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Abstract. We study the existence and nonexistence of positive,
spherically symmetric solutions of a quasilinear elliptic equation (1.1)
involving p-Laplace operator, with an arbitrary positive growth rate e0
on the gradient on the right-hand side. We show that e0 = p − 1 is the
critical exponent: for e0 < p−1 there exists a strong solution for any choice
of the coefficients, which is a known result, while for e0 > p − 1 we have
existence-nonexistence splitting of the coefficients f̃0 and g̃0. The elliptic
problem is studied by relating it to the corresponding singular ODE of the
first order. We give sufficient conditions for a strong radial solution to be
the weak solution. We also examined when ω-solutions of (1.1), defined
in Definition 2.3, are weak solutions. We found conditions under which
strong solutions are weak solutions in the critical case of e0 = p− 1.

1. Introduction

In the last several decades a lot of authors have studied the problems
of solvability of quasilinear elliptic equations including p-Laplace operator.
The existence of strong and weak solutions of quasilinear elliptic problems,
where an arbitrary growth rate in the unknown function, as well as on the
gradient, is allowed, have been studied by Žubrinić ([12]). This paper is a
continuation of the paper [8] by Korkut, Pašić, and Žubrinić and it requires
some additional conditions for solvability, which were found out as a sort
of nonresonance conditions. In the paper [2] Abdellaoui, Dall’Aglio, and
Peral analyzed existence, nonexistence, multiplicity and regularity of solutions
of nonlinear elliptic equations, including the usual Laplacian on the open
bounded set in R

N , with a sufficiently smooth boundary. In [3] Abdellaoui,
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Giachetti, Peral, and Walias considered an elliptic problem which also includes
dependence on the gradient, with homogeneous Dirichlet boundary condition,
associated to the model of growth in a porous media. Dirichlet and Neumann
problems for a class of nonlinear degenerate elliptic equations with general
growth in the gradient have been studied by Tian and Li in [10]. In the paper
[5] by Chen and Wang the existence, asymptotic behavior near the boundary
and uniqueness of large solutions for a class of quasilinear elliptic equations
with a nonlinear gradient have been studied. Analogous problems to those
treated in this paper have been considered among others by Abdellaoui in
[1] and Hansson, Maz’ya and Verbitsky in [7]. Very interesting results are
given in [7], where the authors consider a nonlinear Dirichlet problem on a
bounded domain. The authors studied existence of the positive solutions of
−∆u = a|∇u|q1 +b|u|q2 +ω, with q1, q2 > 1 in R

N , with bounded nonnegative
coefficients a and b and arbitrary nonnegative function or measure ω. The
solvability of this problem is considered in the weak sense. From the known
estimates of Green functions of uniformly elliptic differential operators, their
main results remain true with this operator instead of the Laplacian. The
mentioned paper does not consider the problem of nonexistence of solutions.
The problem of existence and multiplicity of infinitely many radial solutions
to the problem that includes the p-Laplacian and the gradient in the unknown
function and a radial positive function on the right-hand side, has been
considered by Abdellaoui in [1]. The author also gives conditions under which
the mentioned problem has no positive solutions. The solutions are considered
in the weak sense.

In our paper we consider problems of existence and nonexistence of
spherically symmetric strong solutions of quasilinear elliptic equations in the
case where the exponent on the gradient is any positive real number.

The aim of this paper is to study existence and nonexistence of strong
solutions of the following quasilinear elliptic problem with strong dependence
on the gradient:







−∆pu = g̃0|x|
m + f̃0|∇u|e0 in B \ {0},

u = 0 on ∂B,
u(x) spherically symmetric and decreasing.

(1.1)

Here B is an open ball of radius R centered at the origin in R
N , 1 < p <

∞, ∆pu = div(|∇u|p−2∇u) is p-Laplacian. The Lebesgue measure (volume)
of B in R

N is denoted by |B|, and the volume of the unit ball is denoted by
CN . The dual exponent of p > 1 is defined by p′ = p

p−1 . We assume that g̃0,

f̃0 and e0 are positive real numbers. By a strong solution we mean a function
u ∈ C2(B \ {0}) ∩ C(B) which satisfies (1.1) pointwise. We shall also study
the question under which conditions the ω-solutions of (1.1), (see Definition
2.3) are the weak solutions. In [8] Korkut, Pašić, Žubrinić studied the case
when (1.1) has the natural growth in the gradient, that is, e0 = p. The aim
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of this paper is to study the question of solvability and nonsolvability of (1.1)
for all positive e0.

We show that the critical exponent on the gradient in (1.1) is e0 = p−1 in
the following sence: if 0 < e0 < p− 1 problem (1.1) is solvable for all positive

g̃0 and f̃0,(which is known result), while for e0 > p − 1 we have nontrivial

existence and nonexistence regions in the positive quadrant of (g̃0, f̃0)-plane.

Theorem 1.1. Assume that m > max{−p,−N}, N ≥ 2.

(a) If 0 < e0 < p − 1 and m ≤ e0/(p − e0 − 1), then the problem (1.1)

possesses a strong solution for all positive g̃0 and f̃0.
(b) Let e0 > p− 1. Then there exist two explicit positive constants C̃1 and

C̃2, C̃1 < C̃2, such that
(b1) if m ≤ e0/(p− e0 − 1), m 6= −1 and if

(1.2) f̃0 g̃
e0

p−1−1

0 ≤ C̃1,

then there exists a strong solution of quasilinear elliptic problem
(1.1),

(b2) if m < e0/(p− 1− e0) and

(1.3) f̃0 g̃
e0

p−1−1

0 ≥ C̃2,

then problem (1.1) has no strong solutions.

The explicit values of C̃1 and C̃2 can be seen in (2.13) and (2.14)
respectively.

2. Reduction to a singular ODE

We prove the existence result stated in Theorem 1.1 by studying the
corresponding singular ODE (see [8])

(2.1)
dω

dt
= g0γt

γ−1 + f0
ω(t)δ

tε
, t ∈ (0, T ],

where ε, g0, f0, δ, T are positive constants, that will be defined in Lemma
2.1. For ε > 0 this equation is singular at t = 0. In order to formulate the
existence result of ODE (2.1) we shall seek solutions in the set:

(2.2) D = {ϕ ∈ C([0, T ]) : ∃M > 0, 0 ≤ ϕ(t) ≤ Mtγ},

for γ > 0.
In order to formulate the nonexistence result of ODE (2.1) we introduce

the set:

(2.3) D+ = {ϕ ∈ C([0, T ]) : ϕ(t) ≥ 0 and nondecreasing}.

We shall use among others the following result which has been proved by
Korkut, Pašić, Žubrinić in [8, Theorem 5 and Theorem 7]. This result shows
that δ = 1 is the critical case for (2.1).
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Lemma 2.1 (see [8]). Assume that γ > 0, δ > 0, δ ≥ ε−1
γ + 1 and ε ∈ R.

(a) If δ < 1 then (2.1) possesses a solution in D for all positive g0 and f0.
(b) Let δ > 1. Then there exist two explicit positive constants C1 and C2,

C1 < C2, such that
(b1) If

(2.4) f0 g
δ−1
0 ≤ C1,

then there exists a solutin of (2.1) in D.
(b2) If δ > ε−1

γ + 1 and if

(2.5) f0 g
δ−1
0 ≥ C2,

then the ODE (2.1) has no solutions in D+.

In [8] the following explicit values of constants C1 and C2 have been
obtained:

(2.6) C1 =
γδ − ε+ 1

δT γ(δ−1)−ε+1(δ′)δ−1
,

and

C2 =















[γ(δ − 1)− ε+ 1]δδ
′

(δ − 1)T γ(δ−1)−ε+1
for ε < 1,

γ δδ
′

T γ(δ−1)−ε+1
for ε ≥ 1.

(2.7)

In the critical case, that is, when δ = 1, we have the ordinary differential
equation of the first order.

To prove Theorem 1.1 we state two lemmas. The first one enables to
generate solutions of quasilinear elliptic equation (1.1) using solutions of
singular ODE (2.1) with a suitable choice of coefficients which we shall define
later. It represents a modification of [8, Lemma 1]. The second lemma will
be used in the proof of nonexistence part of Theorem 1.1 and represents a
modification of [8, Lemma 2]. Their proofs can be obtained using simple
changes of the corresponding proofs in [8] and therefore we omit them.

Lemma 2.2 (see [8]). Let g̃0 and f̃0 be positive real numbers. Assume that
1 < p < ∞, and m > max{−p,−N}. Let us define the constants:

(2.8) γ = 1 +
m

N
, δ =

e0
p− 1

, ε = δ

(

1−
1

N

)

,

and

(2.9) g0 =
g̃0

C
m+p
N

N Np−1(m+N)
, f0 =

f̃0

Np−e0C
p−e0

N

N

.
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Then for any solution ω ∈ D of ODE (2.1), where D is defined by (2.2) and
T = |B|, with some M > 0, the corresponding function u : B → R, defined by

u(x) =

∫ |B|

CN |x|N

ω(t)p
′−1

tp
′(1− 1

N
)
dt,(2.10)

is a strong solution of quasilinear elliptic problem (1.1). Furthermore, the
following relation holds for all r ∈ (0, R]:

(2.11) ũ′(r) = −|∇u| = −NC
1/N
N

(

ω(s)

s1−
1
N

)p′−1

, s = CN |x|N .

where ũ(r) is defined with ũ(r) = u(x), r = |x|,

Following the terminology introduced in [8], we provide the next definition.

Definition 2.3. A function u : BR(0) → R is an ω-solution of quasilinear
elliptic problem (1.1), if it is a strong solution which can be obtained as
described in Lemma 2.2, generated by a solution ω of equation (2.1), with
additional requirement that 0 ≤ ω(t) ≤ Mtγ , for some M > 0.

The open question is if there are any other solutions of quasilinear elliptic
problem (1.1) which are not ω-solutions. Here we identified the function
u(x) with the function ũ(r), for r = |x|. Let as mention that in [1] the
condition of existence of infinitely many positive radial solutions for the
problem involving the p-Laplacian, with positive radial function and the
gradient in the unknown function on the right-hand side have been given,
but the solutions are considered in the weak sense.

Lemma 2.4 (see [8]). Let u be a strong solution of quasilinear elliptic

problem (1.1), where the constants f̃0, g̃0 are positive real numbers. Assume
that m > max{−p,−N}. Let us define the function V : (0, T ] → R with

V (s) = u(x), s = CN |x|N ,

and also the function ω : (0, T ] → R with

ω(s) = sp(1−
1
N

)

∣

∣

∣

∣

dV (s)

ds

∣

∣

∣

∣

p−1

, s ∈ (0, T ], T = |B|.

Then the function ω satisfies the following ODE:
{

dω(s)
ds = g0γs

γ−1 + f0
ω(s)δ

sε , s ∈ (0, T ),
ω ∈ D+,

(2.12)

where the constants g0, f0 are given by (2.9), D+ is defined by (2.3) and the
constants γ, δ, ε are given by (2.8). Also, the function u has the following
representation:

u(x) = V (s) =

∫ T

s

ω(t)p
′−1

tp
′(1− 1

N
)
dt.



396 J. KRALJEVIĆ AND D. ŽUBRINIĆ

Note that Lemma 2.4 does not claim that any strong solution of (1.1) is
ω-solution, since the condition ω(t) ≤ Mtγ does not have to be fulfilled.

Proof of Theorem 1.1. To prove the existence of solutions stated in
(a) and (b), we first define constants γ, δ, ε and T as in Lemma 2.2.

(a) Since 0 < e0 < p − 1, we have that 0 < δ < 1. It is easy to see that
conditions m ≤ e0

p−e0−1 is equivalent to δ ≥ ε−1
γ +1, where we have used that

m > max{−p,−N}. From Lemma 2.1 we obtain that there exists a solution
ω of singular equation (2.1) for each positive constants f0 and g0. By Lemma
2.2 the corresponding function u defined by (2.10) is a strong solution of (1.1).

(b1) Here e0 > p−1 implies that δ > 1. The condition on m is equivalent
to δ > ε−1

γ + 1. Let us define

(2.13) C̃1 = Np−e0C
p−e0

N

N

[

C
m+p
N

N Np−1(m+N)
]δ−1

C1,

where C1 is defined by (2.6). Because of the (2.9) and (2.8), inequality (1.2)
is then equivalent to (2.4), so by Lemma 2.1 and Lemma 2.2 the existence
part (b1) of Theorem 1.1 has been proved.

(b2) We prove the nonexistence part by contradiction. Let us define:

(2.14) C̃2 = Np−e0 C
p−e0

N

N

[

C
m+p
N

N Np−1 (m+N)
]δ−1

C2 ,

where C2 is given by (2.7). Condition (1.3) is equivalent to (2.5) and by
Lemma 2.4 the nonexistence part (b2) of Theorem 1.1 has been proved.

Remark 2.5. Using a rescaling argument, problem (1.1) can be related
to the following simpler one:











−∆pu = g̃0f̃
p−1

e0−p+1

0 |x|m + |∇u|e0 in B \ {0},
u = 0 on ∂B,

u(x) spherically symmetric and decreasing.

(2.15)

For the critical case when e0 = p−1, exploiting Ascoli’s theorem as well as
Schauder’s fixed point theorem it is easy to see that under some conditions,
problem (1.1) has at least one strong solution. We consider the following
problem:







−∆pu = g̃0|x|
m + f̃0|∇u|p−1 in B \ {0},

u = 0 on ∂B,
u(x) spherically symmetric and decreasing.

(2.16)

The main result is given in the following theorem.

Theorem 2.6. Assume that m > max{−p,−N}, N ≥ 2. Let g̃0 be any

positive real number and let 0 < f̃0 < NC
1
N

N (γ + 1
N )T− 1

N . Then the problem
(2.16) has at least one strong solution.



QUASILINEAR ELLIPTIC EQUATIONS 397

3. Existence of weak solutions

In Theorem 1.1 we have proved more than just existence of strong
solutions: there exists ω-solutions of quasilinear elliptic problem (1.1). This
follows from the fact that in existence part of Theorem 1.1 we have ω ∈ D. In
this section we want to examine when ω-solutions of (1.1) are weak solutions.
We shall also find conditions under which the ω-solutions are the weak
solutions in the critical case of e0 = p− 1.

Let us recall that the function u is the weak solution of quasilinear elliptic
problem (1.1) if u ∈ W 1,p

0 (B) ∩ L∞(B) and equation (1.1) is satisfied in the
weak sense:

∫

B

|∇u|p−2∇u · ∇ϕdx = g̃0

∫

B

|x|mϕ(x) dx + f̃0

∫

B

|∇u|e0ϕ(x) dx,

for all test functions ϕ ∈ W 1,p
0 (B) ∩ L∞(B).

The main result in this section is given in the Theorem 3.3 in which we
found general sufficient conditions for any strong ω-solution to be a weak
solution. We shall consider a more general quasilinear elliptic problem, given
in the following form:







−∆pu = F (|x|, u, |∇u|) in B \ {0},
u = 0 on ∂B,

u(x) spherically symmetric and decreasing.
(3.1)

Next we shall use [4, Theorem IX.1.7], which provides the conditions

under which a function u ∈ W 1,p(Ω) belongs to the space W 1,p
0 (Ω).

Theorem 3.1. Assume that Ω is a domain of class C1 in R
N and let

u ∈ W 1,p(Ω) ∩ C(Ω), where 1 ≤ p < ∞. Then the following two assertions
are equivalent:

(i) u = 0 on ∂Ω

(ii) u ∈ W 1,p
0 (Ω).

The next Lemma represents a generalization of [8, Proposition 11]. We
give a sufficient conditions for a strong radial solution to be the weak solution.

Lemma 3.2. Let N ≥ 2. Assume that F : (0, R] × R+ × R+ → R is
continuous, where R+ = [0,∞). Let u ∈ C2(B \ {0}) ∩ C(B) be a strong
solution of quasilinear elliptic problem (3.1). Assume that the following four
conditions are fulfilled:

(i) F (|x|, u, |∇u|) ∈ L1(B);
(ii) Iε := εN−1ũ(ε) → 0, when ε → 0, where ũ(ε) = u(x), ε = |x|;
(iii) Jε := εN−1|ũ′(ε)|p−1 → 0, when ε → 0;
(iv)

∫

B |∇u|pdx < ∞.

Then u is the weak solution of quasilinear elliptic problem (3.1).
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Proof. (a1) First, let us show that for i = 1, . . . , N , the pointwise de-
rivative ∂u

∂xi
of solution u of the quasilinear elliptic problem (3.1) is also the

weak derivative. Since u is continuous on B, it is integrable on B. For any
i = 1, . . . , N we can write

∫

B

u
∂ϕ

∂xi
dx = lim

ε→0

∫

Ωε

u
∂ϕ

∂xi
dx,

where ϕ ∈ C∞
0 (B) is any test function. Here, Ωε = B \ Bε(0), where Bε(0)

is the open ball of radius ε > 0, centered at the origin in R
N . Let Sε be

the inner bounding sphere of Ωε. So, the set Sε is the boundary of the ball
Bε(0). Since Ωε is open and of class C1, using Green’s formula (formula of
integration by parts) we have

∫

Ωε

u
∂ϕ

∂xi
dx = −

∫

Ωε

∂u

∂xi
ϕdx+

∫

Sε

uϕνi dS.

Here, νi is the i-component of the unit normal outward vector ν =
(ν1, ν2, . . . , νN ) at the point x, |x| = ε, with respect to Ωε. We have

∣

∣

∣

∣

∫

Sε

uϕνi dS

∣

∣

∣

∣

≤ C|ũ(ε )|εN−1,

where C is some positive constant. Using the assumption (ii) we see that

lim
ε→0

∣

∣

∣

∣

∫

Sε

uϕνi dS

∣

∣

∣

∣

= 0,

so, the last integral tends to zero as ε → 0. We have
∫

B

u
∂ϕ

∂xi
dx = − lim

ε→0

∫

Ωε

∂u

∂xi
ϕdx = −

∫

B

∂u

∂xi
ϕdx.

(a2) Let us prove now that any strong solution u of (3.1) is also a weak
solution. Since u is the strong solution, it satisfies (3.1) pointwise in Ωε ⊆ B.

Let ϕ be any function that belongs to W 1,p
0 (B)∩L∞(B). This together with

Green’s formula yields:
∫

Ωε

u
∂ϕ

∂xi
dx = −

∫

Ωε

∂u

∂xi
ϕdx+

∫

Sε

uϕνi dS.

In our case we have:
∫

Ωε

F (|x|, u, |∇u|)ϕdx = −

∫

Ωε

∆puϕdx = −

∫

Ωε

div(|∇u|p−2∇u)ϕdx.

Since

div
(

|∇u|p−2∇u
)

= div

(

|∇u|p−2 ∂u

∂x1
, . . . , |∇u|p−2 ∂u

∂xN

)

=

N
∑

i=1

∂

∂xi

(

|∇u|p−2 ∂u

∂xi

)

,
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we obtain
∫

Ωε

∆puϕdx =
N
∑

i=1

∫

Ωε

∂

∂xi

(

|∇u|p−2 ∂u

∂xi

)

ϕdx

=

N
∑

i=1

[

−

∫

Ωε

(

|∇u|p−2 ∂u

∂xi

)

∂ϕ

∂xi
dx+

∫

Sε

|∇u|p−2 ∂u

∂xi
ϕνi dS

]

= −

∫

Ωε

|∇u|p−2∇u · ∇ϕdx+

∫

Sε

N
∑

i=1

|∇u|p−2 ∂u

∂xi
ϕνi dS,

from which we conclude that
∫

Ωε

F (|x|, u, |∇u|)ϕdx =

∫

Ωε

|∇u|p−2∇u·∇ϕdx−

∫

Sε

N
∑

i=1

|∇u|p−2 ∂u

∂xi
ϕνi dS.

Since the function ϕ is bounded on Sε, we have
∣

∣

∣

∣

∣

∫

Sε

N
∑

i=1

|∇u|p−2 ∂u

∂xi
ϕνi dS

∣

∣

∣

∣

∣

≤ C

∫

Sε

N
∑

i=1

|∇u|p−1 dS ≤ C

N
∑

i=1

|ũ′(ε)|p−1

∫

Sε

dS,

where C is some positive constant which changes from line to line. Here we use
that |ũ′(ε)| = |∇u(x)|, where ũ(ε) = u(x) for |x| = ε and that | ∂u∂xi

| ≤ |∇u|.

Since
∫

Sε
dS = CεN−1, where C is some positive constant, from assumption

(iii) in Lemma 3.2 it follows that
∑N

i=1 |ũ
′(ε)|p−1εN−1 → 0 when ε → 0.

Passing to the limit as ε → 0, we see that
∫

B

F (|x|, u, |∇u|)ϕdx =

∫

B

|∇u|p−2∇u · ∇ϕdx,

for every test function ϕ in W 1,p
0 (B) ∩ L∞(B). The left-hand side is well

defined by the assumption (i) in Lemma 3.2, so it follows that −∆pu =
F (|x|, u, |∇u|) is satisfied in the weak sense. Finally, from (iv) in Lemma
3.2 and from (a1), we conclude that the solution u belongs to W 1,p(B). Since
the open ball B is of class C1, the function u as a strong solution belongs to
C2(B \ {0}) ∩ C(B) and since u = 0 on ∂B, it follows from the Theorem 3.1

that u belongs to W 1,p
0 (B).

The claim of the above lemma clearly holds also for radial solutions of
(1.1) without any assumption that u be positive and decreasing.

In the next theorem we shall give the conditions for any ω-solution of
quasilinear elliptic problem (1.1) to be a weak solution. It extends [11, Lemma
6.1]

Theorem 3.3. Assume that N ≥ 2, m > max{−p,−N}, and m > −1−
N(p−1)

e0
. Then any ω-solution of quasilinear elliptic problem (1.1) is also the

weak solution.
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Proof. In the proof of Theorem 1.1, the strong solutions were also the

ω-solutions given by integral representation u(x) =
∫ |B|

CN |x|N
ω(t)p

′
−1

tp
′(1− 1

N
)
dt, with

0 ≤ ω(t) ≤ Mtγ , where M was big enough positive constant and γ = 1+m
N . If

we compare (1.1) with the general problem (3.1), we see that F (|x|, u, |∇u|) =

g̃0|x|
m + f̃0|∇u|e0 . It suffices to show that for F (|x|, u, |∇u|), the conditions

(i)-(iv) of Lemma 3.2 are satisfied. Let u ∈ C2(B \ {0}) ∩ C(B) be any ω-
solution of (1.1). First, let us show that the condition (i) from Lemma 3.2 is
satisfied. Sincem > −N , for any x ∈ B\{0} the condition

∫

B\{0}
|x|m dx < ∞

is fulfilled. It follows that

∫

B

|x|m dx =

∫ R

0

rmrN−1 dr

∫

S1(0)

dS(y) =
Rm+N

m+N
· ωN < ∞,

so, |x|m ∈ L1(B). From (2.11) we have

∫

B

|∇u|e0 dx = Ne0C
e0
N

N

∫ T

0

(

ω(t)

t1−
1
N

)e0(p
′−1)

dt

≤ Ne0C
e0
N

N M
e0

p−1

∫ T

0

t(γ−1+ 1
N

)e0(p
′−1) dt.

Note that the integrability condition (γ − 1 + 1
N )e0(p

′ − 1) + 1 > 0 in t = 0

is equivalent to m > −1− N(p−1)
e0

. It follows that F (|x|, u, |∇u|) = g̃0|x|
m +

f̃0|∇u|e0 ∈ L1(B). Let us prove that the condition (ii) in Lemma 3.2 is
satisfied. Using (2.10) we have

Iε = εN−1 ũ(ε) = εN−1

∫ |B|

CNεN

ω(t)p
′−1

tp
′(1− 1

N
)
dt

≤ Mp′−1 εN−1

∫ |B|

CNεN
tγ(p

′−1)−p′(1− 1
N

) dt.

Since m > −p we have that γ(p′− 1)−p′(1− 1
N )+1 > 0 and the integrability

condition for ε = 0 is satisfied. We obtain

Iε ≤ Mp′−1εN−1

∫ |B|

CNεN
t
m+N−Np+p

N(p−1) dt

≤ Mp′−1 N(p− 1)

m+ p

[

T
m+p

N(p−1) εN−1 − C
m+p

N(p−1)

N εN−1+m+p
p−1

]

.

From the assumptions m > −p and N ≥ 2 we conclude that Iε →
0 when ε → 0. We show that the condition (iii) from Lemma 3.2 is satisfied.
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Using (2.11) with t = CNεN we have

Jε = εN−1 |ũ′(ε)|
p−1

= εN−1 Np−1 C
p−1
N

N

(

ω(t)

t1−
1
N

)(p′−1)(p−1)

= Np−1 C
p+m
N

N Mεm+N .

From m > −N , it follows that Jε → 0 when ε → 0. The condition (iv) in
Lemma 3.2 follows from (2.11). We obtain

∫

B

|∇u|p dx =

∫ T

0

Np C
p
N

N

(

ω(t)

t1−
1
N

)p(p′−1)

≤ Np C
p
N

N Mp(p′−1)

∫ T

0

t
mp+p

N(p−1) dt.

The last integral is finite due to mp+p
N(p−1) +1 > 0. Since all conditions (i)-(iv) in

Lemma 3.2 are satisfied for F (|x|, u, |∇u|) = g̃0|x|
m + f̃0|∇u|e0 , we conclude

that u is also the weak solution.

For the critical exponent on the gradient e0 = p−1 we consider the special
case (3.1), where F (|x|, u, |∇u|) = g̃0|x|

m + f̃0|∇u|p−1. In this case we have
the following result.

Theorem 3.4. Assume that m > max{−p,−N}, N ≥ 2. Let g̃0 be any

positive constant and 0 < f̃0 < NC
1
N

N

(

γ + 1
N

)

T− 1
N . Then every ω-solution

u of quasilinear elliptic problem (2.16) is also the weak solution.

The proof is similar to that of Theorem 3.3, so we omit it.
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[9] L. Korkut, M. Pašić and D. Žubrinić, Some qualitative properties of solutions of

quasilinear elliptic equations and applications, J. Differential Equations 170 (2001),
247–280.

[10] Y. Tian and F. Li, Comparison results for nonlinear degenerate Dirichlet and

Neumann problems with general growth in the gradient, J. Math. Anal. Appl. 378

(2011), 749–763.
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