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Vol. 48(68)(2013), 335 – 356

3-CONVEX FUNCTIONS AND GENERALIZATIONS OF AN

INEQUALITY OF HARDY-LITTLEWOOD-PÓLYA
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Abstract. In this paper, we present some generalizations of an
inequality of Hardy-Littlewood-Pólya. We give the n-exponential convexity
and log-convexity of the functions associated with the linear functionals
defined as the non-negative differences of the generalized inequalities and
prove the monotonicity property of the generalized Cauchy means obtained
via these functionals. Finally, we give several examples of the families of
functions for which the results can be applied.

1. Introduction and Preliminaries

The following theorem is given in the famous Hardy-Littlewood-Pólya
book [3, Theorem 134].

Theorem 1.1. If f is a convex and continuous function defined on [0,∞)
and ak, k ∈ N are non-negative and non-increasing, then

(1.1) f

(

n
∑

k=1

ak

)

≥ f (0) +
n
∑

k=1

(f(kak)− f((k − 1)ak)) .

If f ′ is a strictly increasing function, there is equality only when ak are equal
up to a certain point and then zero. If f is concave, then (1.1) holds in the
reverse direction.

An example of above theorem is given below (see [3, Theorem 134]).
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Theorem 1.2. Let ak ≥ 0 and assume that the sequence (ak, k ∈ N) is
non-increasing. If s > 1, then we have

(1.2)

(

n
∑

k=1

ak

)s

≥
n
∑

k=1

ak
s (ks − (k − 1)s) .

If 0 < s < 1, then (1.2) holds in the reverse direction.

Inequality (1.1) is of great interest and has been generalized in many
different ways by various mathematicians.

In 1995, inequality (1.2) was improved by J. Pečarić and L. E. Persson in
[9] and this improvement is given below:

Theorem 1.3. If the sequence (ak > 0, k ∈ N) is non-increasing in mean
i.e if

1

n

n
∑

k=1

ak ≥ 1

n+ 1

n+1
∑

k=1

ak, n ∈ N,

where (ak, k ∈ N) ⊂ R and if s is a real number such that s > 1, then

(1.3)

(

∞
∑

k=1

ak

)s

≥
∞
∑

k=1

ak
s (ks − (k − 1)s) ,

holds. If 0 < s < 1, then (1.3) holds in the reverse direction.

It is well known and easy to see that if a sequence (ak, k ∈ N) is non-
increasing, then it is also non-increasing in mean but the reverse implications
don’t hold in general. This means that Theorem 1.3 is a genuine generalization
of Theorem 1.2.

In 1986, G. Bennett ([2]) proved a weighted version of inequality (1.2) in
the following form: if ak (k = 1, . . . , n) are non-negative and non-increasing

and pk ≥ 0 for each k = 1, . . . , n with Pk =
∑k

i=1 pi (k = 1, . . . , n), then for
any real number s > 1,

(1.4)

(

n
∑

k=1

pkak

)s

≥ (p1a1)
s
+

n
∑

k=2

ask
(

P s
k − P s

k−1

)

holds. If 0 < s < 1, then (1.4) holds in the reverse direction.
In 1997, C. Jardas, J. Pečarić, R. Roki and N. Sarapa presented the

generalizations of these inequalities ((1.3) and its reverse) in [5]. As a
consequence some inequalities for entropies of discrete probability distributions
are also presented in [5]. Some basic properties of entropies of probability
distributions can be found in [7].

The following result was proved in [5].
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Theorem 1.4. Let ak > 0 (k = 1, . . . , n) be real numbers and Sk =
∑k

i=1 ai (k = 1, . . . , n). Then for all s, 0 < s < 1 or s > 2, we have

(1.5)

n
∑

k=1

ak
s (ks − (k − 1)s)

+ s

n
∑

k=2

as−1
k (Sk−1 − (k − 1)ak)

(

ks−1 − (k − 1)s−1
)

≤
(

n
∑

k=1

ak

)s

≤
n
∑

k=1

ak
s (ks − (k − 1)s)+s

n
∑

k=2

(Sk−1 − (k − 1)ak)
(

Ss−1
k − Ss−1

k−1

)

.

For all s, 1 < s < 2, the opposite inequalities hold in (1.5). Equalities hold in
(1.5) if and only if a1 = a2 = . . . = an.

The following theorem was proved in [5] as a consequence of Theorem 1.4.

Theorem 1.5. Let pk > 0 (k = 1, . . . , n) be a probability distribution with

entropy H = −∑n

i=1 pi log pi and Pk =
∑k

i=1 pi (k = 1, . . . , n). Then we have

(1.6)

H +
n
∑

k=2

((k − 1)pk − Pk−1) (log k − log(k − 1))

≤
n
∑

k=2

F (k − 1) pk

≤ H +
n
∑

k=2

((k − 1)pk − Pk−1) (logPk − logPk−1) ,

where F (x) = (x+ 1) log (x+ 1) − x log x(x > 0). Equalities hold in (1.6) if
pk = 1

n
(k = 1, . . . , n) .

In order to obtain our general results we need some definitions.

Definition 1.6. A sequence (ak, k ∈ N) ⊂ R is non-increasing in
weighted mean, if

(1.7)
1

Pn

n
∑

k=1

pkak ≥ 1

Pn+1

n+1
∑

k=1

pkak, n ∈ N,

where ak and pk (k ∈ N) are real numbers such that pk > 0 (k ∈ N) with

Pk =
∑k

i=1 pi (k ∈ N).

A sequence (ak, k ∈ N) ⊂ R is non-decreasing in weighted mean, if
opposite inequality holds in (1.7).
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In a similar way we can define when a finite sequence (ak, k = 1, . . . , n) ⊂
R is non-increasing in weighted mean or non-decreasing in weighted mean.

Remark 1.7. It is easy to see that a sequence (ak, k ∈ N) is non-
increasing in weighted mean (non-decreasing in weighted mean) if and only if
∑k−1

i=1 piai ≥ Pk−1ak

(

∑k−1
i=1 piai ≤ Pk−1ak

)

for k = 2, 3, . . . .

The following property of convex function will be useful further (see [8,
p.2]).

Proposition 1.8. A function f : I → R is convex on I if

(1.8) f (x1) (x3 − x2) + f(x2) (x1 − x3) + f (x3) (x2 − x1) ≥ 0

holds for all x1, x2, x3 ∈ I such that x1 < x2 < x3.

Proposition 1.9. If f is a convex function on an interval I and x1 ≤
y1, x2 ≤ y2, x1 6= x2, y1 6= y2, then the following inequality is valid:

f (x2)− f (x1)

x2 − x1
≤ f (y2)− f (y1)

y2 − y1
.

If the function f is concave, the inequality reverses (see [8, p.2]).

Lemma 1.10. A differentiable function of one variable is convex on an
interval I if and only if the function lies above all of its tangents i.e

(1.9) f (y) ≥ f (x) + (y − x) f ′ (x) .

By choosing the points in the reverse, we have

(1.10) f (x) ≥ f (y) + (x− y) f ′ (y) .

On combining (1.9) and (1.10), we have

(1.11) f(y) + (x − y)f ′(y) ≤ f(x) ≤ f(y) + (x− y)f ′(x).

The nth-order divided difference of a function f : [a, b] → R at mutually
distinct points y0, y1, . . . , yn ∈ [a, b] is defined recursively by

[yi; f ] = f (yi) , i = 0, . . . , n,

[y0, . . . , yn; f ] =
[y1, . . . , yn; f ]− [y0, . . . , yn−1; f ]

yn − y0
.

The value [y0, . . . , yn; f ] is independent of the order of the points y0, . . . , yn.
This definition may be extended to include the case in which some or all the
points coincide (see [8, p.14]).

The following definition of a real-valued convex function is characterized
by nth-order divided difference (see [8, p.15]).

Definition 1.11. A function f : [a, b] → R is said to be n-convex (n ≥ 0)
if and only if for all choices of (n + 1) distinct points y0, . . . , yn ∈ [a, b], we
have [y0, . . . , yn; f ] ≥ 0.



3-CONVEX FUNCTIONS 339

In Section 2, we present generalizations of Theorems 1.4 and 1.5. We
define linear functionals as the non-negative differences of the generalized
inequalities and give mean value theorems for the linear functionals. In
Section 3, we give definitions and results which will be needed later.
Further, we investigate the n-exponential convexity and log-convexity of the
functions associated with the linear functionals and also deduce Lyapunov-
type inequalities for these functionals. We also prove the monotonicity
property of the generalized Cauchy means obtained via these functionals.
Finally, in Section 4 we give several examples of the families of functions for
which the obtained results can be applied.

2. Main Results

Our first main result is the generalization of Theorems 1.4 and 1.5.

Theorem 2.1. Let ak > 0 and pk > 0 (k = 1, . . . , n) be real numbers such

that Pk =
∑k

i=1 pi (k = 1, . . . , n). Let Pk−1, Pk,
∑k−1

i=1
piai

ak
and

∑
k
i=1

piai

ak
∈

[a, b] for all k = 2, . . . , n and g : [a, b] → R be a differentiable function such
that g (x+ h)− g (x) is convex for all x, x+ h ∈ [a, b], where h ≥ 0. Then for
any s ∈ R, we have

(2.1)

n
∑

k=2

ask (g(Pk)− g(Pk−1))

+
n
∑

k=2

as−1
k

(

k−1
∑

i=1

piai − P k−1ak

)

(g′(Pk)− g′(Pk−1))

≤
n
∑

k=2

ask

(

g

(

∑k

i=1 piai
ak

)

− g

(

∑k−1
i=1 piai
ak

))

≤
n
∑

k=2

ask (g (Pk)− g (Pk−1)) +

n
∑

k=2

as−1
k

(

k−1
∑

i=1

piai − P k−1ak

)

·

·
(

g′

(

∑k

i=1 piai
ak

)

− g′

(

∑k−1
i=1 piai
ak

))

.

If g (x+ h) − g (x) is concave for all x, x + h ∈ [a, b] such that h ≥ 0, then
opposite inequalities hold in (2.1).

Proof. Since g (x+ h)− g (x) is a convex function, where g is differen-
tiable, by setting f (x) = g (x+ h)− g (x) in (1.11), we have

(2.2)

g (y + h)− g (y) + (x− y) (g′ (y + h)− g′ (y))

≤ g (x+ h)− g (x)

≤ g (y + h)− g (y) + (x− y) (g′ (x+ h)− g′ (x)) .
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Substituting x =
∑k−1

i=1
piai

ak
, y = Pk−1 and h = pk (k = 2, . . . , n), where ak > 0

(k = 1, . . . , n) in (2.2), we have,

(2.3)

g (Pk)− g (Pk−1) +

(

∑k−1
i=1 piai − P k−1ak

ak

)

(g′(Pk)− g′(Pk−1))

≤ g

(

∑k

i=1 piai
ak

)

− g

(

∑k−1
i=1 piai
ak

)

≤ g (Pk)− g (Pk−1) +

(

∑k−1
i=1 piai − P k−1ak

ak

)

·

·
(

g′

(

∑k

i=1 piai
ak

)

− g′

(

∑k−1
i=1 piai
ak

))

.

Multiplying (2.3) throughout by ask > 0 (k = 1, . . . , n), where s ∈ R and
summing over k from 2 to n, we have (2.1).

If g (x+ h)− g (x) is concave for all x, x+h ∈ [a, b] such that h ≥ 0, then
we have opposite inequalities in (1.11) and in the same way we have opposite
inequalities in (2.1).

Corollary 2.2. Let ak > 0 and pk > 0 (k = 1, . . . , n) be real

numbers such that Pk =
∑k

i=1 pi (k = 1, . . . , n). Let Pk−1, Pk,
∑k−1

i=1
piai

ak
and

∑k
i=1

piai

ak
∈ [a, b] for all k = 2, . . . , n and g : [a, b] → R be a differentiable

function. If the function g is 3-convex, then for any s ∈ R (2.1) holds and if
it is 3-concave, then (2.1) holds in the reverse direction.

Proof. Since g is a 3-convex function, g′ exists and is convex on [a, b]
(see [8, p.16]). Therefore for any h ≥ 0 such that x, x+h ∈ [a, b], f ′(x) exists,
where f(x) := g(x+ h)− g(x) and we can write

f ′(y)− f ′(x)

y − x
=
g′(y + h)− g′(x+ h)

(y + h)− (x+ h)
− g′(y)− g′(x)

y − x
.

Now by using Proposition 1.9, we have f ′(y)−f ′(x)
y−x

≥ 0, showing that f ′ is non-

decreasing on [a, b] and so f is convex. By taking f (x) = g (x+ h)− g (x) in
(1.11) and by making the same substitutions as given in the proof of Theorem
2.1, we have (2.1).

Similarly, if g is a 3-concave function, then it is easy to prove that f is
concave and so we then have opposite inequalities in (1.11) and in the same
way we have opposite inequalities in (2.1).

The second main theorem is again the generalization of Theorems 1.4 and 1.5.

Theorem 2.3. Let ak > 0 and pk > 0 (k = 1, . . . , n) be real numbers

such that Pk =
∑k

i=1 pi (k = 1, . . . , n). Let p1a1, Pk−1ak, Pkak,
∑k−1

i=1 piai
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and
∑k

i=1 piai ∈ [a, b] for all k = 2, . . . , n and g : [a, b] → R be a differentiable
function such that g(x + h) − g(x) is convex for all x, x + h ∈ [a, b], where
h ≥ 0. Then we have,

(2.4)

g (p1a1) +

n
∑

k=2

(g(Pkak)− g(Pk−1ak))

+
n
∑

k=2

(

k−1
∑

i=1

piai − P k−1ak

)

(g′(Pkak)− g′ (Pk−1ak))

≤ g

(

n
∑

i=1

piai

)

≤ g (p1a1) +

n
∑

k=2

(g (Pkak)− g(Pk−1ak))

+

n
∑

k=2

(

k−1
∑

i=1

piai − P k−1ak

)(

g′

(

k
∑

i=1

piai

)

− g′

(

k−1
∑

i=1

piai

))

.

If g (x+ h) − g (x) is concave for all x, x + h ∈ [a, b] such that h ≥ 0, then
opposite inequalities hold in (2.4).

Proof. Since g (x+ h)−g (x) is a convex function, where g is differentia-
ble, by setting f(x) = g(x+h)− g(x) in (1.11), we obtain (2.2). Substituting

x =
∑k−1

i=1 piai, y = Pk−1ak and h = pkak (k = 2, . . . , n) in (2.2), where
ak > 0 (k = 1, . . . , n), we get

g (Pkak)− g (Pk−1ak) +

(

k−1
∑

i=1

piai − P k−1ak

)

(g′(Pkak)− g′ (Pk−1ak))

≤ g

(

k
∑

i=1

piai

)

− g

(

k−1
∑

i=1

piai

)

≤ g (Pkak)− g (Pk−1ak)

+

(

k−1
∑

i=1

piai − P k−1ak

)(

g′

(

k
∑

i=1

piai

)

− g′

(

k−1
∑

i=1

piai

))

.

Summing over k from 2 to n, we obtain (2.4).
If g (x+ h)− g (x) is concave for all x, x+h ∈ [a, b] such that h ≥ 0, then

we have opposite inequalities in (1.11) and in the same way we have opposite
inequalities in (2.4).

Corollary 2.4. Let ak > 0 and pk > 0 (k = 1, . . . , n) be real numbers

such that Pk =
∑k

i=1 pi (k = 1, . . . , n). Let p1a1, Pk−1ak, Pkak,
∑k−1

i=1 piai

and
∑k

i=1 piai ∈ [a, b] for all k = 2, . . . , n and g : [a, b] → R be a differentiable
function. If the function g is 3-convex, then (2.4) holds and if it is 3-concave,
then (2.4) holds in the reverse direction.
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Proof. Analogous to the proof of Corollary 2.2.

Remark 2.5. For g (x) = xs, the function g (x+ h) − g (x) is convex
when 0 < s < 1 or s > 2 and concave when 1 < s < 2 on (0,∞) with h ≥ 0.
The results from Theorem 1.4 can be recaptured by making the substitutions
pk → 1 (k = 1, . . . , n) and g (x) = xs, x ∈ (0,∞) in the results of Theorems
2.1 and 2.3 and in this way these theorems are the generalizations of Theorem
1.4. It is easy to see that g (x+ h) − g (x) is convex for g (x) = −x lnx and
concave for g (x) = x ln x on (0,∞) with h ≥ 0. If we make the substitutions
pk → 1 (k = 1, . . . , n) in Theorems 2.1 and 2.3 and then replace ak → pk
(k = 1, . . . , n) and take g(x) = −x lnx in (2.1) and (2.4) or g (x) = x lnx in
their reverses and also using the fact that

Pn =

n
∑

i=1

pi = 1,

then we (1.6) follows. In this way Theorems 2.1 and 2.3 are the generalizations
of the Theorem 1.5.

Remark 2.6. It is easy to see that the function g (x) = xs, where x ∈
(0,∞) is both convex and 3-convex for s > 2, convex and 3-concave for 1 <
s < 2 and concave and 3-convex for 0 < s < 1. If we make the substitutions
pk → 1 (k = 1, . . . , n) and g (x) = xs, x ∈ (0,∞) in Corollary 2.2 or Corollary
2.4 and if (ak > 0, k = 1, . . . , n) ⊂ R is a sequence non-increasing in mean,
then the left inequality in (2.1) and (2.4) is a refinement of (1.2) for s > 2, and
the right inequality in (2.1) and (2.4) is a refinement of the reversed inequality
of (1.2) for 0 < s < 1. In case of 3-concave functions, the right inequality in
the reverse of (2.1) and (2.4) is a refinement of (1.2) for 1 < s < 2.

More generally, if a sequence (ak > 0, k = 1, . . . , n) ⊂ R is non-increasing
in weighted mean and the function g is convex and 3-convex, then the left
inequality in (2.4) is a refinement of (1.1). If g is convex and 3-concave, then
the inequalities in (2.4) are reversed and the right inequality is the refinement
of (1.1). Analogous statements can be made for a function which is concave
and 3-convex or concave and 3-concave.

Let us define functionals Φi (i = 1, . . . , 6) by the non-negative differences
of the inequalities (2.1) and (2.4) as follows:
(2.5)

Φ1 (g) =

n
∑

k=2

ask

(

g

(

∑k

i=1 piai
ak

)

− g

(

∑k−1
i=1 piai
ak

)

− (g(Pk)− g(Pk−1))

)

−
n
∑

k=2

as−1
k

(

k−1
∑

i=1

piai − Pk−1ak

)

(g′ (Pk)− g′ (Pk−1)) ,
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(2.6)

Φ2 (g) =

n
∑

k=2

as−1
k

(

k−1
∑

i=1

piai − Pk−1ak

)(

g′

(

∑k

i=1 piai
ak

)

− g′

(

∑k−1
i=1 piai
ak

))

−
n
∑

k=2

as−1
k

(

k−1
∑

i=1

piai − Pk−1ak

)

(g′ (Pk)− g′ (Pk−1)) ,

(2.7)

Φ3 (g) =

n
∑

k=2

ask

(

g (Pk)− g (Pk−1)−
(

g

(

∑k

i=1 piai
ak

)

− g

(

∑k−1
i=1 piai
ak

)))

+

n
∑

k=2

as−1
k

(

k−1
∑

i=1

piai−Pk−1ak

)(

g′

(

∑k

i=1 piai
ak

)

−g′
(

∑k−1
i=1 piai
ak

))

,

(2.8)

Φ4 (g) = g

(

n
∑

i=1

piai

)

− g (p1a1)−
n
∑

k=2

(g (Pkak)− g (Pk−1ak))

−
n
∑

k=2

(

k−1
∑

i=1

piai − Pk−1ak

)

(g′ (Pkak)− g′ (Pk−1ak)) ,

(2.9)

Φ5 (g) =

n
∑

k=2

(

k−1
∑

i=1

piai − Pk−1ak

)(

g′

(

k
∑

i=1

piai

)

− g′

(

k−1
∑

i=1

piai

))

−
n
∑

k=2

(

k−1
∑

i=1

piai − Pk−1ak

)

(g′ (Pkak)− g′ (Pk−1ak)) ,

and
(2.10)

Φ6 (g) = g (p1a1)− g

(

n
∑

i=1

piai

)

+
n
∑

k=2

(g (Pkak)− g(Pk−1ak))

+

n
∑

k=2

(

k−1
∑

i=1

piai − Pk−1ak

)(

g′

(

k
∑

i=1

piai

)

− g′

(

k−1
∑

i=1

piai

))

,

where

Pk−1, Pk, Pk−1ak, Pkak,

k−1
∑

i=1

piai,

k
∑

i=1

piai,

∑k−1
i=1 piai
ak

,

∑k

i=1 piai
ak

∈ [a, b]

are such that ak > 0, pk > 0 (k = 1, . . . , n) with Pk−1 =
∑k−1

i=1 piai for all
k = 2, . . . , n. If the function g is differentiable and 3-convex defined on [a, b],
then Corollaries 2.2 and 2.4 imply that

(2.11) Φi (g) ≥ 0, i = 1, . . . , 6.
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Now, we give mean value theorems for the functionals Φi (i = 1, . . . , 6) as
defined in (2. 5) – (2. 10). These theorems enable us to define various classes
of means that can be expressed in terms of linear functionals.

Theorem 2.7. Let ak > 0 and pk > 0 (k = 1, . . . , n) be real numbers such

that Pk =
∑k

i=1 pi (k = 1, . . . , n). Let Pk−1, Pk, Pk−1ak, Pkak,
∑k−1

i=1 piai,
∑k

i=1 piai,
∑k−1

i=1
piai

ak
and

∑
k
i=1

piai

ak
∈ [a, b] for all k = 2, . . . , n. Suppose that

Φi (i = 1, . . . , 6) are linear functionals defined as in (2. 5)–(2. 10) and g ∈
C3 ([a, b]). Then there exists ξi ∈ [a, b] such that

(2.12) Φi (g) =
g′′′ (ξi)

6
Φi (g0) , i = 1, . . . , 6,

where g0(x) = x3.

Proof. Since g′′′ (x) is continuous on [a, b], there exist real numbersm =
minx∈[a,b] g

′′′ (x) and M = maxx∈[a,b] g
′′′ (x) such that m ≤ g′′′ (x) ≤M . It is

easy to see that the functions g1 (x) and g2 (x) defined by g1 (x) =
Mx3

6 −g (x)
and g2 (x) = g (x)−mx3

6 are 3-convex. Therefore, by using g1 and g2 in (2.11),

we have Φi

(

Mx3

6 − g (x)
)

≥ 0 and Φi

(

g(x)− mx3

6

)

≥ 0 (i = 1, . . . , 6), which

are equivalent to

(2.13) Φi (g) ≤
M

6
Φi (g0) , i = 1, . . . , 6,

and

(2.14) Φi (g) ≥
m

6
Φi (g0) , i = 1, . . . , 6,

respectively. From (2.13) and (2.14), we have

(2.15)
m

6
Φi (g0) ≤ Φi (g) ≤

M

6
Φi (g0) , i = 1, . . . , 6.

If Φi (g0) = 0 (i = 1, . . . , 6), then there is nothing to prove. Let Φi (g0) > 0
(i = 1, . . . , 6), then from (2.15), we have

m ≤ 6Φi (g)

Φi (g0)
≤M, i = 1, . . . , 6.

Now, by using the fact that for m ≤ ηi ≤ M , there exist ξi ∈ [a, b] such that
g′′′ (ξi) = ηi (i = 1, . . . , 6), and so we have (2.12).

Theorem 2.8. Let all the conditions of Theorem 2.7 are satisfied. Then
there exists ξi ∈ [a, b] such that

(2.16)
Φi (g)

Φi (h)
=
g′′′ (ξi)

h′′′ (ξi)
, i = 1, . . . , 6,

provided that the denominators are non-zero.
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Proof. Consider the function ψi ∈ C3 ([a, b]) defined by ψi = cig − dih,
where ci = Φi (h) and di = Φi (g) (i = 1, . . . , 6). Using Theorem 2.7 with
g = ψi, there exist ξi ∈ [a, b] such that

(

cig
′′′ (ξi)

6
− dih

′′′ (ξi)

6

)

Φi(g0) = 0, i = 1, . . . , 6.

Since Φi (g0) 6= 0 (because otherwise we have a contradiction with Φi (h) 6= 0
by Theorem 2.7), we get

g′′′ (ξi)

h′′′ (ξi)
=
di
ci
, i = 1, . . . , 6.

After substituting the values of ci and di, we have (2.16).

Remark 2.9. (i) By taking g (x) = xs and h(x) = xq in (2.16), where
s, q ∈ R \ {0, 1, 2} are such that s 6= q, we have

ξs−q
i =

q (q − 1) (q − 2)Φi (x
s)

s (s− 1) (s− 2)Φi (xq)
, i = 1, . . . , 6.

(ii) If the inverse of the function g′′′/h′′′ exists, then (2.16) gives

ξi =

(

g′′′

h′′′

)−1(
Φi(g)

Φi(h)

)

, i = 1, . . . , 6.

3. n-Exponential Convexity And Log-Convexity Of The

Functions Associated With The Differences Of The

Generalized Inequalities

We begin this section by recollecting the definitions and properties which
are going to be explored here and also some useful characterizations of these
properties. In the sequel, let I be an open interval in R.

Definition 3.1. A function h : I → R is n-exponentially convex in the
Jensen sense on I if

n
∑

i,j=1

αiαjh

(

xi + xj
2

)

≥ 0

holds for every αi ∈ R and xi ∈ I, i = 1, . . . , n (see [10]).

Definition 3.2. A function h : I → R is n-exponentially convex on I if
it is n-exponentially convex in the Jensen sense and continuous on I.

Remark 3.3. From the above definition, it is clear that 1-exponentially
convex functions in the Jensen sense are non-negative functions. Also, n-
exponentially convex functions in the Jensen sense are k-exponentially convex
functions in the Jensen sense for all k ∈ N, k ≤ n.
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Positive semi-definite matrices represent a basic tool in our study. By the
definition of positive semi-definite matrices and some basic linear algebra, we
have the following proposition.

Proposition 3.4. If h is n-exponentially convex in the Jensen sense,

then the matrix
[

h
(

xi+xj

2

)]k

i,j=1
is a positive semi-definite matrix for all

k ∈ N, k ≤ n. In particular

det

[

h

(

xi + xj
2

)]k

i,j=1

≥ 0 for every k ∈ N, k ≤ n, xi ∈ I, i = 1, . . . , n.

Definition 3.5. A function h : I → R is exponentially convex in the
Jensen sense if it is n-exponentially convex in the Jensen sense for all n ∈ N.

Definition 3.6. A function h : I → R is exponentially convex if it is
exponentially convex in the Jensen sense and continuous.

Lemma 3.7. A function h : I → (0,∞) is log-convex in the Jensen sense,
that is, for every x, y ∈ I,

h2
(

x+ y

2

)

≤ h (x) h (y)

holds if and only if the relation

α2h(x) + 2αβ h

(

x+ y

2

)

+ β2h (y) ≥ 0

holds for every α, β ∈ R and x, y ∈ I.

Remark 3.8. It follows that a function is log-convex in the Jensen-sense
if and only if it is 2-exponentially convex in the Jensen sense. Also, by using
the basic convexity theory, a function is log-convex if and only if it is 2-
exponentially convex. For more results about log-convexity see [1] and the
references therein.

Proposition 3.9. A 3rd-order divided difference of a function f : [a, b] →
R at the points y0, y1, y2, y3 ∈ [a, b] can be expressed in the following forms:

(i) If y0, y1, y2, y3 ∈ [a, b] such that yi 6= yj, i 6= j, i, j = 0, . . . 3, then we
have

[y0, y1, y2, y3; f ] =
3
∑

i=0

f(yi)

q′ (yi)
, where q (y) =

3
∏

j=0

(y − yj) .
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(ii) If f is a differentiable function defined on [a, b] and y, y0, y1 ∈ [a, b]
such that y 6= y0 6= y1, then we have

[y, y, y0, y1; f ] =
f ′ (y)

(y − y0) (y − y1)
+
f (y) (y0 + y1 − 2y)

(y − y0)
2
(y − y1)

2

+
f (y0)

(y0 − y)2 (y0 − y1)
+

f (y1)

(y1 − y)2 (y1 − y0)
.

(iii) If f is a differentiable function defined on [a, b] and y, y0 ∈ [a, b] such
that y 6= y0, then we have

[y, y, y0, y0; f ] =
(y0 − y) (f ′ (y0) + f ′ (y)) + 2 (f (y)− f (y0))

(y0 − y)
3 .

(iv) If f is twice differentiable function defined on [a, b] and y, y0 ∈ [a, b]
such that y 6= y0, then we have

[y, y, y, y0; f ] =
1

(y0 − y)
3

[

f (y0)−
2
∑

i=0

f (i) (y)

i!
(y0 − y)

i

]

.

(v) If f is three times differentiable function defined on [a, b] and y ∈ [a, b],
then we have

[y, y, y, y; f ] =
f ′′′ (y)

3!
.

The following theorem shows that the definition of 3-convex function can
be extended by including the cases in which some or all the points coincide.

Theorem 3.10. Let f be a function defined on [a, b] ⊂ R, then the
following statements hold.

(i) If f ∈ C1 ([a, b]), then f is 3-convex if and only if [y, y, y0, y1; f ] ≥ 0
for all y 6= y0 6= y1 in [a, b].

(ii) If f ∈ C1 ([a, b]), then f is 3-convex if and only if [y, y, z, z; f ] ≥ 0 for
all y 6= z in [a, b].

(iii) If f ∈ C2 ([a, b]), then f is 3-convex if and only if [y, y, y, y0; f ] ≥ 0
for all y 6= y0 in [a, b].

(iv) If f ∈ C3 ([a, b]), then f is 3-convex if and only if [y, y, y, y; f ] ≥ 0 for
all y ∈ [a, b].

Proof. It can be proved easily by using the mean value theorems for
divided differences (see [4]).

Next, we study the n-exponential convexity and log-convexity of the functions
associated with the linear functionals Φi (i = 1, . . . , 6) defined in (2. 5)–(2. 10).

Theorem 3.11. Let Ω = {fs : s ∈ I ⊆ R} be a family of differentiable
functions defined on [a, b] such that the function s 7→ [y0, y1, y2, y3; fs] is n-
exponentially convex in the Jensen sense on I for every four mutually distinct
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points y0, y1, y2.y3 ∈ [a, b]. Let Φi (i = 1, . . . , 6) be linear functionals defined
as in (2. 5) – (2. 10). Then the following statements hold.

(i) The function s 7→ Φi (fs) is n-exponentially convex in the Jensen

sense on I and the matrix
[

Φi

(

f sj+sk
2

)]m

j,k=1
is a positive semi-definite

matrix for all m ∈ N, m ≤ n and s1, . . . , sm ∈ I. Particularly,

det
[

Φi

(

f sj+sk
2

)]m

j,k=1
≥ 0, ∀ m ∈ N, m ≤ n.

(ii) If the function s 7→ Φi (fs) is continuous on I, then it is n-exponentially
convex on I.

Proof. The idea of the proof is the same as that of Theorem 3.1 in [10].

(i) Let αj ∈ R (j = 1, . . . , n) and consider the function

ϕ (y) =
n
∑

j,k=1

αjαkf sj+sk
2

(y) ,

where sj ∈ I and f sj+sk
2

∈ Ω. Then

[y0, y1, y2, y3;ϕ] =

n
∑

j,k=1

αjαk

[

y0, y1, y2, y3; f sj+sk
2

]

and since
[

y0, y1, y2, y3; f sj+sk
2

]

is n-exponentially convex in the Jensen

sense on I by assumption, it follows that

[y0, y1, y2, y3;ϕ] =

n
∑

j,k=1

αjαk

[

y0, y1, y2, y3; f sj+sk
2

]

≥ 0.

And so, by using Definition 1.11 for n = 3, we conclude that ϕ is a
3-convex function. Hence

Φi (ϕ) ≥ 0, i = 1, . . . , 6,

which is equivalent to
n
∑

j,k=1

αjαkΦi

(

f sj+sk
2

)

≥ 0, i = 1, . . . , 6,

and so we conclude that the function s 7→ Φi(fs) is n-exponentially
convex in the Jensen sense on I.

The remaining part follows from Proposition 3.4.
(ii) If the function s 7→ Φi (fs) is continuous on I, then from (i) and by

Definition 3.2 it follows that it is n-exponentially convex on I.
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The following corollary is an immediate consequence of the above theorem.

Corollary 3.12. Let Ω = {fs : s ∈ I ⊆ R} be a family of differentiable
functions defined on [a, b] such that the function s 7→ [y0, y1, y2, y3; fs] is
exponentially convex in the Jensen sense on I for every four mutually distinct
points y0, y1, y2, y3 ∈ [a, b]. Let Φi (i = 1, . . . , 6) be linear functionals defined
as in (2. 5) – (2. 10). Then the following statements hold.

(i) The function s 7→ Φi (fs) is exponentially convex in the Jensen sense

on I and the matrix
[

Φi

(

f sj+sk
2

)]n

j,k=1
is a positive semi-definite

matrix for all n ∈ N and s1, .., sn ∈ I. Particularly,

det
[

Φi

(

f sj+sk
2

)]n

j,k=1
≥ 0, ∀ n ∈ N.

(ii) If the function s 7→ Φi(fs) is continuous on I, then it is exponentially
convex on I.

Corollary 3.13. Let Ω = {fs : s ∈ I ⊆ R} be a family of differentiable
functions defined on [a, b] such that the function s 7→ [y0, y1, y2, y3; fs] is 2-
exponentially convex in the Jensen sense on I for every four mutually distinct
points y0, y1, y2, y3 ∈ [a, b]. Let Φi (i = 1, . . . , 6) be linear functionals defined
as in (2. 5) – (2. 10). Further, assume that Φi (fs) (i = 1, . . . , 6) is strictly
positive for fs ∈ Ω. Then the following statements hold.

(i) If the function s 7→ Φi (fs) is continuous on I, then it is 2-exponentially
convex on I and so it is log-convex on I and for r, s, t ∈ I such that
r < t < s, we have

(3.1) [Φi (ft)]
s−r ≤ [Φi(fr)]

s−t [Φi (fs)]
t−r

,

known as Lyapunov’s inequality. If r < s < t or t < r < s, then
opposite inequalities hold in (3.1).

(ii) If the function s 7→ Φi (fs) is differentiable on I, then for every
s, q, u, v ∈ I such that s ≤ u and q ≤ v, we have

(3.2) µs,q (Φi,Ω) ≤ µu,v (Φi,Ω) ,

where

(3.3) µs,q (Φi,Ω) =



















(

Φi (fs)

Φi (fq)

)
1

s−q

, s 6= q,

exp

(

d
ds
Φi(fs)

Φi (fs)

)

, s = q,

for fs, fq ∈ Ω.

Proof. The idea of the proof is the same as that in the proof of [10,
Corollary 3.2].
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(i) The claim that the function s 7→ Φi(fs) is log-convex on I is an
immediate consequence of Theorem 3.11 and Remark 3.8, and (3.1)
can be obtained by replacing the convex function f with the convex
function f(z) = logΦi(fz) for z = r, s, t in (1.8), where r, s, t ∈ I such
that r < t < s.

(ii) Since by (i) the function s 7→ Φi (fs) is log-convex on I, that is, the
function s 7→ logΦi (fs) is convex on I. Applying Proposition 1.9 to
f (z) = log Φi (fz) (i = 1, . . . , 6), we get

(3.4)
logΦi (fs)− logΦi (fq)

s− q
≤ logΦi (fu)− logΦi (fv)

u− v

for s ≤ u, q ≤ v, s 6= q, u 6= v; and therefore, we conclude that

µs,q (Φi,Ω) ≤ µu,v (Φi,Ω) , i = 1, . . . , 6.

If s = q, we consider the limit when q → s in (3.4) and conclude that

µs,s (Φi,Ω) ≤ µu,v (Φi,Ω) , i = 1, . . . , 6.

The case u = v can be treated similarly.

Remark 3.14. Note that the results from Theorem 3.11, Corollary 3.12
and Corollary 3.13 still hold when two of the points y0, y1, y2, y3 ∈ [a, b]
coincide, say y1 = y0, for a family of differentiable functions fs such
that the function s 7→ [y0, y0, y2, y3; fs] is n-exponentially convex in the
Jensen sense (exponentially convex in the Jensen sense, log-convex in the
Jensen sense on I), when three of the points y0, y1, y2, y3 ∈ [a, b] coincide,
say y2 = y1 = y0, for a family of differentiable functions fs such that
the function s 7→ [y0, y0, y0, y3; fs] is n-exponentially convex in the Jensen
sense, when three of the points y0, y1, y2, y3 ∈ [a, b] coincide again, say
y2 = y1 = y0, for a family of twice differentiable functions fs such that the
function s 7→ [y0, y0, y0, y3; fs] is n-exponentially convex in the Jensen sense
and furthermore, they still hold when all four points coincide for a family
of thrice differentiable functions with the same property. The proofs can be
obtained by recalling Proposition 3.9 and by using suitable characterizations
of convexity.

4. Examples

In this section, we present several families of functions which fulfil the
conditions of Theorem 3.11, Corollary 3.12 and Corollary 3.13 and Remark
3.14. This enables us to construct large families of functions which are
exponentially convex.
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Example 4.1. Consider the family of functions

Ω1 = {gs : R → R : s ∈ R}
defined by

gs (x) =

{

1
s3
esx, s 6= 0,

1
6 x

3, s = 0.

We have d3

dx3 gs(x) = esx ≥ 0, which shows that gs is 3-convex on R for

every s ∈ R and s 7→ d3

dx3 gs(x) is exponentially convex by definition (see [6]).
It is easy to see that s 7→ [y0, y1, y2, y3; gs] is exponentially convex and so
exponentially convex in the Jensen sense. Now by using Corollary 3.12, we
have s 7→ Φi (gs) (i = 1, . . . , 6) are exponentially convex in the Jensen sense.
Since these mappings are continuous (although the mapping s 7→ gs is not
continuous for s = 0), so s 7→ Φi(gs) (i = 1, . . . , 6) are exponentially convex.

For this family of functions, µs,q (Φi,Ω) (i = 1, . . . , 6) from (3.3) become

µs,q(Φi,Ω1) =



















(

Φi(gs)
Φi(gq)

)
1

s−q

, s 6= q,

exp
(

Φi(id·gs)
Φi(gs)

− 3
s

)

, s = q 6= 0,

exp
(

Φi(id·g0)
4Φi(g0)

)

, s = q = 0.

By using Theorem 2.8, it can be seen that

Ms,q (Φi,Ω1) = logµs,q (Φi,Ω1) , i = 1, . . . , 6,

satisfies min{a, b} ≤ Ms,q (Φi,Ω1) ≤ max{a, b}, showing that Ms,q (Φi,Ω1)
(i = 1, . . . , 6) are means.

Example 4.2. Consider the family of functions

Ω2 = {fs : (0,∞) → R : s ∈ R}
defined by

fs (x) =















xs

s(s−1)(s−2) , s 6= 0, 1, 2,
1
2 lnx, s = 0,

−x lnx, s = 1,
1
2x

2 lnx, s = 2.

Here, d3

dx3 fs (x) = xs−3 = e(s−3) ln x > 0, which shows that fs is 3-convex

for x > 0 and s 7→ d3

dx3 fs (x) is exponentially convex by definition (see [6]).
It is easy to prove that the function s 7→ [y0, y1, y2, y3; fs] is exponentially
convex. Arguing as in Example 4.1, we have s 7→ Φi (fs) (i = 1, . . . , 6) are
exponentially convex.

From (3.1), we have

(4.1) Φi (ft) ≤ [Φi (fr)]
s−t
s−r [Φi (fs)]

t−r
s−r , i = 1, . . . , 6,
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where r, s, t ∈ I such that r < t < s. If r < s < t or t < r < s, then opposite
inequalities hold in (4.1).

If r, s, t ∈ R \ {0, 1, 2} such that r < t < s, then for i = 1, 4, (4.1) takes
the form

(4.2) Ds ≥ D
t−s
t−r
r D

s−r
t−r

t ,

where Ds denotes

Ds =
1

s (s− 1) (s− 2)

((

n
∑

k=1

pkak

)s

− (p1a1)
s −

n
∑

k=2

ask
(

P s
k − P s

k−1

)

− s
n
∑

k=2

as−1
k Ak

(

P s−1
k − P s−1

k−1

)

)

, s 6= 0, 1, 2,

where Pk−1, Pk, Pk−1ak, Pkak,
∑k−1

i=1 piai and
∑k

i=1 piai ∈ [a, b] such

that ak > 0, pk > 0 (k = 1, . . . , n) with Pk−1 =
∑k−1

i=1 piai and Ak :=
∑k−1

i=1 piai−Pk−1ak for all k = 2, . . . , n. If we make the substitutions pk → 1
(k = 1, . . . , n) in (4.2), then the inequality obtained for s > 2 is the refinement
of the first inequality of (1.5).

For this family of functions by taking Ω = Ω2 in (3.3), Ξi
s,q := µs,q (Φi,Ω2)

(i = 1, . . . , 6) for x > 0, x ∈ [a, b] are of the form

µs,q (Φi,Ω2) =











































(

Φi(fs)
Φi(fq)

)
1

s−q

, s 6= q,

exp
(

2Φi(fsf0)
Φi(fs)

− 3s2−6s+2
s(s−1)(s−2)

)

, s = q 6= 0, 1, 2,

exp
(

Φi(f
2
0 )

Φi(f0)
+3

2

)

, s = q = 0,

exp
(

Φi(f0f1)
Φi(f1)

)

, s = q = 1,

exp
(

Φi(f0f2)
Φi(f2)

−3
2

)

, s = q = 2.

In particular, for i = 1 we have

Ξ1
s,q =

(

Bs

Bq

)
1

s−q

, s 6= q

where

Bs =
1

s (s− 1) (s− 2)

n
∑

k=2

((

k
∑

i=1

piai

)s

−
(

k−1
∑

i=1

piai

)s

+ ask
(

P s
k−1 − P s

k

)

+ sas−1
k Ak

(

P s−1
k−1 − P s−1

k

)

)

, s 6= 0, 1, 2,

B0 =
1

2

n
∑

k=2

ask

(

ln

(

Pk−1

∑k

i=1 piai

Pk

∑k−1
i=1 piai

)

+
pkAk

akPkPk−1

)

,
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B1 =
n
∑

k=2

ask

(

∑k−1
i=1 piai
ak

ln

(

∑k−1
i=1 piai
ak

)

−
∑k

i=1 piai
ak

ln

(

∑k

i=1 piai
ak

)

− Pk−1 lnPk−1 + Pk lnPk +
Ak

ak
ln

Pk

Pk−1

)

,

B2 =
1

2

n
∑

k=2

ask

((

∑k

i=1 piai
ak

)2

ln

(

∑k

i=1 piai
ak

)

−
(

∑k−1
i=1 piai
ak

)2

ln

(

∑k−1
i=1 piai
ak

)

+ P 2
k−1 lnPk−1 − P 2

k lnPk

− Ak (pk + 2 (Pk lnPk − Pk−1 lnPk−1))

ak

)

.

Denoting, further,

Cs =

n
∑

k=2

ask
s (s− 1) (s− 2)

((

∑k

i=1 piai
ak

)s

ln

(

∑k

i=1 piai
ak

)

−
(

∑k−1
i=1 piai
ak

)s

ln

(

∑k−1
i=1 piai
ak

)

+ P s
k−1 lnPk−1 − P s

k lnPk

+
Ak

(

P s−1
k−1 (1 + s lnPk−1)− P s−1

k (1 + s lnPk)
)

ak

)

,

s 6= 0, 1, 2,

C0 =
1

4

n
∑

k=2

ask

(

ln2

(

∑k

i=1 piai
ak

)

− ln2

(

∑k−1
i=1 piai
ak

)

+ ln2 (Pk−1)

− ln2 (Pk)− 2
Ak

ak

(

lnPk

Pk

− lnPk−1

Pk−1

)

)

,

C1 =
1

2

n
∑

k=2

ask

((

∑k−1
i=1 piai
ak

)

ln2

(

∑k−1
i=1 piai
ak

)

−
(

∑k

i=1 piai
ak

)

ln2

(

∑k

i=1 piai
ak

)

− Pk−1 ln
2 (Pk−1) + Pk ln

2 (Pk)

+
Ak ((2 + lnPk) lnPk − (2 + lnPk−1) lnPk−1)

ak

)

,
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C2 =
1

4

n
∑

k=2

ask

((

∑k

i=1 piai
ak

)2

ln2

(

∑k

i=1 piai
ak

)

−
(

∑k−1
i=1 piai
ak

)2

ln2

(

∑k−1
i=1 piai
ak

)

+ P 2
k−1 ln

2 Pk−1 − P 2
k ln2 Pk

+
2Ak (Pk−1 (1 + lnPk−1) lnPk−1 − Pk (1 + lnPk) lnPk)

ak

)

,

we can express Ξ1
s,s as

Ξ1
s,s = exp

(

Cs

Bs

− 3s2 − 6s+ 2

s (s− 1) (s− 2)

)

, s 6= 0, 1, 2,

Ξ1
0,0 = exp

(

C0

B0
+

3

2

)

,

Ξ1
1,1 = exp

(

C1

B1

)

,

Ξ1
2,2 = exp

(

C2

B2
− 3

2

)

.

If Φi (i = 1, . . . , 6) are positive, then Theorem 2.8 applied for g = fs ∈ Ω2

and h = fq ∈ Ω2 yields that there exists ξi ∈ [a, b] such that

ξs−q
i =

Φi (fs)

Φi (fq)
, i = 1, . . . , 6.

Since the functions ξi 7→ ξs−q
i (i = 1, . . . , 6) are invertible for s 6= q, we have

(4.3) min{a, b} ≤
(

Φi(fs)

Φi (fq)

)
1

s−q

≤ max{a, b}, i = 1, . . . , 6,

which together with the fact that µs,q(Φi,Ω2) (i = 1, . . . , 6) are continuous,
symmetric and monotonous (by (3.2)) shows that µs,q (Φi,Ω2) (i = 1, . . . , 6)
are means.

Example 4.3. Consider the family of functions Ω3 = {hs : (0,∞) → R :
s ∈ (0,∞)} defined by

hs(x) =

{

− s−x

ln3 s
, s 6= 1,

x3

6 , s = 1.

We have d3

dx3hs(x) = s−x > 0, which shows that hs is 3-convex for all s > 0.

Since s 7→ d3

dx3hs(x) = s−x is the Laplace transform of a non-negative function
(see [6, 11]), it is exponentially convex. It is easy to see that the function
s 7→ [y0, y1, y2, y3;hs] is also exponentially convex. Arguing as in Example
4.1, we have s 7→ Φi(hs) (i = 1, . . . , 6) are exponentially convex.
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In this case, by taking Ω = Ω3 in (3.3), µs,q(Φi,Ω) (i = 1, . . . , 6) for x > 0,
where x ∈ [a, b], are of the form

µs,q (Φi,Ω3) =



















(

Φi(hs)
Φi(hq)

)
1

s−q

, s 6= q,

exp
(

−Φi(id·hs)
sΦi(hs)

− 3
s ln s

)

, s = q 6= 1,

exp
(

−Φi(id·h1)
4Φi(h1)

)

, s = q = 1.

By using Theorem 2.8, it follows that

Ms,q (Φi,Ω3) = −L (s, q) logµs,q (Φi,Ω3) , i = 1, . . . , 6,

satisfy min{a, b} ≤Ms,q (Φi,Ω3) ≤ max{a, b} and so Ms,q (Φi,Ω3) are means
(i = 1, . . . , 6), where L (s, q) is the logarithmic mean defined by L(s, q) =

s−q

log s−log q
, s 6= q, L (s, s) = s.

Example 4.4. Consider the family of functions Ω4 = {ks : (0,∞) →
(0,∞) : s ∈ (0,∞)} defined by

ks (x) =
e−x

√
s

√
s3

.

Here, d3

dx3 ks(x) = e−x
√
s > 0, which shows that ks is 3-convex for all s > 0.

Since s 7→ d3

dx3ks(x) = e−x
√
s is the Laplace transform of a non-negative

function (see [6, 11]), it is exponentially convex. It is easy to see that the
function s 7→ [y0, y1, y2, y3; ks] is also exponentially convex. Arguing as in
Example 4.1, we have s 7→ Φi (ks) (i = 1, . . . , 6) are exponentially convex.
In this case, by taking Ω = Ω4 in (3.3), µs,q (Φi,Ω) (i = 1, . . . , 6) for x > 0,
where x ∈ [a, b] are of the form

µs,q (Φi,Ω4) =







(

Φi(ks)
Φi(kq)

)
1

s−q

, s 6= q,

exp
(

− Φi(id·ks)
2
√
sΦi(ks)

− 3
2s

)

, s = q.

By using Theorem 2.8, it is easy to see that

Ms,q (Φi,Ω4) = −
(√
s+

√
q
)

logµs,q (Φi,Ω4) , i = 1, . . . , 6,

satisfies min{a, b} ≤ Ms,q (Φi,Ω4) ≤ max{a, b}, showing that Ms,q (Φi,Ω4)
(i = 1, . . . , 6) are means.

Remark 4.5. From (3.2), it is clear that µs,q (Φi,Ω) (i = 1, . . . , 6) for
Ω = Ω1,Ω3 and Ω4 are monotonous functions in parameters s and q.

Acknowledgements.

This research work was partially supported by Higher Education Commi-
ssion, Pakistan. The second author’s research was supported by the Croatian
Ministry of Science, Education and Sports, under the Research Grant 117-
1170889-0888.



356 S. KHALID, J. PEČARIĆ AND M. PRALJAK
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