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OPTIMAL DAMPING OF THE INFINITE-DIMENSIONAL

VIBRATIONAL SYSTEMS: COMMUTATIVE CASE

Ivica Nakić

University of Zagreb, Croatia

Abstract. In this paper we treat the case of an abstract vibrational
system of the form Mẍ + Cẋ + x = 0, where the positive semi-definite
selfadjoint operators M and C commute. We explicitly calculate the
solution of the corresponding Lyapunov equation which enables us to
obtain the set of optimal damping operators, thus extending already known
results in the matrix case.

1. Introduction and preliminary results

The main object of the study in this paper is an abstract differential
equation

(1.1) Mẍ(t) + Cẋ(t) + x(t) = 0, x(0) = x0, ẋ(0) = ẋ0,

where M and C are bounded non–negative selfadjoint operators on a Hilbert
space H, and x0, ẋ0 ∈ H. We assume that operators M and C commute.

The equation (1.1) is a model of a vibrating system, withM corresponding
to the mass, and C corresponding to the damping. The stiffness of the system
is set to I, which is the case if, for example, the scalar product of H is defined
by κ(x, x) where κ is the stiffness form. Usually one uses the similar procedure
to obtainM = I, but in the case of the systems for which the stiffness operator
is selfadjoint and positive definite one can also study (1.1) as a mathematical
model of the system.

Systems of the form (1.1) have been extensively studied in the context
of the stability of mechanical structures, but they have applications in other
fields also. For the basic introduction to these systems we refer the reader to
[3, 21].
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The corresponding matrix differential equation

Mẍ+ Cẋ+Kx = 0,

with M ,C,K positive semi–definite matrices is well-researched topic both in
mathematical and engineering literature. The classic reference for a more
mathematical point of view is the monograph [15]. The so–called modal
damping (which in our setting is equivalent to the condition that M and
C commute), is an especially popular topic in engineering literature, due to
the fact that it is computationally approachable. The main result of this
paper, the construction of the optimal damping, is a well–known result in
the matrix case. This result has been generalized in [5] to the non–modal
damping, obtaining the same set of optimal matrices. The results for the
optimal damping without restrictions on the structure of damping matrices
usually are not very useful in practical applications, but there is some recent
progress in treating such problems (see [2, 18, 19]).

The assumption that the operators M and C are bounded is not as
restrictive as it seems. Let us suppose that we have an abstract vibrational
system given described by the equation

µ(ẍ, z) + γ(ẋ, z) + κ(x, z) = 0, ∀z ∈ X ,

where µ, γ, κ are non–negative sesquilinear forms on a vector space X . Here
µ corresponds to the mass, γ to the damping, and κ to the stiffness of the
system. We assume that the sesquilinear form κ is positive, i.e. κ(x, x) > 0
for all x 6= 0, and that Y = D(µ) ∩D(γ) ∩D(κ) is a non–trivial subspace of
X . Let H denote the completion of the space (Y, κ(·, ·)). The norm generated
by this scalar product will be denoted by ‖ · ‖. Obviously, Y is dense in H.

We also assume that µ and γ are closable in H, and we denote these
closures also by µ and γ.

Then the second representation theorem [13, p. 331] implies the existence
of selfadjoint non–negative operators M and C such that

D(M1/2) = D(µ), µ(x, y) = (M1/2x,M1/2y), x, y ∈ D(µ),

D(C1/2) = D(γ), γ(x, y) = (C1/2x,C1/2y), x, y ∈ D(γ),

and (1.1) can be written as

(M1/2ẍ(t),M1/2z) + (C1/2ẋ(t), C1/2z) + (x(t), z) = 0,

which can be written as

(1.2) Mẍ(t) + Cẋ(t) + x(t) = 0

in the form–sum sense. In this setting, the boundedness of the operators M
and C is equivalent to the existence of the constant ∆ such that µ(x, x) ≤
∆κ(x, x) and γ(x, x) ≤ ∆κ(x, x), which is satisfied for a number of vibrational
systems.



OPTIMAL DAMPING: COMMUTATIVE CASE 375

Example 1.1. To illustrate the abstract setting of the problem, let
us analyze a simple example of the Euler–Bernoulli beam with so–called
structural damping and with hinged boundary conditions:

∂2

∂t2
u(x, t)− ρ

∂3

∂x2∂t
u(x, t) +

∂4

∂x4
u(x, t) = 0, x ∈ [0, 1], t ≥ 0,

u(0, t) =
∂2

∂x2
u(0, t) = 0, u(1, t) =

∂2

∂x2
u(1, t) = 0,

u(x, 0) = u0(x),
∂

∂t
u(x, 0) = u1(x),

where ρ is the damping coefficient.
By the use of partial integration one readily sees that

µ(u, v) =

∫ 1

0

u(x)v(x)dx,

γ(u, v) = ρ

∫ 1

0

u′(x)v′(x)dx,

κ(u, v) =

∫ 1

0

u′′(x)v′′(x)dx.

The corresponding space X is H2([0, 1]) ∩ H0
1([0, 1]), the standard space for

the weak formulation of the problem. By standard arguments one can show
that the norm generated by the form κ is equivalent to the standard norm of
the space H2([0, 1]) ∩H0

1([0, 1]).
One can easily see that M is the inverse of the fourth–order differential

operator v 7→ d4

dx4 v with boundary coefficients v(0) = v(1) = v′′(0) = v′′(1) =
0. The operator C is the inverse of the second—order differential operator

v 7→ −ρ−1 d2

dx2 v with boundary coefficients v(0) = v(1) = 0. Hence C−1 is the

Dirichlet Laplacian multiplied by −1/ρ (on the space H2([0, 1]) ∩H0
1([0, 1])).

We also have C2 = ρ2M , hence C = ρM1/2.
A straightforward calculation gives that the Green functions of the

operators M and C are given by

GM (x, s) =

(
s

3
− s2

2
+

s3

6

)
x+

(
−1

6
+

s

6

)
x3, x ≤ s,

GC(x, s) = ρ(1− x)s, x ≤ s,

where for x ≥ s we have G∗(x, s) = G∗(s, x), ∗ = M,C.
The operator M is obviously compact.

The commutativity of M and C means that we are dealing with the so–
called modal damping vibrational systems.

Let us go back to the equation (1.1).
Set Mλ = λ2M + λC + I for λ ≥ 0. This operator can be obtained by

plugging x(t) = eλtx0 in (1.2). Obviously M−1
λ exists as a bounded operator
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and ‖M−1
λ ‖ ≤ 1. We also define

(1.3) R0(λ) =

[
1
λ(M

−1
λ − I) −M−1

λ M1/2

M−1
λ M1/2 −λMM−1

λ

]
.

By a straightforward computation one can easily check that R0(λ) is a
pseudoresolvent, i.e.

R0(λ)−R0(ν) = (λ− ν)R0(λ)R0(ν).

This implies that N (R0(λ)) is independent of the choice of λ.

Proposition 1.2. The null–space of the operator R0(λ) is given by

N (R0(λ)) =
{
u∈H ⊕H : u = ( xy ) , x ∈ N (M1/2) ∩ N (C1/2), y ∈ N (M1/2)

}
.

Proof. From the equation R0(λ)u = 0, where u = ( x
y ), it follows

1

λ
M−1

λ x− 1

λ
x−M−1

λ M1/2y = 0,

M1/2M−1
λ x− λM−1

λ My = 0.

Multiplying the first equation by λx, and second by λy and then conjugate,
we get

(M−1
λ x, x) − (x, x)− λ(M−1

λ M1/2y, x) = 0,(1.4)

λ(M−1
λ M1/2y, x)− λ2(M−1

λ My, y) = 0.(1.5)

Adding (1.4) and (1.5) we obtain

(M−1
λ x, x) − (x, x) − λ2(M−1

λ My, y) = 0,

which implies

(1.6) (M−1
λ x, x)− (x, x) = λ2(M−1

λ My, y) ≥ 0.

Since ‖M−1
λ ‖ ≤ 1, it follows (x, x) ≥ (M−1

λ x, x) ≥ (x, x), hence

(1.7) (M−1
λ x, x) = (x, x),

and since N (R0(λ)) is independent of the choice of λ, this equation holds for
all λ > 0. This implies x ∈ N (M1/2) ∩ N (C1/2). Also, from (1.6) follows
M1/2y = 0.

Let us denote Y = (N (R0(λ)))
⊥. This is the so–called phase space.

Obviously, the subspace Y reduces the operator R0(λ). Let us denote by
PY : H⊕H → Y the corresponding orthogonal projector to the subspace Y.

Let R(λ) = PYR0(λ)|Y denote the corresponding restriction of the
operator R0(λ) to the phase space. Then R(λ) satisfies the resolvent equation
and has trivial null space. Then from the theory of pseudoresolvents ([16]),
it follows that there exists an unique closed operator A : Y → Y such that
R(λ) = (A− λ)−1 for all λ ≥ 0.
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The subspaceY can be decomposed by H1⊕H2, whereH1 = (N (M1/2)∩
N (C1/2))⊥, H2 = (N (M1/2))⊥. Since N (M1/2) = N (M) and N (C1/2) =
N (C), we can also write H1 = (N (M) ∩N (C))⊥, H2 = (N (M))⊥.

To avoid technicalities and simplify the proofs, we assume N (M1/2) ⊂
N (C1/2), i.e. there is no damping on the positions where mass vanishes.
All the results of this paper remain valid also in the case when N (M1/2) *
N (C1/2).

This assumption implies Y := H1 = H2, so now Y = Y ⊕ Y. Also, from
now on let C denote the operator C : Y → Y, and let M denote the operator
M : Y → Y. Letters M and C will denote operators in the spaces H or Y
depending on the context.

Hence we can write

A−1 =

[
−C −M1/2

M1/2 0

]
.

From

A−1

[
x
y

]
=

[
−Cx−M1/2y

M1/2x

]

follows that D(A) = R(A−1) ⊂ (R(C) + R(M1/2)) ⊕ R(M1/2), hence the
operator A is not bounded in general.

Example 1.3 (Continuation of example 1.1). If we denote the Dirichlet
Laplacian on the space H2([0, 1])∩H0

1([0, 1]) by ∆, then C = −ρ∆−1, M1/2 =
−∆−1, and the operator A is given by

A(u, v)T = (−∆v,∆(u+ ρv))T

and Y =
(
H2([0, 1]) ∩H0

1([0, 1])
)
⊕
(
H2([0, 1]) ∩H0

1([0, 1])
)
.

Let A be a linear operator with dense domain. The operator A is called
dissipative operator if Re(Ax, x) ≤ 0 for all x ∈ D(A).

Proposition 1.4. The operator A generates a strongly continuous
semigroup.

Proof. It is easy to see that A−1 is dissipative, which implies that A
is also dissipative. Since R(λ) is everywhere defined for all λ ≥ 0, it follows
from Lumer–Phillips theorem [16, Theorem 4.3] that A generates a strongly
continuous semigroup.

Definition 1.5. A (mild) solution of the Cauchy problem (1.1) is a
function x : [0,∞) → H such that x(t) is continuous, Mx(t) is continuously
differentiable, and satisfies

(1.8)
d

dt
(Mx(t)) + Cx(t) +

∫ t

0

x(s)ds− Cx0 −Mẋ0 = 0, ∀t ≥ 0.

Here x0, ẋ0 ∈ H.
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Proposition 1.6. The Cauchy problem (1.1) has a solution if and only
if x0 ∈ Y. If solution exists, it is unique. The solution is given by

x(t) = PT (t)
( x0

M1/2ẋ0

)
,

where P : Y → Y is the orthogonal projector on the first component of Y and
T (t) denotes the semigroup generated by the operator A.

Proof. Since the operator A generates a strongly continuous semigroup,
the Cauchy problem

u̇(t) = Au(t),

u(0) = u0,
(1.9)

has a unique mild solution for all u0 ∈ Y. We will connect Cauchy problems
(1.1) and (1.9).

For the rest of the proof, let ẋ0 ∈ H be arbitrary.
In case x0 ∈ Y, for u0 =

( x0

M1/2ẋ0

)
the Cauchy problem (1.9) in general

has only a mild solution. Let us denote this solution by u(t) =
(

u1(t)
u2(t)

)
. From

u(t) = A
∫ t

0 u(s)ds+ u0 follows

A−1

(
u1(t)
u2(t)

)
=

∫ t

0

(
u1(t)
u2(t)

)
+A−1

(
x0

M1/2ẋ0

)
.

This implies

−Cu1(t)−M1/2u2(t) =

∫ t

0

u1(s)ds− Cx0 −Mẋ0,(1.10)

M1/2u1(t) =

∫ t

0

u2(s)ds+M1/2x0.(1.11)

The relation (1.11) implies thatM1/2u1(t) (and henceMu1(t)) is continuously
differentiable and that u2(t) =

d
dt(M

1/2u1(t)). Then (1.10) reads

d

dt
(M1/2u1(t)) + Cu1(t) +

∫ t

0

u1(s)−Mẋ0 − Cx0 = 0,

hence u1(t) is a mild solution of (1.1).
On the other hand, let x(t) be a solution of (1.1) for x0 ∈ Y. Set u(t) =(
x(t)

M1/2x(t)

)
and u0 =

( x0

ẋ0

)
. Obviously u(t) ∈ Y and u(t) is continuous. One

can easily prove that A−1u(t) =
∫ t

0 u(s)ds+A−1u0 holds, hence u(t) is a mild
solution of (1.9).

Finally, let us assume that there exists a solution of (1.1) for x0 ∈ H. We
decompose x0 as x0 = y0+w0, where y0 ∈ Y and w0 ∈ N (M). For the initial
conditions y(0) = y0, ẏ(0) = ẋ0 there exists a unique solution y(t) of (1.1).
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Hence we have

d

dt
(M1/2x(t)) + Cx(t) +

∫ t

0

x(s) −Mẋ0 − Cx0 = 0,

d

dt
(M1/2y(t)) + Cy(t) +

∫ t

0

y(s)−Mẋ0 − Cy0 = 0.

By subtracting these two equations, we get

d

dt
(M1/2z(t)) + Cz(t) +

∫ t

0

z(s) = 0,

where z(t) = x(t)−y(t). This implies that z(t) is a solution of (1.1) for initial
conditions z(0) = 0, ż(0) = 0. From the uniqueness of the solutions, it follows
z(t) ≡ 0, hence w0 = 0, i.e. x0 ∈ Y.

Next we will explain what does the term ”optimal damping” from the
title means.

By optimal damping we understand the choice of the damping operator
C such that the total energy of the system, defined by

(1.12)

∫ ∞

0

E(t;x0, ẋ0)dt =

∫ ∞

0

1

2
‖M1/2ẋ(t)‖2 + 1

2
‖x(t)‖2dt,

is minimal. One can easily see that E(t) corresponds to the kinetic energy of
the system. Here, as before, x0, ẋ0 ∈ H.

From Proposition 1.6 follows that the total energy of the system is given
by ∫ ∞

0

(T (t)∗T (t)u0, u0)dt,

where u0 =
( x0

M1/2ẋ0

)
.

Let us assume that the operatorsM and C are such that the corresponding
operator A generates a uniformly exponentially stable semigroup T (t). Later
(Remark 2.2) we will obtain a necessary and sufficient condition for the
uniform exponential stability of modally damped vibrational systems. Under
this assumption, the following result can be derived from [17].

Theorem 1.7. The following operator equation

(1.13) A∗Xx+XAx = −x, for all x ∈ D(A),

has a bounded solution, and the solution X can be expressed by

(1.14) Xx =

∫ ∞

0

T (t)∗T (t)xdt.

Theorem 1.7 immediately implies that the total energy of the system (1.1)

is given by (Xu0, u0), where u0 =
( x0

M1/2ẋ0

)
.
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To make our minimization process independent of the initial conditions,
we would like to minimize the average total energy over the set of admissible
damping operators C, i.e.

(1.15)

∫

‖u0‖=1

(Xu0, u0)µ(du0) → min,

where X is regarded as a function of C, and µ is some measure on the unit
sphere in Y. The natural choice for µ are surface measures generated by a
Gaussian measure with zero mean and a covariance operator (K 0

0 K ), where
K is a trace class operator which commutes with M (and hence with C).

Our aim is to explicitly calculate X and then to find the optimal C.

2. Main result

In this section we will prove the following result.

Theorem 2.1. For an abstract vibrational system described by (1.1) with
the fixed operator M and a variable damping operator C which commutes
with M and for which the system is exponentially stable, the optimal damping
operator in the sense of (1.15) is given by Copt = 2M1/2.

We start with the well-known formula [9, Corollary 3.5.15]

T (s)x = lim
n→∞

1

2πi

∫ ε+in

ε−in

eλsR(λ,A)xdλ, x ∈ D(A),

where ε > 0 is arbitrary chosen, n ∈ N and s ≥ 0. Since it is always T (0) = I,
in the sequel we consider only s > 0.

Since M and C commute, there exists a bounded selfadjoint operator G
such that the operatorsM and C are functions of G ([1, Theorem 76.2]), hence
there exists a spectral function E(t) and α, β : R+ → R+ measurable functions
for all Stieltjes measures ([1, Section 75], [14, Section 36.1]) generated by
(E(t)x, x), x ∈ Y, such that

(2.1) M =

∫ Ξ

0

α(t)dE(t), C =

∫ Ξ

0

β(t)dE(t),

where Ξ = ‖G‖. Since M and C are bounded, so are also the functions α and
β. We have also α(t) > 0 a.e. It follows that the resolvent R(λ,A) can be
written as

R(λ,A) =

∫ Ξ

0




−λα(t)−β(t)
λ2α(t)+λβ(t)+1

−
√

α(t)

λ2α(t)+λβ(t)+1√
α(t)

λ2α(t)+λβ(t)+1
−λα(t)

λ2α(t)+λβ(t)+1


dE(t),
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hence

(2.2)

T (s) ( xy ) = lim
n→∞

1

2πi

∫ ε+in

ε−in

eλs·

·



∫ Ξ

0
−λα(t)−β(t)

λ2α(t)+λβ(t)+1dE(t)x +
∫ Ξ

0

−
√

α(t)

λ2α(t)+λβ(t)+1dE(t)y
∫ Ξ

0

√
α(t)

λ2α(t)+λβ(t)+1dE(t)x +
∫ Ξ

0
−λα(t)

λ2α(t)+λβ(t)+1dE(t)y


dλ.

We first treat the case when x, y ∈ R(M1/2).
We want to change the order of integration in (2.2) by the use of Fubini

theorem. By the change of variables, we obtain

(T (s) ( x1
y1 ) , (

x2
y2 )) = − eεs lim

n→∞

1

2π

∫ n

−n

eiλs

[∫ Ξ

0

p1(λ, t)d(E(t)x1, x2)

−
∫ Ξ

0

p2(λ, t)d(E(t)y1, x2) +

∫ Ξ

0

p2(λ, t)d(E(t)x1 , y2)

+

∫ Ξ

0

p3(λ, t)d (E(t)y1, y2)

]
dλ,

where

p1(λ, t) =
−(iλ+ ε)α(t) − β(t)

(iλ+ ε)2α(t) + (iλ+ ε)β(t) + 1
,

p2(λ, t) =

√
α(t)

(iλ+ ε)2α(t) + (iλ+ ε)β(t) + 1
,

p3(λ, t) =
−(iλ+ ε)α(t)

(iλ+ ε)2α(t) + (iλ+ ε)β(t) + 1
.

The integrals

(2.3)

∫ n

−n

∫ Ξ

0

eiλspj(λ, t)d(E(t)x, x)dλ, j = 1, 2, 3,

can be viewed as a double Lebesgue integrals in R × R+, with the product
measure generated by the standard Lebesgue measure in R and by (real–
valued) Stieltjes measure (E(t)x, x) in R+. Let us now fix n ∈ N. In order to
use Fubini theorem on (2.3) we have to prove ([14, pp. 361,362]):

(i) the functions pj , j = 1, 2, 3 are measurable in the product measure,
and

(ii) the integrals
∫ Ξ

0

(∫ n

−n

∣∣eiλspj(λ, t)
∣∣ dλ

)
d(E(t)x, x), j = 1, 2, 3

exist.
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To prove (i) it suffices to show that the function g(λ, t) = (iλ+ε)2α(t)+(iλ+
ε)β(t)+1 is measurable and vanishes only on the set of the measure zero. One
can easily see that the function g does not vanish. Set An = α−1([n, n+ 1]),
which is a measurable set in R+. Then R+ = ∪nAn. To prove that g is
measurable, observe that for an arbitrary δ > 0 the following holds

{(λ, t) : |g(λ, t)| < δ} =
⋃

n

(
An ×

⋃

t∈An

{λ : |g(λ, t)| < δ}
)
.

For fixed t ∈ An, one can easily see that {λ : |g(λ, t)| < δ} is either an empty
set or an open interval or an union of two open intervals, hence always an
open set. It follows that

⋃
t∈An

{λ : |g(λ, t)| < δ} is an open set as a union

of open sets. From this immediately follows that {(λ, t) : |g(λ, t)| < δ} is
measurable for all δ > 0, hence g is a measurable function.

Now we prove (ii). We have

(2.4)

∫ n

−n

|pj(λ, t)|dλ =

∫

Υn

|pj(λ, t)|dλ +

∫

Γn

|pj(λ, t)|dλ,

where Γn is lower semi–circle connecting −n and n, and Υn is the contour
consisting of the segment [−n, n] and the curve Γn. The first integral can be
calculated by the use of residue theorem. The poles of the functions λ 7→
pj(λ, t) are the zeros of the polynomial g. We calculate the zeros of g. We
have

(2.5) λ1,2 = ±
√
4α(t)− β(t)2

2α(t)
+ i

2εα(t) + β(t)

2α(t)
,

in the case 4α(t) ≥ β(t)2, and

(2.6) λ1,2 = i
2εα(t) + β(t)±

√
β(t)2 − 4α(t)

2α(t)
,

in the case 4α(t) < β(t)2. Hence the first integral on the right hand side in
(2.4) is

(2.7)

∫

Υn

|pj(λ, t)|dλ = 0, j = 1, 2, 3.

To estimate the second integral on the right hand side in (2.4) we proceed as
follows.

∫

Γ−

n

|pj(λ, t)|dλ = n

∫ 2π

π

|pj(neiϕ, t)|dϕ ≤ cn2

∫ 2π

π

dϕ

|g(neiϕ, t)| ,
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where c = ε+ supα(t) + supβ(t) + 1, j = 1, 2, 3. We have

g(neiϕ, t) = − n2e2iϕα(t) + ineiϕβ̃(t) + γ̃(t)

= − n2e2iϕα(t) cos 2ϕ− neiϕβ̃(t) sinϕ+ γ̃(t)

+ i(−n2α(t) sin 2ϕ+ nβ̃(t) cosϕ),

where β̃(t) = 2ε+ β(t), γ̃(t) = ε2α(t) + εβ(t) + 1. Hence

|g(neiϕ, t)|2 = n4α(t)2 + n2β̃(t)2 + γ̃(t)2 − 2n3α(t)β̃(t) sinϕ

− 2n2α(t)γ̃(t) cos 2ϕ− 2nβ̃(t)γ̃(t) sinϕ.

Since sinϕ ≤ 0 for π ≤ ϕ ≤ 2π and β̃(t) ≥ 0, γ̃(t) ≥ 1 , we obtain an estimate

(2.8) |g(neiϕ, t)|2 ≥ n2α(t).

So, we have obtained
∫ n

−n

|pj(λ, t)|dλ ≤ cα(t)−1/2,

where c does not depend on t. Hence the integrals in (ii) exist for all x ∈
R(M1/2). We are now in position to use Fubini theorem on (2.3), which leads
to
∫ n

−n

∫ Ξ

0

eiλspj(λ, t)d(E(t)x, x)dλ =

∫ Ξ

0

(∫ n

−n

eiλspj(λ, t)dλ

)
d(E(t)x, x).

Set f j
n(t) =

∫ n

−n e
iλspj(λ, t)dλ, j = 1, 2, 3. Then

(2.9) f j
n(t) =

∫

Υn

eiλspj(λ, t)dλ+

∫

Γn

eiλspj(λ, t)dλ,

where Υn and Γn are as in (2.4). From (2.5) and (2.6) we obtain
∫

Υn

eiλspj(λ, t)dλ = 0, j = 1, 2, 3, n ∈ N.

To estimate the second integral in (2.9) we use the well–known Jordan lemma
([10, Lemma 9.2]) which implies

∣∣∣∣
∫

Γn

eiλspj(λ, t)dλ

∣∣∣∣ ≤ cmax{|pj(λ, t)| : λ ∈ Γn}.

Now (2.8) implies

max{|pj(λ, t)| : λ ∈ Γn} ≤ (1 + ε)α(t)1/2 +
β(t)

α(t)1/2
, n ∈ N,

hence |f j
n(t)| ≤ f(t), where

f(t) = (1 + ε)α(t)1/2 +
β(t)

α(t)1/2
.
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Since f is integrable for all Stieltjes measures generated by x ∈ R(M1/2), we
can use Lebesgue dominate convergence theorem to obtain

lim
n→∞

∫ Ξ

0

(∫ n

−n

eiλspj(λ, t)dλ

)
d(E(t)x, x)

=

∫ Ξ

0

(∫ ∞

−∞

eiλspj(λ, t)dλ

)
d(E(t)x, x),

for all x ∈ R(M1/2), in the sense of the principal value integral.
Since (E(t)x, y) can be expressed by the polarization formula

(E(t)x, y) =
1

4
(E(t)(x + y, x+ y)− (E(t)(x − y), x− y)

+ i(E(t)(x+ iy), x+ iy)− i(E(t)(x − iy), x− iy)),

we obtain

(T (s) ( x1
y1 ) , (

x2
y2 )) = − eεs

1

2π

[∫ Ξ

0

(∫ ∞

−∞

eiλsp1(λ, t)dλ

)
d(E(t)x1, x2)

−
∫ Ξ

0

(∫ ∞

−∞

eiλsp2(λ, t)dλ

)
d(E(t)y1, x2)

+

∫ Ξ

0

(∫ ∞

−∞

eiλsp2(λ, t)dλ

)
d(E(t)x1, y2)

+

∫ Ξ

0

(∫ ∞

−∞

eiλsp3(λ, t)dλ

)
d (E(t)y1, y2)

]
,

for all x1, y1, x2, y2 ∈ R(M1/2).
Hence we can write

(2.10)
T (s) ( xy )

= − 1

2π
eεs

[∫ Ξ

0

∫∞

−∞
eiλsp1(λ, t)dλdE(t)x −

∫ Ξ

0

∫∞

−∞
eiλsp2(λ, t)dλdE(t)y∫ Ξ

0

∫∞

−∞ eiλsp2(λ, t)dλdE(t)x +
∫ Ξ

0

∫∞

−∞ eiλsp3(λ, t)dλdE(t)y

]

in the sense of Pettis integral (for the definition and the basic properties see
[11, Chapter 3]). Moreover, the formula (2.10) holds for all x, y ∈ Y, which
easily follows from the fact that T (s) is a bounded operator.

Our next aim is to compute the integrals
∫∞

−∞ eiλspj(λ, t)dλ, j = 1, 2, 3

and hence to obtain an integral representation of T (s) in terms of the spectral
function E(t). Since pj(·, t) are rational functions such that the degree of the
denominator is greater of the degree of the nominator, the standard result
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from the calculus (see [10]) implies that

∫ ∞

−∞

eiλspj(λ, t)dλ = 2πi


∑

λ∈S+

Res(eis·pj(·, t);λ) +
1

2

∑

λ∈S0

Res(eis·pj(·, t);λ)


,

where S+ is the set of all poles of the function eis·pj(·, t) in the upper half
plane, and S0 is the set of all real poles of the function eis·pj(·, t). The poles
of the functions eis·pj(·, t) are exactly the zeros of the function g(·, t) which
are calculated in (2.5) and (2.6).

From the straightforward calculation we obtain:
(i) in the case 4α(t) > β(t)2

∫ ∞

−∞

eiλsp1(λ, t)dλ

= −2πe−sεe−s β(t)
2α(t)

(
cos(̺(t)s) +

β(t)√
4α(t)− β(t)2

sin(̺(t)s)

)
,

∫ ∞

−∞

eiλsp2(λ, t)dλ = 4πe−sεe−s
β(t)
2α(t)

√
α(t)√

4α(t)− β(t)2
sin(̺(t)s),

∫ ∞

−∞

eiλsp3(λ, t)dλ

= −2πe−sεe−s β(t)
2α(t)

(
cos(̺(t)s) − β(t)√

4α(t)− β(t)2
sin(̺(t)s)

)
,

where ̺(t) =

√
4α(t)−β(t)2

2α(t) ,

(ii) in the case 4α(t) < β(t)2

∫ ∞

−∞

eiλsp1(λ, t)dλ

= −2πe−sεe−s β(t)
2α(t)

(
cosh(˜̺(t)s) + β(t)√

β(t)2 − 4α(t)
sinh(˜̺(t)s)

)
,

∫ ∞

−∞

eiλsp2(λ, t)dλ = 4πe−sεe−s β(t)
2α(t)

√
α(t)√

β(t)2 − 4α(t)
sinh(˜̺(t)s),

∫ ∞

−∞

eiλsp3(λ, t)dλ

= −2πe−sεe−s β(t)
2α(t)

(
cosh(˜̺(t)s) − β(t)√

β(t)2 − 4α(t)
sinh(˜̺(t)s)

)
,
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where ˜̺(t) =
√

β(t)2−4α(t)

2α(t) ,

(iii) and in the (limit) case 4α(t) = β(t)2

∫ ∞

−∞

eiλsp1(λ, t)dλ =− 2πe−sεe−s β(t)
2α(t)

(
1 + s

β(t)

2α(t)

)
,

∫ ∞

−∞

eiλsp2(λ, t)dλ = 2πe−sεe−s
β(t)
2α(t) sα(t)−1/2,

∫ ∞

−∞

eiλsp3(λ, t)dλ =− 2πe−sεe−s β(t)
2α(t)

(
1− s

β(t)

2α(t)

)
.

Let us define functions

s̃in(t, s) =





sin(̺(t)s)√
4α(t)−β(t)2

, ̺(t) ∈ R \ {0},
s

2α(t) , ̺(t) = 0,
sinh(˜̺(t)s)√
β(t)2−4α(t)

, ˜̺(t) ∈ R \ {0},

and

c̃os(t, s) =

{
cos(̺(t)s), ̺(t) ∈ R,

cosh(˜̺(t)s), ˜̺(t) ∈ R,
.

Then we can write
∫ ∞

−∞

eiλsp1(λ, t)dλ =− 2πe−sεe−s β(t)
2α(t)

(
c̃os(t, s) + β(t)s̃in(t, s)

)
,

∫ ∞

−∞

eiλsp2(λ, t)dλ = 4πe−sεe−s β(t)
2α(t)

√
α(t) s̃in(t, s),

∫ ∞

−∞

eiλsp3(λ, t)dλ =− 2πe−sεe−s
β(t)
2α(t)

(
c̃os(t, s)− β(t)s̃in(t, s)

)
,

in all three cases.
Hence we have obtained

T (s) =

∫ Ξ

0

e−s β(t)
2α(t)

[
c̃os(t, s) + β(t)s̃in(t, s) 2

√
α(t) s̃in(t, s)

−2
√
α(t) s̃in(t, s) c̃os(t, s)− β(t)s̃in(t, s)

]
dE(t).

Now we are in position to use the formula (1.14) in order to calculate the
operator X . Set

q1(t, s) = e−s
β(t)
2α(t)

(
c̃os(t, s) + β(t)s̃in(t, s)

)
,

q2(t, s) = 2e−s β(t)
2α(t)

√
α(t) s̃in(t, s),

q3(t, s) = e−s β(t)
2α(t)

(
c̃os(t, s)− β(t)s̃in(t, s)

)
.
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Then

(2.11)

(X ( x1
y1 ) , (

x2
y2 )) =

∫ ∞

0

(∫ Ξ

0

(q1(t, s)
2 + q2(t, s)

2)d(E(t)x1, x2)

+

∫ Ξ

0

(q1(t, s)− q3(t, s))q2(t, s)d(E(t)x1, y2)

+

∫ Ξ

0

(q1(t, s)− q3(t, s))q2(t, s)d(E(t)y1, x2)

+

∫ Ξ

0

(q3(t, s)
2 + q2(t, s)

2)d(E(t)y1, y2)

)
ds.

As before, we would like to change the order of integration in the previous
formula. To do that, it is sufficient to prove that conditions (i) and (ii) from
page 381 are satisfied. The condition (i) is obviously satisfied.

Note that (q1(t, s)−q3(t, s))q2(t, s) ≥ 0 for all t, s > 0, hence all functions
in (2.11) are positive. By the use of the standard integration formulas one
obtains

∫ ∞

0

(q1(t, s)
2 + q2(t, s)

2)ds =
1

2
β(t) +

α(t)

β(t)
,

∫ ∞

0

(q1(t, s)− q3(t, s))q2(t, s)ds =
1

2

√
α(t),

∫ ∞

0

(q3(t, s)
2 + q2(t, s)

2ds =
α(t)

β(t)
.

Hence to be able to change the order of integration the function α/β has to
be bounded measurable.

Remark 2.2. The previous considerations and Datko–Pazy theorem
([8]) imply that the system decays exponentially if and only if there exist
representations (2.1) such that α/β is bounded measurable. In terms of the
operators M and C this condition is equivalent to the condition C ≥ ∆M ,
for some ∆ > 0.

From now on we assume that the function α/β is bounded measurable.
Then we can write

X =

∫ Ξ

0

[
1
2β(t) +

α(t)
β(t)

1
2

√
α(t)

1
2

√
α(t) α(t)

β(t)

]
dE(t).

Note that this formula is a direct generalization of the formula in the matrix
case given in [7] (see also [6], [22]).
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Now it is obvious that to obtain the optimal C it is enough to solve 2× 2
matrix case with

Y =

[
1
2β(t) +

α(t)
β(t)

1
2

√
α(t)

1
2

√
α(t) α(t)

β(t)

]
.

Hence we have to solve the following minimization problem:
∫

‖y‖=1

y∗Y yµ(dy) → min .

Since the map Y →
∫
‖y‖=1

y∗Y yµ(dy) is a linear functional on the space of

symmetric matrices with trace inner product, by Riesz representation theorem
there exists a symmetric matrix Z such that

∫
‖y‖=1 y

∗Y yµ(dy) = Trace(Y Z).

Our choice of µ implies that Z is a diagonal matrix. By putting formally
Z = I, we see that the optimal energy decay on the set of damping operators
C which commute with M and for which the system is exponentially stable
is attained for the operator Copt which has a spectral function βopt such that
1
2β(t) + 2α(t)

β(t) → min for all t > 0. One can easily see that βopt(t) = 2
√
α(t),

i.e.

Copt = 2M1/2,

which corresponds to the well-known result in the matrix case.

Remark 2.3. This result is mainly of theoretical nature, because, in most
cases, the damping C = 2M1/2 is not physically realizable. But it gives an
upper bound for the best possible dissipation of vibration energy, and can
also have value for the numerical treatment of the problem.

Example 2.4. An important class of vibrational systems are systems with
so–called analytic damping (see [12], [4], [20]). Analytic damping corresponds
to the case where C = βMα, hence it is a special case of the modal damping.
The main result of this paper shows that the optimal analytic damping is
given for the exponent 1/2, which is the smallest number for which the
corresponding semigroup is holomorphic.

An example of a system with analytic damping is the system from example
1.1. Hence the optimal damping coefficient in this case is ρ = 2.

The main conclusion of the paper is that the well–known fact that the
optimal modal damping matrix is given by Copt = 2M1/2 also holds in the
infinite–dimensonal case.
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