − xq′

1 = 0
)

= C (C(f, g, h)) ≃ C (f/h, g/h) ⊂ C(X(1)) = C(j).

By the standard characterization of birational equivalence, the map az 7−→
(f(z) : g(z) : h(z)) is a birational equivalence if C (f/h, g/h) = C(X(1)) =
C(j). Equivalently, reverting back to original notation, we must have

C(j) = C

(

(

E3
4

E2
6

)j

,

(

E3
4

E2
6

)q
)

.

But, there exists m,n ∈ Z such that jn + qm = d. This means that we

have the following: C(j) = C

(

(

E3
4/E

2
6

)−d
)

. Hence

C(j−1) = C(j) = C

(

(

E3
4

E2
6

)d
)

= C

(

(

E2
6

E3
4

)d
)

= C

(

(

1− j−1
)d
)

.

This forces d = 1 since C(j−1) ≃ C(T ), where T is indeterminate.
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4. Computation using SAGE

In this section we compute some uniformizations using the open source
mathematics software SAGE. We compute irreducible polynomials given by
Corollary 2.4. For simplicity, we denote forms in canonical basis for M12q

given by (3.3) with:

(4.1) e0, e1, . . . , ei, . . . eq

We compute this base in SAGE as follows:

sage : E4 = eisenstein series qexp(4, prec)

sage : E6 = eisenstein series qexp(6, prec)

This returns the q-expansions of the normalized weight 4 and 6 Eisenstein
series to precision prec. Then we get basis forms:

sage : ei = E4̂ (3 ∗ (q− i)) ∗ E6̂ (2 ∗ i)

for 0 ≤ i ≤ q. We calculate equation for curve obtained from linearly
independent forms f, g, h ∈ M12q as follows.

First, using simple routines we calculate all monoms of degree q obtained
from f, g, h. Then, using SAGE command linear dependence we calculate
dependences of monoms:

sage : L = V.linear dependence(vectors, zeros =′ left′).

This gives us the equation of the curve. We use SAGE command factor
to check irreducibility of the corresponding polynomial.

sage : F = factor(pol).

Since all curves obtained by three forms in the canonical basis are described in
Proposition 3.1, we make some elementary operations on elements of canonical
basis to obtain some other three linearly independent forms. The following
are some irreducible homogeneous polynomials we computed in SAGE:
1. M120, q = 10. For f = e0, g = e0 + e1, h = e0 + e1 + e10 we get

2x10
0 − 9x9

0x1 + 45x8
0x

2
1 − 120x7

0x
3
1 + 210x6

0x
4
1 − 252x5

0x
5
1

+ 210x4
0x

6
1 − 120x3

0x
7
1 + 45x2

0x
8
1 − 10x0x

9
1 + x10

1 − x9
0x2.

For f = e0, g = e0 + e3, h = e0 + e3 + e10 we get

2x10
0 − 7x9

0x1 + 48x8
0x

2
1 − 119x7

0x
3
1 + 210x6

0x
4
1 − 252x5

0x
5
1 + 210x4

0x
6
1

− 120x3
0x

7
1 + 45x2

0x
8
1 − 10x0x

9
1 + x10

1 − 3x9
0x2 − 6x8

0x1x2 − 3x7
0x

2
1x2

+ 3x8
0x

2
2 + 3x7

0x1x
2
2 − x7

0x
3
2.
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For f = e0 + e8, g = e7 + e8, h = e10 + e8 we get

x2
0x

8
1 − 2x0x

9
1 + 2x10

1 − 8x2
0x

7
1x2 + 9x0x

8
1x2 − 8x9

1x2 + 35x2
0x

6
1x

2
2

− 34x0x
7
1x

2
2 + 20x8

1x
2
2 − 90x2

0x
5
1x

3
2 + 103x0x

6
1x

3
2 − 48x7

1x
3
2 + 142x2

0x
4
1x

4
2

− 182x0x
5
1x

4
2 + 82x6

1x
4
2 − 126x2

0x
3
1x

5
2 + 178x0x

4
1x

5
2 − 80x5

1x
5
2 + 53x2

0x
2
1x

6
2

− 86x0x
3
1x

6
2 + 40x4

1x
6
2 − x3

0x
7
2 − 8x2

0x1x
7
2 + 16x0x

2
1x

7
2 − 8x3

1x
7
2 + x2

0x
8
2

− 2x0x1x
8
2 + x2

1x
8
2.

2. M180, q = 15. For f = e0 + e14, g = e13 + e14, h = e15 + e14 we get
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For f = e0 + e3, g = e2 + e3, h = e15 + e3 we get
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3. M228, q = 19. For f = e0 + e18, g = e17 + e18, h = e19 + e18 we get
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For f = e0 + e17, g = e16 + e17, h = e19 + e17 we get
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