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Abstract. In this paper, using Ricceri’s variational principle, we
prove the existence of infinitely many weak solutions for a Dirichlet doubly
eigenvalue boundary value problem.

1. Introduction

The aim of this paper is to investigate the existence of infinitely many
weak solutions for the following Dirichlet doubly eigenvalue boundary value
problem on a bounded interval [a, b] in R (a < b)

(1.1)

{

− u′′ + u h(x, u′) =
[

λf(x, u) + µg(x, u) + p(u)
]

h(x, u′) in (a, b),

u(a) = u(b) = 0,

where λ is a positive parameter, µ is a nonnegative parameter, f, g : [a, b] ×
R → R are L1-Carathéodory functions, p : R → R is a Lipschitz continuous
function with the Lipschitz constant L > 0, i.e.,

|p(t1)− p(t2)| ≤ L|t1 − t2|

for every t1, t2 ∈ R, with p(0) = 0, and h : [a, b]× R → [0,+∞) is a bounded
and continuous function with m := inf(x,t)∈[a,b]×R h(x, t) > 0.

Very recently a version of the infinitely many critical points theorem
of Ricceri (see [20, Theorem 2.5]), the existence of an unbounded sequence
of weak solutions for a Sturm-Liouville problem, having discontinuous
nonlinearities, has been established in [4]. In a such approach, an appropriate
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oscillating behavior of the nonlinear term either at infinity or at zero is
required. This type of methodology has been used then in several works
in order to obtain existence results for different kinds of problems (see
[1–3, 5–13,15–17] and references therein).

In [1], the existence of infinitely many classical solutions for the following
Dirichlet quasilinear system has been obtained
{

−(pi − 1)|u′
i(x)|

pi−2u′′
i (x) = λFui

(x, u1, . . . , un)hi(x, u
′
i), x ∈ (a, b),

ui(a) = ui(b) = 0, for 1 ≤ i ≤ n,

where pi > 1 for 1 ≤ i ≤ n, λ is a positive parameter, a, b ∈ R with a < b,
hi : [a, b] × R → [0,+∞) is a bounded and continuous function with mi :=
inf(x,t)∈[a,b]×R hi(x, t) > 0 for 1 ≤ i ≤ n, F : [a, b] × R

n → R is a function

such that the mapping (t1, t2, . . . , tn) → F (x, t1, t2, . . . , tn) is in C1 in R
n for

all x ∈ [a, b], Fui
is continuous in [a, b]×R

n for 1 ≤ i ≤ n, where Fui
denotes

the partial derivative of F with respect to ui, and

sup
|(t1,...,tn)|≤M

|Fui
(·, t1, . . . , tn)| ∈ L1([a, b])

for all M > 0 and all 1 ≤ i ≤ n. Here, starting from the results obtained
in [1] and with the same method, we are interested in looking for a class of
perturbations, namely µg+p, for which (1.1) still preserves multiple solutions.

In particular, our goal in this paper is to obtain some sufficient conditions
to guarantee that problem (1.1) has infinitely many weak solutions. To this
end, we require that the primitive F of f satisfies a suitable oscillatory
behavior either at infinity (for obtaining unbounded solutions) or at zero
(for finding arbitrarily small solutions), while G, the primitive of g, has
an appropriate growth (see Theorems 3.1 and 3.7). Our approach is fully
variational and the main tool is a general critical point theorem contained in
[4] (see Lemma 2.1 below and also [20]).

Here, as an example, we state a special case of our results.

Theorem 1.1. Let f : R → R be a nonnegative continuous function
and p : R → R a Lipschitz continuous function with the Lipschitz constant

1 ≤ L < 5 and p(0) = 0. Put F (ξ) :=
∫ ξ

0
f(t)dt for all ξ ∈ R and assume

lim inf
ξ→+∞

F (ξ)

ξ2
= 0, lim sup

ξ→+∞

F (ξ)

ξ2
= +∞.

Then, the problem
{

−u′′ + u = f(u) + p(u) in (0, 1),
u(0) = u(1) = 0,

has a sequence of pairwise distinct classical solutions.
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2. Preliminaries

We shall prove our results applying the following smooth version of
Theorem 2.1 of [4], which is a more precise version of Ricceri’s Variational
Principle [20, Theorem 2.5].

Lemma 2.1. Let X be a reflexive real Banach space, let Φ,Ψ : X → R

be two Gâteaux differentiable functionals such that Φ is sequentially weakly
lower semicontinuous, strongly continuous and coercive, and Ψ is sequentially
weakly upper semicontinuous. For every r > infX Φ, let

ϕ(r) := inf
u∈Φ−1(−∞,r)

(

supv∈Φ−1(−∞,r) Ψ(v)
)

−Ψ(u)

r − Φ(u)
,

γ := lim inf
r→+∞

ϕ(r), and δ := lim inf
r→(infX Φ)+

ϕ(r).

Then:

(a) For every r > infX Φ and every λ ∈ (0, 1/ϕ(r)), the restriction of the
functional

Iλ := Φ− λΨ

to Φ−1(−∞, r) admits a global minimum, which is a critical point (local
minimum) of Iλ in X.

(b) If γ < +∞, then for each λ ∈ (0, 1/γ), the following alternative holds:
either
(b1) Iλ possesses a global minimum, or
(b2) there is a sequence {un} of critical points (local minima) of Iλ

such that
lim

n→+∞
Φ(un) = +∞.

(c) If δ < +∞, then for each λ ∈ (0, 1/δ), the following alternative holds:
either
(c1) there is a global minimum of Φ which is a local minimum of Iλ,

or
(c2) there is a sequence {un} of pairwise distinct critical points (local

minima) of Iλ that converges weakly to a global minimum of Φ.

Let f, g : [a, b]×R → R be two L1-Carathéodory functions, p : R → R be
a Lipschitz continuous function with the Lipschitz constant L > 0, i.e.,

|p(t1)− p(t2)| ≤ L|t1 − t2|

for every t1, t2 ∈ R, with p(0) = 0, and h : [a, b]×R → [0,+∞) be a bounded
and continuous function with m := inf(x,t)∈[a,b]×R h(x, t) > 0.

We recall that f : [a, b]× R → R is an L1-Carathéodory function if

(a) x 7→ f(x, ξ) is measurable for every ξ ∈ R;
(b) ξ 7→ f(x, ξ) is continuous for almost every x ∈ [a, b];
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(c) for every ρ > 0 there is a function lρ ∈ L1([a, b]) such that

sup
|ξ|≤ρ

|f(x, ξ)| ≤ lρ(x)

for almost every x ∈ [a, b].

Corresponding to f, g, p and h we introduce the functions F,G : [a, b]×
R → R, P : R → R and H : [a, b]× R → [0,+∞), respectively, as follows

F (x, t) :=

∫ t

0

f(x, ξ)dξ, G(x, t) :=

∫ t

0

g(x, ξ)dξ,

P (t) := −

∫ t

0

p(ξ)dξ,

and

H(x, t) :=

∫ t

0

(
∫ τ

0

1

h(x, δ)
dδ

)

dτ,

for all x ∈ [a, b] and t ∈ R.

Here and in the following, we let X be the Sobolev space W 1,2
0 ([a, b])

equipped with the norm

‖u‖ :=

(

∫ b

a

|u′(x)|2dx

)1/2

.

We say that a function u ∈ X is a weak solution of problem (1.1) if
∫ b

a

(
∫ u′(x)

0

1

h(x, τ)
dτ

)

v′(x)dx +

∫ b

a

u(x)v(x)dx

− λ

∫ b

a

f(x, u(x))v(x)dx − µ

∫ b

a

g(x, u(x))v(x)dx −

∫ b

a

p(u(x))v(x)dx = 0

for all v ∈ X .
By standard regularity results, if f and g are continuous functions, then

weak solutions of problem (1.1) belong to C2([a, b]), thus they are classical
solutions.

In the following, let M := sup(x,t)∈[a,b]×R h(x, t) and suppose that the
Lipschitz constant L > 0 of the function p satisfies the following condition:

(A0) L ≥ 1 and M(L− 1)(b− a)2 < 4.

Now, put

k1 :=
4 +m(1 + L)(b− a)2

8m
,

k2 :=
4 +M(1− L)(b− a)2

2M
,

A := lim inf
ξ→+∞

∫ b

a
sup|t|≤ξ F (x, t)dx

ξ2
,
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and

B := lim sup
ξ→+∞

∫ b−β

a+α
F (x, ξ)dx

ξ2
.

Here, α and β are two positive constants, such that α+ β < b− a.
For other basic notations and definitions, we refer the reader to [14,19,22].

3. Main results

We formulate our main result as follows.

Theorem 3.1. Assume that there exist two positive constants α and β
with α+ β < b− a such that

(A1) F (x, t) ≥ 0 for each (x, t) ∈ ([a, a+ α] ∪ [b− β, b])× R;

(A2) A <
(

αβ
α+β

k2

(b−a)k1

)

B.

Then, by setting

λ1 :=
(α+ β)k1
αβ B

, λ2 :=
k2

(b− a)A
,

for every λ ∈ (λ1, λ2) and for every arbitrary L1-Carathéodory function g :
[a, b] × R → R, whose potential G is a nonnegative function satisfying the
condition

(3.1) g∞ := lim
ξ→+∞

∫ b

a sup|t|≤ξ G(x, t)dx

ξ2
< +∞,

if we put

µg,λ :=
k2

(b − a)g∞

(

1− λ
(b − a)A

k2

)

,

where µg,λ = +∞ when g∞ = 0, for every µ ∈ [0, µg,λ) problem (1.1) has an
unbounded sequence of weak solutions in X.

Proof. Our aim is to apply Lemma 2.1(b) to our problem. To this end,

fix λ ∈ (λ1, λ2) and let g be a function that satisfies the condition (3.1). Since
λ < λ2, we have

µg,λ =
k2

(b− a)g∞

(

1− λ
(b− a)A

k2

)

> 0.

Now fix µ ∈ (0, µg,λ) and set

J(x, ξ) := F (x, ξ) +
µ

λ
G(x, ξ)

for all (x, ξ) ∈ [a, b]×R. For each u ∈ X, we let the functionals Φ,Ψ : X → R

be defined by

Φ(u) :=

∫ b

a

H(x, u′(x))dx +
1

2

∫ b

a

|u(x)|2dx+

∫ b

a

P (u(x))dx
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and

Ψ(u) :=

∫ b

a

J(x, u(x))dx,

and put

Iλ(u) := Φ(u)− λΨ(u), u ∈ X.

Note that the weak solutions of (1.1) are exactly the critical points of Iλ.
The functionals Φ and Ψ satisfy the regularity assumptions of Lemma 2.1.
Indeed, by standard arguments, we have that Φ is Gâteaux differentiable and
sequentially weakly lower semicontinuous and its Gâteaux derivative is the
functional Φ′(u) ∈ X∗, given by

Φ′(u)(v) =

∫ b

a

(
∫ u′(x)

0

1

h(x, τ)
dτ

)

v′(x)dx

+

∫ b

a

u(x)v(x)dx −

∫ b

a

p(u(x))v(x)dx

for every v ∈ X . Furthermore, the differential Φ′ : X → X∗ is a Lipschitzian
operator. Indeed, for any u, v ∈ X , there holds

‖Φ′(u)− Φ′(v)‖X∗ = sup
‖w‖≤1

|(Φ′(u)− Φ′(v), w)|

≤ sup
‖w‖≤1

∫ b

a

∣

∣

∣

∣

∫ v′(x)

u′(x)

1

h(x, τ)
dτ

∣

∣

∣

∣

|w′(x)| dx

+ sup
‖w‖≤1

∫ b

a

|u(x)− v(x)| |w(x)| dx

+ sup
‖w‖≤1

∫ b

a

|p(u(x)) − p(v(x))| |w(x)| dx

≤
1

m
‖u− v‖+ (1 + L) sup

‖w‖≤1

‖u− v‖L2([a,b])‖w‖L2([a,b]).

Recalling that p is Lipschitz continuous, h is bounded away from zero, and
the embedding X →֒ L2([a, b]) is compact, the claim is true. In particular, we
derive that Φ is continuously differentiable. The inequality

(3.2) max
x∈[a,b]

|u(x)| ≤
(b − a)1/2

2
‖u‖, for all u ∈ X
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([21]) yields for any u, v ∈ X the estimate

(Φ′(u)− Φ′(v), u − v) =

∫ b

a

(
∫ u′(x)

v′(x)

1

h(x, τ)
dτ

)

(u′(x)− v′(x)) dx

+

∫ b

a

|u(x)− v(x)|2dx

−

∫ b

a

(

p(u(x)) − p(v(x))
)(

u(x)− v(x)
)

dx

≥
1

M
‖u− v‖2 + (1− L)‖u− v‖2L2([a,b])

≥
k2
2
‖u− v‖2.

By the assumption (A0), it turns out that Φ
′ is a strongly monotone operator.

So, by applying Minty-Browder theorem ([22, Theorem 26.A]), Φ′ : X → X∗

admits a Lipschitz continuous inverse. On the other hand, the fact that
X is compactly embedded into C0([a, b]) implies that the functional Ψ is
well defined, continuously Gâteaux differentiable and with compact derivative,
whose Gâteaux derivative is given by

Ψ′(u)(v) =

∫ b

a

f(x, u(x))v(x)dx +
µ

λ

∫ b

a

g(x, u(x))v(x)dx

for every v ∈ X . Hence Ψ is sequentially weakly (upper) continuous (see
[22, Corollary 41.9]).

Since p is Lipschitz continuous and satisfies p(0) = 0, while h is bounded
away from zero, we have from (3.2) that

(3.3) Φ(u) ≥
k2
4
‖u‖2,

for all u ∈ X , and so Φ is coercive.
First of all, we will show that λ < 1/γ. Hence, let {ξn} be a sequence of

positive numbers such that limn→+∞ ξn = +∞ and

(3.4) lim
n→+∞

∫ b

a sup|t|≤ξn F (x, t)dx

ξ2n
= A.

Put

rn :=
k2

b− a
ξ2n
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for all n ∈ N. Then, for all v ∈ X with Φ(v) < rn, together with (3.2) and
(3.3), we have ‖v‖∞ < ξn. Note that Φ(0) = Ψ(0) = 0. Then, for all n ∈ N,

ϕ(rn) = inf
u∈Φ−1(−∞,rn)

(

supv∈Φ−1(−∞,rn) Ψ(v)
)

−Ψ(u)

rn − Φ(u)

≤
supv∈Φ−1(−∞,rn) Ψ(v)

rn

≤
b− a

k2

∫ b

a
sup|t|≤ξn J(x, t)dx

ξ2n

=
b− a

k2

∫ b

a sup|t|≤ξn

[

F (x, t) + µ

λ
G(x, t)

]

dx

ξ2n

≤
b− a

k2

[
∫ b

a sup|t|≤ξn F (x, t)dx

ξ2n
+

µ

λ

∫ b

a sup|t|≤ξn G(x, t)dx

ξ2n

]

.

Moreover, from the assumption (A2) and the condition (3.1) we have A < +∞
and

lim
n→+∞

∫ b

a sup|t|≤ξn G(x, t)dx

ξ2n
= g∞.

Therefore,

(3.5) γ ≤ lim inf
n→+∞

ϕ(rn) ≤
b− a

k2

(

A+
µ

λ
g∞

)

< +∞.

The assumption µ ∈ (0, µg,λ) immediately yields

γ ≤
b − a

k2

(

A+
µ

λ
g∞

)

<
b− a

k2
A+

1− b−a
k2

λA

λ
.

Hence,

λ =
1

b−a
k2

A+
(

1− b−a
k2

λA
)

/λ
<

1

γ
.

Let λ be fixed. We claim that the functional Iλ is unbounded from below.
Since

1

λ
<

αβ B

(α+ β)k1
,

there exists a sequence {ηn} of positive numbers and τ > 0 such that
limn→+∞ ηn = +∞ and

(3.6)
1

λ
< τ <

αβ

(α+ β)k1

∫ b−β

a+α F (x, ηn)dx

η2n
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for each n ∈ N large enough. For all n ∈ N define

(3.7) wn(x) :=







ηn

α (x− a), if a ≤ x < a+ α,
ηn, if a+ α ≤ x ≤ b− β,
ηn

β (b− x), if b− β < x ≤ b.

For any fixed n ∈ N, it is easy to see that wn ∈ X and, in particular, one has

‖wn‖
2 =

α+ β

αβ
η2n,

and so

(3.8) Φ(wn) ≤ k1‖wn‖
2 =

(α+ β)k1
αβ

η2n.

On the other hand, bearing (A1) in mind and since G is nonnegative, from
the definition of Ψ, we infer

(3.9) Ψ(wn) =

∫ b

a

[

F (x,wn(x)) +
µ

λ
G(x,wn(x))

]

dx ≥

∫ b−β

a+α

F (x, ηn)dx.

By (3.6), (3.8) and (3.9), we see that

(3.10) Iλ(wn) ≤
(α+ β)k1η

2
n

αβ
− λ

∫ b−β

a+α

F (x, ηn)dx <
(α+ β)k1η

2
n

αβ
(1− λτ)

for every n ∈ N large enough. Since λτ > 1 and ηn → +∞ as n → +∞, we
have

lim
n→+∞

Iλ(wn) = −∞.

Then, the functional Iλ is unbounded from below, and it follows that Iλ has
no global minimum. Therefore, by Lemma 2.1(b), there exists a sequence
{un} of critical points of Iλ such that

lim
n→+∞

‖un‖ = +∞,

and the conclusion is achieved.

Remark 3.2. Under the conditions A = 0 and B = +∞, from Theorem
3.1 we see that for every λ > 0 and for each µ ∈

[

0, k2

(b−a)g∞

)

, problem (1.1)

admits a sequence of weak solutions which is unbounded in X . Moreover, if
g∞ = 0, the result holds for every λ > 0 and µ ≥ 0.

The following result is a special case of Theorem 3.1 with µ = 0.

Theorem 3.3. Assume that all the assumptions in Theorem 3.1 hold.
Then, for each

λ ∈

(

(α+ β)k1
αβ B

,
k2

(b − a)A

)

,
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the problem
{

−u′′ + u h(x, u′) =
[

λf(x, u) + p(u)
]

h(x, u′) in (a, b),
u(a) = u(b) = 0,

has an unbounded sequence of weak solutions in X.

Remark 3.4. Theorem 1.1 in the Introduction immediately follows from
Theorem 3.3, setting h(x, t) ≡ 1 for all (x, t) ∈ [0, 1]× R.

Here we point out the following consequences of Theorem 3.3.

Corollary 3.5. Assume that there exist two positive constants α and
β with α + β < b − a such that the assumption (A1) in Theorem 3.1 holds.
Suppose that

A <
k2

b− a
, B >

(α+ β)k1
αβ

.

Then, the problem
{

−u′′ + u h(x, u′) =
[

f(x, u) + p(u)
]

h(x, u′) in (a, b),
u(a) = u(b) = 0,

has an unbounded sequence of weak solutions in X.

Corollary 3.6. Let g1 : [a, b] → R be a nonnegative continuous function,

and put G1(t) :=
∫ t

0
g1(ξ)dξ for all t ∈ R. Assume that

(A3) lim inf
ξ→+∞

G1(ξ)
ξ2 < +∞;

(A4) lim sup
ξ→+∞

G1(ξ)
ξ2 = +∞.

Then, for every αi ∈ L1([a, b]) for 1 ≤ i ≤ n, with minx∈[a,b]{αi(x) : 1 ≤ i ≤
n} ≥ 0 and with α1 6= 0, and for every nonnegative continuous gi : R → R

for 2 ≤ i ≤ n satisfying

max
{

sup
ξ∈R

Gi(ξ) : 2 ≤ i ≤ n
}

≤ 0

and

min
{

lim inf
ξ→+∞

Gi(ξ)

ξ2
: 2 ≤ i ≤ n

}

> −∞,

where Gi(t) :=
∫ t

0
gi(ξ)dξ for all t ∈ R for 2 ≤ i ≤ n, for each

λ ∈

(

0,
k2

b−a
( ∫ b

a α1(x)dx
)

lim inf
ξ→+∞

G1(ξ)
ξ2

)

,

the problem
{

−u′′ + uh(x, u′) =
[

λ
∑n

i=1 αi(x)gi(u) + p(u)
]

h(x, u′) in (a, b),
u(a) = u(b) = 0,

has an unbounded sequence of weak solutions in X.
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Proof. Put f(x, t) =
∑n

i=1 αi(x)gi(t) for all (x, t) ∈ [a, b] × R. The
assumption (A4) in conjunction with the condition

min
{

lim inf
ξ→+∞

Gi(ξ)

ξ2
: 2 ≤ i ≤ n

}

> −∞

yields

lim sup
ξ→+∞

∫ b−β

a+α
F (x, ξ)dx

ξ2
= lim sup

ξ→+∞

∑n
i=1

(

Gi(ξ)
∫ b−β

a+α
αi(x)dx

)

ξ2
= +∞.

Moreover, the assumption (A3) along with the condition

max
{

sup
ξ∈R

Gi(ξ) : 2 ≤ i ≤ n
}

≤ 0

ensures

lim inf
ξ→+∞

∫ b

a
sup|t|≤ξ F (x, t)dx

ξ2
≤

(

∫ b

a

α1(x)dx

)

lim inf
ξ→+∞

G1(ξ)

ξ2
< +∞.

Hence, the conclusion follows from Theorem 3.3.

Put

A′ := lim inf
ξ→0+

∫ b

a
sup|t|≤ξ F (x, t)dx

ξ2

and

B′ := lim sup
ξ→0+

∫ b−β

a+α
F (x, ξ)dx

ξ2
.

Using Lemma 2.1(c) and arguing as in the proof of Theorem 3.1, we can obtain
the following result.

Theorem 3.7. Assume that there exist two positive constants α and β
with α+ β < b− a such that (A1) in Theorem 3.1 holds and

(A5) A′ <
(

αβ
α+β

k2

(b−a)k1

)

B′.

Then, setting

λ3 :=
(α+ β)k1
αβ B′

, λ4 :=
k2

(b − a)A′
,

for every λ ∈ (λ3, λ4) and for every arbitrary L1-Carathéodory function g :
[a, b] × R → R, whose potential G is a nonnegative function satisfying the
condition

(3.11) g0 := lim
ξ→0+

∫ b

a sup|t|≤ξ G(x, t)dx

ξ2
< +∞,

if we put

µ′
g,λ :=

k2
(b − a)g0

(

1− λ
(b − a)A′

k2

)

,
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where µ′
g,λ = +∞ when g0 = 0, for every µ ∈ [0, µ′

g,λ) problem (1.1) has a
sequence of weak solutions, which strongly converges to 0 in X.

Proof. Fix λ ∈ (λ3, λ4) and let g be a function that satisfies the
condition (3.11). Since λ < λ4, one has

µ′
g,λ

=
k2

(b− a)g0

(

1− λ
(b− a)A′

k2

)

> 0.

Now fix µ ∈ (0, µ′
g,λ

) and set

J(x, ξ) := F (x, ξ) +
µ

λ
G(x, ξ)

for all (x, ξ) ∈ [a, b] × R. We take Φ,Ψ and Iλ as in the proof of Theorem
3.1. Now, as has been pointed out before, the functionals Φ and Ψ satisfy the
regularity assumptions required in Lemma 2.1. As first step, we will prove
that λ < 1/δ. Then, let {ξn} be a sequence of positive numbers such that
limn→+∞ ξn = 0 and

(3.12) lim
n→+∞

∫ b

a sup|t|≤ξn F (x, t)dx

ξ2n
= A′.

By the fact that infX Φ = 0 and the definition of δ, we have δ =
lim infr→0+ ϕ(r). Then, as in showing (3.5) in the proof of Theorem 3.1,
we can prove that δ < +∞.

From µ ∈ (0, µ′
g,λ

), the following inequalities hold

δ ≤
b− a

k2

(

A′ +
µ

λ
g0

)

<
b− a

k2
A′ +

1− b−a
k2

λA′

λ
.

Hence,

λ =
1

b−a
k2

A′ +
(

1− b−a
k2

λA′
)

/λ
<

1

δ
.

Let λ be fixed. We claim that the functional Iλ has not a local minimum at
zero. Since

1

λ
<

αβ B′

(α+ β)k1
,

there exists a sequence {ηn} of positive numbers and τ > 0 such that
limn→+∞ ηn = 0 and

1

λ
< τ <

αβ

(α+ β)k1

∫ b−β

a+α F (x, ηn)dx

η2n
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for each n ∈ N large enough. For all n ∈ N define wn(x) as in (3.7) with the
above ηn. Note that λτ > 1. Then, as in showing (3.10), we can obtain that

Iλ(wn) = Φ(wn)− λΨ(wn)

≤
(α+ β)k1η

2
n

αβ
− λ

∫ b−β

a+α

F (x, ηn)dx

<
(α+ β)k1η

2
n

αβ
(1− λτ) < 0

for every n ∈ N large enough. Then, since

lim
n→+∞

Iλ(wn) = Iλ(0) = 0,

we see that 0 is not a local minimum of Iλ. This, together with the fact that 0
is the only global minimum of Φ, shows that the functional Iλ has not a local
minimum at zero. Therefore, by Lemma 2.1(c), there exists a sequence {un}
of critical points of Iλ which converges weakly to 0. In view of the fact that
the embedding X →֒ C0([a, b]) is compact, we know that the critical points
converge strongly to zero, and the proof is complete.

Remark 3.8. Under the conditions A′ = 0 and B′ = +∞, Theorem 3.7
ensures that for every λ > 0 and for each µ ∈

[

0, k2

(b−a)g0

)

, problem (1.1)

admits a sequence of weak solutions, which strongly converges to 0 in X .
Moreover, if g0 = 0, the result holds for every λ > 0 and µ ≥ 0.

Remark 3.9. Applying Theorem 3.7, results similar to Theorems 1.1 and
3.3, and Corollaries 3.5 and 3.6 can be obtained. We omit the discussions here.

We conclude this paper with the following example to illustrate our
results.

Example 3.10. Put

an :=
2n!(n+ 2)!− 1

4(n+ 1)!
, bn :=

2n!(n+ 2)! + 1

4(n+ 1)!
.

for every n ∈ N, and define the nonnegative continuous function f : R → R

by

f(ξ) =







32(n+1)!2[(n+1)!2−n!2]
π

√

1
16(n+1)!2 −

(

ξ− n!(n+2)
2

)2

, if ξ∈
⋃

n∈N

[an, bn],

0, otherwise.

One has
∫ (n+1)!

n!

f(t)dt =

∫ bn

an

f(t)dt = (n+ 1)!2 − n!2

for every n ∈ N. Then, one has

lim
n→+∞

F (an)

a2n
= 0 and lim

n→+∞

F (bn)

b2n
= 4.
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Note that there is no sequence {cn} such that limn→+∞ cn = +∞ and
limn→+∞ F (cn)/c

2
n > 4. Therefore,

lim inf
ξ→+∞

F (ξ)

ξ2
= 0 and lim sup

ξ→+∞

F (ξ)

ξ2
= 4.

Hence, by choosing [a, b] = [0, 1], α = β = 1/4, p(t) = −t for all t ∈ R and
h(x, t) ≡ 1 for all (x, t) ∈ [0, 1]× R, we have

0 = lim inf
ξ→+∞

F (ξ)

ξ2
<

(

αβ
( 1

α+ β
−

1

b− a

)k2
k1

)

lim sup
ξ→+∞

F (ξ)

ξ2
=

2

3
.

So, from Theorem 3.3, for each λ > 3, the problem
{

−u′′ + 2u = λf(u) in (0, 1),
u(0) = u(1) = 0,

admits a sequence of classical solutions which is unbounded in W 1,2
0 ([0, 1]).
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[14] M. Ghergu and V. Rădulescu, Singular elliptic problems: bifurcation and asymptotic
analysis, Oxford University Press, Oxford, 2008.

[15] J. R. Graef, S. Heidarkhani and L. Kong, Infinitely many solutions for systems

of multi-point boundary value problems using variational methods, Topol. Methods
Nonlinear Anal. 42 (2013), 105–118.

[16] S. Heidarkhani, Infinitely many solutions for systems of n two-point Kirchhoff-type

boundary value problems, Ann. Polon. Math. 107 (2013), 133–152.
[17] S. Heidarkhani and J. Henderson, Infinitely many solutions for nonlocal elliptic

systems of (p1, . . . , pn)–Kirchhoff type, Electron. J. Differential Equations 2012, 69,
1–15.

[18] S. Heidarkhani and D. Motreanu, Multiplicity results for a two-point boundary value

problem, Panamer. Math. J. 19 (2009), 69–78.
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