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Abstract. We prove the following theorem.

Theorem. Let X be a nonempty compact metrizable space, let l1 ≤
l2 ≤ . . . be a sequence in N, and let X1 ⊂ X2 ⊂ . . . be a sequence of
nonempty closed subspaces of X such that for each k ∈ N, dimZ/p Xk ≤ lk.
Then there exists a compact metrizable space Z, having closed subspaces
Z1 ⊂ Z2 ⊂ . . . , and a (surjective) cell-like map π : Z → X, such that for
each k ∈ N,

(a) dimZk ≤ lk,
(b) π(Zk) = Xk, and
(c) π|Zk

: Zk → Xk is a Z/p-acyclic map.
Moreover, there is a sequence A1 ⊂ A2 ⊂ . . . of closed subspaces of Z
such that for each k, dimAk ≤ lk, π|Ak

: Ak → X is surjective, and for

k ∈ N, Zk ⊂ Ak and π|Ak
: Ak → X is a UVlk−1-map.

It is not required that X =
⋃∞

k=1 Xk or that Z =
⋃∞

k=1 Zk. This
result generalizes the Z/p-resolution theorem of A. Dranishnikov and runs
parallel to a similar theorem of S. Ageev, R. Jiménez, and the first author,
who studied the situation where the group was Z.

1. Introduction

The goal of this paper is to prove the following theorem.
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Theorem 1.1. Let X be a nonempty compact metrizable space, let l1 ≤
l2 ≤ . . . be a sequence in N, and let X1 ⊂ X2 ⊂ . . . be a sequence of nonempty
closed subspaces of X such that for each k ∈ N, dimZ/p Xk ≤ lk. Then there
exists a compact metrizable space Z, having closed subspaces Z1 ⊂ Z2 ⊂ . . . ,
and a (surjective) cell-like map π : Z → X, such that for each k ∈ N,

(a) dimZk ≤ lk,
(b) π(Zk) = Xk, and
(c) π|Zk

: Zk → Xk is a Z/p-acyclic map.

Moreover, there is a sequence A1 ⊂ A2 ⊂ . . . of closed subspaces of Z such
that for each k, dimAk ≤ lk, π|Ak

: Ak → X is surjective, and for k ∈ N,

Zk ⊂ Ak and π|Ak
: Ak → X is a UVlk−1-map.

Section 2 will contain some technical results necessary for the proof of
Theorem 1.1, and the proof will be described in the third Section.

In Section 4 we will outline a proof of a case of Theorem 1.1 that was
suggested to us by an anonymous referee. Unfortunately, this technique
cannot be used to prove the most difficult cases of Theorem 1.1, nor does
it have the potential for generalization for those groups G whose resolutions
require a domain space of dimension n+ 1, if the range space had dimG ≤ n
([10]). For example, the theorem that follows is an immediate consequence
of Theorem 1.1, but it cannot be proven using the technique described in
Section 4.

Theorem 1.2. Let n ∈ N and let (Xi) be a sequence of (not necessarily
nested) closed subsets of the Hilbert cube Q with dimZ/p Xi ≤ n for all i. Then
there exists a compact metrizable space Z, a cell-like map π : Z → Q, and a
sequence (Zi) of closed subsets of Z such that ∀i,

(a) dimZi ≤ n, and
(b) π|Zi

: Zi → Xi is a surjective Z/p-acyclic map.

This theorem provides a cell-like resolution of the Hilbert cube Q and
simultaneously Z/p-acyclic resolutions over any Fσ-collection whatsoever of
such Xi.

Let us proceed by explaining some terms that might be unfamiliar to the
reader. Basic facts about cell-like spaces and maps can be found in [2]. A map
π : Z → X between compact spaces is called cell-like if for each x ∈ X , π−1(x)
has the shape of a point. To detect that a compact metrizable space Y has
the shape of a point, it is sufficient to prove that there is an inverse sequence
(Zi, p

i+1
i ), of compact metrizable spaces Zi, whose limit is homeomorphic to

Y and such that for infinitely many i ∈ N, pi+1
i : Zi+1 → Zi is null-homotopic.

It is also sufficient to show that every map of Y to a CW-complex is null-
homotopic.

A map π : Z → X between topological spaces is called G-acyclic ([3]) if
all its fibers π−1(x) have trivial reduced Čech cohomology with respect to a
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given abelian group G, or, equivalently, every map f : π−1(x) → K(G,n) is
null-homotopic. Note that a map π : Z → X being cell-like implies that π is
also G-acyclic.

To detect that a compact metrizable space Y has trivial reduced Čech
cohomology with respect to the group G, it is sufficient to prove that there
is an inverse sequence (Zi, p

i+1
i ) of compact polyhedra Zi whose limit is

homeomorphic to Y , such that for infinitely many i ∈ N, the map pi+1
i :

Zi+1 → Zi induces the zero-homomorphism of cohomology groups Hm(Zi;G)
→ Hm(Zi+1;G), for all m ∈ N.

A map π : Z → X is called a UVk-map ([2]) if each of its fibers has

property UVk. This means that each embedding π−1(x) →֒ A into an ANR A

has property UVk: for every 0 ≤ r ≤ k and every neighborhood U of π−1(x)
in A, there exists a neighborhood V of π−1(x) in U such that every map of

Sr into V is null-homotopic in U . In order to prove that π is a UVk-map, it
is sufficient to show that, for all x ∈ X , there is an inverse sequence (Zi, p

i+1
i )

of compact polyhedra Zi, whose limit is homeomorphic to π−1(x) and such
that ∀i ∈ N, if 0 ≤ r ≤ k, then any map h : Sr → Zi is null-homotopic. It is
well-known that cell-like compacta have property UVk for all k.

A map g : X → |K| between a space X and a polyhedron |K| is called a
K-modification of a map f : X → |K| if whenever x ∈ X and f(x) ∈ σ, for
some σ ∈ K, then g(x) ∈ σ. This is equivalent to the following: whenever

x ∈ X and f(x) ∈
◦
σ, for some σ ∈ K, then g(x) ∈ σ.

The proof of Theorem 1.1 uses some techniques developed by A. Dranish-
nikov in the proof of the following theorem, which can be found as Theorem 8.7
in [3].

Theorem 1.3. For every compact metrizable space X with dimZ/p X ≤ n,
there exists a compact metrizable space Z and a surjective map π : Z → X
such that π is Z/p-acyclic and dimZ ≤ n.

We will show in Remark 3.3 that our Theorem 1.1 is a generalization of
this theorem. Dranishnikov used Edwards–Walsh complexes and resolutions,
and so shall we.

The following definition of Edwards–Walsh complexes (EW-complexes)
and resolutions, as well as results about them, can be found in [3], [4] or [9].
For G = Z, these resolutions were formally formulated in [13].

Definition 1.4. Let G be an abelian group, n ∈ N and L a simplicial
complex. An Edwards–Walsh resolution of L in dimension n is a pair
(EW(L,G, n), ω) consisting of a CW-complex EW(L,G, n) and a combinato-
rial map ω : EW(L,G, n) → |L| (that is, ω−1(|L′|) is a subcomplex, for each
subcomplex L′ of L) such that:

(i) ω−1(|L(n)|) = |L(n)| and ω||L(n)| is the identity map of |L(n)| onto
itself,
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(ii) for every simplex σ of L with dimσ > n, the preimage ω−1(|σ|) is
an Eilenberg–MacLane space of type (

⊕
G,n), where the sum

⊕
G is

finite, and
(iii) for every subcomplex L′ of L and every map f : |L′| → K(G,n), the

composition f ◦ ω|ω−1(|L′|) : ω−1(|L′|) → K(G,n) extends to a map
F : EW(L,G, n)→ K(G,n).

We usually refer to the CW-complex EW(L,G, n) as an Edwards–Walsh
complex, and to the map ω itself as an Edwards–Walsh projection.

Remark 1.5. Let L′ be a subcomplex of L, let K be the subcomplex
ω−1(|L′|) of EW (L,G, n), and ωL′ = ω|ω−1(|L′|) : ω−1(|L′|) → |L′|. Then
(K,ωL′) is an Edwards–Walsh resolution of the form (EW (L′, G, n), ωL′).

Discussions about the existence of Edwards–Walsh resolutions, as well as
their construction, can be found in [3], [4], [9], [13]. For our needs, it is enough
to know that when G is either Z or Z/p, Edwards–Walsh resolutions exist for
any simplicial complex L.

In particular, we shall briefly describe the construction of (EW(L,Z/p, n),
ω) for a finite-dimensional simplicial complex L. If dimL ≤ n, define the
complex EW(L,Z/p, n) = L(n) = L, and the map ω = idL. If dimL = n+ 1,
we start with L(n) and the identity map idL(n) , and proceed by building
a K(Z/p, n) on ∂σ, for each (n + 1)-simplex σ of L, and we build ω
by extending ∂σ →֒ σ over this newly attached K(Z/p, n). In this way,
ω−1(|σ|) = K(Z/p, n), ∀ (n+ 1)-simplex σ of L.

If dimL > n+ 1, then we shall distinguish the cases n ≥ 2 and n = 1. In
both of these cases our construction is inductive.

If n ≥ 2 and dimL > n + 1, then the skeleton L(n+1) is dealt with as
described above, i.e., by attaching a K(Z/p, n) to ∂σ, for each (n+1)-simplex
σ ∈ L(n+1). This represents the basis of our inductive construction. For the
step of our inductive construction, let k > n + 1. Then for any k-simplex
σ of L, we have that πn(ω

−1(|∂σ|)) =
⊕

Z/p, where this sum is finite. So
ω−1(|σ|) will be obtained from ω−1(|∂σ|) by attaching cells of dim ≥ n+2 in
order to kill off the higher homotopy groups of ω−1(|∂σ|), and achieve that
ω−1(|σ|) = K(

⊕
Z/p, n).

If n = 1 and dimL > 2, then the 2-skeleton L(2) is dealt with as described
above, that is, by attaching a K(Z/p, 1) to ∂σ, for each 2-simplex σ ∈ L(n+1).
To be more precise, this means attaching a 2-cell using a map of degree p
from the boundary of the 2-cell to ∂σ, for every 2-simplex σ of L, and then
proceeding by attaching cells of dim ≥ 3 to form a K(Z/p, 1) on top of
each of these Moore spaces. However, the above mentioned 2-cells are not
the only ones that get attached here; we will have to attach more of these.
Namely, when k > 2, then for any k-simplex σ of L, there will be 2-cells
γ ⊂ ω−1(|σ|) \ ω−1(|∂σ|), attached by a map ∂γ → ω−1(|∂σ|) representing a
commutator in π1(ω

−1(∂σ)). This is to ensure that π1(ω
−1(|σ|)) =

⊕
Z/p.
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We proceed by attaching cells of dimension ≥ 3 to achieve that ω−1(|σ|) =
K(

⊕
Z/p, 1).

The following fact is proven in [3, Lemma 8.1], and (ivZ/p) is clear from
our construction above.

Lemma 1.6. For the groups Z and Z/p, for any n ∈ N and for any simpli-
cial complex L, there is an Edwards–Walsh resolution ω : EW(L,G, n)→ |L|
with the additional property for n > 1:

(ivZ) the (n+ 1)-skeleton of EW(L,Z, n) is equal to L(n);
(ivZ/p) the (n+1)-skeleton of EW(L,Z/p, n) is obtained from L(n) by attaching

(n+1)-cells by a map of degree p to the boundary ∂σ, for every (n+1)-
dimensional simplex σ.

Here are some other properties following from the construction of Ed-
wards-Walsh complexes for the groups Z/p.

Remark 1.7. Let L be a simplicial complex, let σ be any simplex of L
with dimσ > n, and let (EW(L,Z/p, n), ω) be an Edwards-Walsh resolution
of L. According to Remark 1.5, ω−1(|σ|) = EW(σ,Z/p, n) and from the
construction of EW(L,Z/p, n), we have that the number of summands in
πn(ω

−1(|σ|)) ∼=
⊕

Z/p is less than or equal to the number of the (n+1)-faces
of σ.

From this Remark and our construction, we get:

Corollary 1.8. Let σ be a simplex with dimσ > n, taken as a simplicial
complex, and let (EW(σ,Z/p, n), ω) be an Edwards-Walsh resolution of σ.
Then

(I) Hn(|σ(n)|) ∼=
⊕r

1 Z, and
(II) Hn(EW(σ,Z/p, n)) ∼=

⊕r
1 Z/p,

where r ≤ the number of all (n+ 1)-faces of σ. Moreover,

(III) we can choose τ1, . . . , τr to be some (n+1)-faces of σ so that the images
h1, . . . , hr of the generators of Hn(∂τ1), . . . , Hn(∂τr), induced by the
inclusions ∂τi →֒ σ(n), form a basis of Hn(|σ(n)|). Then if q1, . . . , qr
are the images of the generators of Hn(∂τ1), . . . , Hn(∂τr), induced by
the inclusions ∂τi →֒ EW(σ,Z/p, n), and λ∗ = Hn(λ) is induced by the
inclusion λ : σ(n) →֒ EW(σ,Z/p, n), we get that q1 = λ∗(h1), . . . , qr =
λ∗(hr) form a basis of Hn(EW(σ,Z/p, n)).

The following lemma is proven in [3, Lemma 8.2]. It concerns (approxi-
mately) lifting maps through EW-complexes:

Lemma 1.9. Let X be a compact metrizable space with dimG X ≤ n, and
let L be a finite simplicial complex. Then for every Edwards–Walsh resolution
ω : EW(L,G, n) → |L|, and for every map f : X → |L|, there exists a map
f ′ : X → EW(L,G, n) such that
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(i) f ′|f−1(|L(n)|) = f |f−1(|L(n)|), and

(ii) ω ◦ f ′ is an L-modification of f .

Our primary construction will be done in the Hilbert cube Q – our space
X is compact metrizable, and Q is universal for all compact metrizable spaces.

Let the Hilbert cube Q =
∏∞

i=1 I be endowed with the metric ρ such that

if x = (xi), y = (yi), then ρ(x, y) =
∑∞

i=1
|xi−yi|

2i . As usual, I = [0, 1]. For

any i ∈ N it will be convenient to write Q = Ii ×Qi in factored form. In this
case, any subset E of Ii will always be treated as E × {0} ⊂ Q. We shall use
pi : Q→ Ii for coordinate projection.

In some of the proofs that follow we will use stability theory, about which
more details can be found in [7, §VI.1]. Namely, we will use the consequences
of [7, Theorem VI.1.]: if X is a separable metrizable space with dimX ≤ n,
then for any map f : X → In+1 all values of f are unstable. A point y ∈
f(X) is called an unstable value of f if for every δ > 0 there exists a map
g : X → In+1 such that:

1. d(f(x), g(x)) < δ for every x ∈ X , and
2. g(X) ⊂ In+1 \ {y}.

Moreover, this map g can be chosen so that g = f on the complement of
f−1(U), for any given open neighborhood U of y, and so that g is homotopic
to f (see [11, Corollary I.3.2.1]).

The following lemma is a form of the homotopy extension theorem with
control, and can be found in [1, Lemma 2.1].

Lemma 1.10. Let f : X → R be a map of a compact polyhedron X to a
space R, X0 be a closed subpolyhedron of X, and U be an open cover of R.
Suppose that F : X0 × I → R is a U-homotopy of f |X0 . Then there exists a
U-homotopy H : X × I → R of f such that H |X0×I = F : X0 × I → R.

Notation. We will use the following notation. Let x belong to a metric space
X and let δ > 0. Then by N(x, δ) we shall mean the closed δ-neighborhood
of x in X . Usually there will be no ambiguity, but notice that for x ∈ Q,
pi(x) ∈ Ii so N(pi(x), δ) will always refer to the closed δ-neighborhood of
pi(x) in Ii, even though pi(x) might also be contained in some subsets of Ii.
If σ is a simplex in a triangulation τ of a polyhedron P , then N(σ, δ) will
stand for the open δ-neighborhood of σ in P .

Whenever (Pi, g
i+1
i ) is an inverse sequence, Ti ⊂ Pi and gi+1

i (Ti+1) ⊂ Ti

for each i, then we shall write (Ti, g
i+1
i ) for the induced inverse sequence,

using the same notation for the bonding maps as long as no confusion can
arise.

Whenever P is a polyhedron, τ is a triangulation of P , and k ≥ 0, then
P (k) will denote the subpolyhedron of P triangulated by the k-skeleton of
τ , i.e., P (k) = |τ (k)|. If R is a subpolyhedron of P and we have to build
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an Edwards-Walsh complex on τ |R, we will write EW(R,Z/p, n) instead of
EW(τ |R,Z/p, n), to keep matters simpler.

2. Technical lemmas

The following type of result is a lemma which is technical, but which
will help us find certain maps and understand their fibers. This lemma can
be found in [1, Lemma 3.1]. Once the correct conditions are found on the
construction of said maps, then Theorem 1.1 will follow readily.

Lemma 2.1. Suppose that for each i ∈ N we have selected ni ∈ N, a
compact subset Pi ⊂ Ini , δi > 0, εi > 0, and a map gi+1

i : Pi+1 → Pi so that:

(i) if u, v ∈ Q and ρ(u, v) ≤ εi+1, then ρ(pni
(u), pni

(v)) < δi,
(ii) ni < ni+1,
(iii) 9

2ni
< εi,

(iv) ρ(gi+1
i (x), pni

(x)) < δi for all x ∈ Pi+1,
(v) δi <

1
2ni−1 , and

(vi) Pi+1 ×Qni+1 ⊂ Pi ×Qni
.

Put X =
⋂∞

i=1 Pi × Qni
, P = (Pi, g

i+1
i ), and Z = limP. Then for each

z = (a1, a2, . . . ) ∈ Z ⊂
∏∞

i=1 Pi, and associated sequence (ai) in Q,

(a) (ai) is a Cauchy sequence in Q whose limit lies in X, and
(b) the function π : Z → X given by π(z) = lim

i→∞
(ai) is continuous.

Fix x ∈ X and for each i ∈ N, let Bx,i = N(pni
(x), 2δi) ∩ Pi, B

#
x,i =

N(pni
(x), εi) ∩ Pi. Then,

(c) Bx,i ⊂ B#
x,i and gi+1

i (B#
x,i+1) ⊂ Bx,i.

If we let Px = (Bx,i, g
i+1
i ) and P#

x = (B#
x,i, g

i+1
i ), then,

(d) limPx = limP#
x , and

(e) π−1(x) = limPx.

In addition, suppose we are given, for each i ∈ N, a closed subspace
Ti ⊂ Pi in such a manner that gi+1

i (Ti+1) ⊂ Ti. Put T = (Ti, g
i+1
i ) and

Z ′ = limT ⊂ Z. For x ∈ X, let Sx,i = Bx,i ∩ Ti, Tx = (Sx,i, g
i+1
i ); set

π̃ = π|Z′ : Z ′ → X. Then,

(f) π̃−1(x) = limTx, and
(g) if Sx,i 6= ∅ for each i, then π̃−1(x) 6= ∅.

A helpful diagram for Lemma 2.1:

. . . Pi Pi+1
pni

|

gi+1
i

. . . Z

π

. . . Pi ×Qni
Pi ×Qni+1 . . . X
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Before proceeding, note that if L is a simplicial complex, K a CW-
complex, and f : |L| → K a map, then we say that f is cellular if it is
cellular with respect to the CW-structure induced on |L| by L and the given
one of K, i.e., f takes the (simplicial) n-skeleton of L to the (CW) n-skeleton
of K, ∀n.

The following corollary is a version of [1, Corollary 3.2], adapted for the
Z/p-case. When used (in the proof of the main theorem), Ak can be replaced
by Zk (not just by Ak of Theorem 1.1).

Corollary 2.2. Suppose in Lemma 2.1 that for each i ∈ N, Pi = |τi| is
a nonempty subpolyhedron of Ini having a triangulation τ̃i, with a subdivision
τi with mesh τi < δi, so that for every simplex γ of τ̃i, τi|γ is collapsible.

Moreover, assume that gi+1
i is a simplicial map (in particular, for all k ≥ 0,

gi+1
i (P

(k)
i+1) ⊂ P

(k)
i , where τi+1 and τi are the relevant triangulations). Let

l1 ≤ l2 ≤ . . . be a sequence in N, and let

Tk = (P
(lk)
i , gi+1

i ), and Ak = limTk.

Then A1 ⊂ A2 ⊂ . . . , and for each k ≥ 1,

(I) dimAk ≤ lk and π|Ak
: Ak → X is surjective.

Assume further that for each x ∈ X and i ∈ N, there is a contractible
polyhedron Px,i which is the closed star of a vertex in the triangulation τ̃i,
such that

Bx,i ⊂ Px,i ⊂ B#
x,i.

Then

(II) π : Z → X is a cell-like map, and

(III) for each k ∈ N, π|Ak
: Ak → X is a UVlk−1-map.

Suppose now that all of the above statements are true, and let k ∈ N. If for
infinitely many indexes i we have that for all x ∈ X, ω ◦ f̄i(Px,i+1) ⊂ Px,i,

and gi+1
i |Px,i+1 ≃ ω◦ f̄i|Px,i+1 , where ω : EW(Pi,Z/p, lk)→ Pi is an Edwards–

Walsh projection, and f̄i : Pi+1 → EW(Pi,Z/p, lk) is a cellular map, then

(IV) π|Ak
: Ak → X is a Z/p -acyclic map.

Before showing the proof of Corollary 2.2, we will state and prove some
lemmas which will be useful for its proof.

Lemma 2.3. Let n ∈ N, and let P = |L| and Q = |M | be compact
polyhedra with dimP , dimQ ≥ n+1. For any (n+1)-simplex τe of M , let he

and qe be the images of a generator of Hn(∂τe) under the homomorphisms of
Hn(∂τe) induced by the inclusions ∂τe →֒ |M (n)| and ∂τe →֒ EW(M,Z/p, n),
respectively.

Let µ, ν and λ be the inclusions as shown in the upcoming diagram, and let
f : |L| → EW(M,Z/p, n) be a cellular map making this diagram commutative.

Moreover, let M be such that:
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(I) Hn(|M (n)|) ∼=
⊕r

1 Z, and
(II) Hn(EW(M,Z/p, n)) ∼=

⊕r
1 Z/p,

where r ≤ the number of all (n+ 1)-simplexes of M ; and

(III) we can choose some (n+1)-simplexes τ1, . . . , τr of M so that {h1, . . . ,
hr} forms a basis of Hn(|M (n)|), and so that {q1, . . . , qr} forms a basis
of Hn(EW(M,Z/p, n)).

Then for any (n+ 1)-simplex σ ∈ L, with Hn(∂σ) = 〈g〉, we have:

(a) f ◦ ν ◦ µ is null-homotopic, so
(b) Hn(f ||L(n)| ◦ µ)(g) =

∑r
e=1 εehe, where εe ≡ 0 (mod p), for e ∈

{1, . . . , r} .

EW(M,Z/p, n)

ω

|L|

f

|M |

|L(n)|

ν

f |
|M (n)|

λ

∂σ

µ

Proof. : Since ∂σ is contained in σ, which is contractible, the inclusion
ν ◦ µ : ∂σ →֒ |L| is null-homotopic. Therefore f ◦ ν ◦ µ is null-homotopic, so
(a) is true.

To prove (b), notice that f being a cellular map implies

f(|L(n)|) ⊂ EW(M,Z/p, n)(n) = |M (n)|.

It is clear that f ◦ ν ◦ µ = λ ◦ f ||L(n)| ◦ µ. So (a) implies

0 = Hn(f ◦ ν ◦ µ)(g) = Hn(λ ◦ f ||L(n)| ◦ µ)(g).

From (III) we get that Hn(f ||L(n)| ◦ µ)(g) =
∑r

e=1 εehe, for some εe ∈ Z,
and therefore

Hn(λ ◦ f ||L(n)| ◦ µ)(g) = Hn(λ)(

r∑

e=1

εehe) =

r∑

e=1

εeqe = 0,

which means that εe ≡ 0 (mod p), ∀e ∈ {1, . . . , r}.

Some form of the following lemma was used by various authors.
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Lemma 2.4. Let n ∈ N, P = |L̃| be a compact polyhedron with dimP ≥

n+1 and M̃ be the closed star of a vertex from L̃(0). Let L be a subdivision of

L̃ such that for every simplex σ of L̃, L||σ| is a collapsible simplicial complex.

Let M be the simplicial complex that L induces on |M̃ |, i.e., M = L||M̃|

(subdivided vertex star). Then

(I) Hn(|M (n)|) ∼=
⊕r

1 Z, and
(II) Hn(EW(M,Z/p, n)) ∼=

⊕r
1 Z/p,

where r ≤ the number of all (n+ 1)-simplexes of M . Moreover,

(III) we can choose τ1, . . . , τr to be some (n+1)-simplexes of M so that the
images h1, . . . , hr of the generators of Hn(∂τ1), . . . , Hn(∂τr), induced
by the inclusions ∂τi →֒ M (n), form a basis of Hn(|M (n)|). Then
if q1, . . . , qr are the images of the generators of Hn(∂τ1), . . . , Hn(∂τr),
induced by the inclusions ∂τi →֒ EW(M,Z/p, n), and Hn(λ) is induced
by the inclusion λ : M (n) →֒ EW(M,Z/p, n), we get that q1 =
Hn(λ)(h1), . . . , qr = Hn(λ)(hr) form a basis of Hn(EW(M,Z/p, n)).

We will omit the proof to save space. On the way to proving this Lemma,
one can first use Corollary 1.8 (containing the statement analogous to this
one, but for a simplex) in order to prove analogous statements for a (non-
subdivided) vertex star, and then for a subdivided simplex with a collapsible
subdivision.

Then Lemma 2.4 can be proven by first proving its statement for dimM =
n+ 1, and then, by induction, showing it is true for dimM = n+ k + 1. The
general step of induction would utilize another induction, on the number of

(n + k + 1)-simplexes of M̃ , as well as a Mayer-Vietoris sequence. We used

a collapsible subdivision on simplexes of M̃ so that we could organize the
process of induction. The information about the existence of subdivisions
of a triangulation on a simplicial complex, in which a simplex with a new
subdivision is still collapsible can be found in [6].

Remark 2.5. When M is a subdivided vertex star from Lemma 2.4, then
Lemma 2.3 is true for Q = |M | and |M (n)| is (n− 1)-connected.

Proof of Corollary 2.2. Surely dimAk ≤ lk. Let x ∈ X. Apply

Lemma 2.1 with Ti = P
(lk)
i and

Sx,i = Bx,i ∩ P
(lk)
i .

Then T becomes Tk and

Z ′ = limTk = lim(P
(lk)
i , gi+1

i ) = Ak.

Note that the representation of X implies that pni
(X) ⊂ Pi, ∀i ∈ N. This

fact, together with mesh τi < δi, can be used to check that Bx,i must contain
a vertex of τi, so Sx,i 6= ∅. Therefore (g) of Lemma 2.1 shows that (I) is true.
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Part (c) of Lemma 2.1 and the fact that Bx,i ⊂ Px,i ⊂ B#
x,i ∀i ∈ N, show

that ∀i ∈ N, gi+1
i (Px,i+1) ⊂ Px,i, so P′

x := (Px,i, g
i+1
i ) is an inverse sequence.

Clearly (see (d) and (e) of Lemma 2.1), limP′
x = π−1(x). Now P′

x is an
inverse sequence of contractible polyhedra. Hence (II) is true.

To get at (III), first observe that by (f) of Lemma 2.1, the fiber
(π|Ak

)−1(x) is the limit of the inverse sequence (Sx,i, g
i+1
i ). On the other

hand, for each i ∈ N, Bx,i ⊂ Px,i ⊂ B#
x,i, gi+1

i (P
(lk)
i+1 ) ⊂ P

(lk)
i , and

gi+1
i (B#

x,i+1) ⊂ Bx,i. So one deduces that

gi+1
i (P

(lk)
x,i+1) ⊂ gi+1

i (B#
x,i+1)∩g

i+1
i (P

(lk)
i+1 ) ⊂ Bx,i∩P

(lk)
i ⊂ Px,i∩P

(lk)
i = P

(lk)
x,i .

ThusP
′(lk)
x := (P

(lk)
x,i , gi+1

i ) is an inverse sequence of compact polyhedra. Since

Sx,i ⊂ P
(lk)
x,i and

gi+1
i (P

(lk)
x,i+1) ⊂ Bx,i ∩ P

(lk)
i = Sx,i,

it is clear that limP
′(lk)
x is the same as the limit of the inverse sequence

(Sx,i, g
i+1
i ), i.e., that

(π|Ak
)−1(x) = lim (Sx,i, g

i+1
i ) = lim (P

(lk)
x,i , gi+1

i ).

We shall show that for each i ∈ N, if 0 ≤ r ≤ lk − 1 and h : Sr → P
(lk)
x,i is

a map, then h is homotopic to a constant map. Since dimSr = r < lk, h is

homotopic in P
(lk)
x,i to a map that carries Sr into P

(lk−1)
x,i (see remark about

stability theory). But Px,i is contractible, so the inclusion P
(lk−1)
x,i →֒ P

(lk)
x,i

is null-homotopic. This shows that h : Sr → P
(lk)
x,i is null-homotopic. So all

fibers of π|Ak
are UVlk−1.

To prove (IV), we need to show that any fiber of π|Ak
is Z/p -acyclic,

i.e., for infinitely many indexes i, the map gi+1
i |

P
(lk)

x,i+1

: P
(lk)
x,i+1 → P

(lk)
x,i

induces the zero-homomorphism of cohomology groups Hm(P
(lk)
x,i ;Z/p) →

Hm(P
(lk)
x,i+1;Z/p), for all m ∈ N (we need not worry about m = 0 because

the P
(lk)
x,i ’s are (lk − 1)-connected, so their reduced zero-cohomology groups

are trivial). We will be focusing on those indexes i for which gi+1
i |Px,i+1

≃ ω ◦ f̄i|Px,i+1 , as mentioned in the conditions of Corollary 2.2.

It is, in fact, enough to show that the map gi+1
i |

P
(lk)

x,i+1

: P
(lk)
x,i+1 → P

(lk)
x,i

induces the zero-homomorphism of homology groups with Z/p-coefficients.
Here is why this is true. Notice that each of Px,i+1 and Px,i is a closed vertex
star (in the coarser triangulation), subdivided so that each original simplex
of the vertex star is collapsible as a simplicial complex. So Lemma 2.4 (for
n = lk) is true for both |M | = Px,i+1 and |M | = Px,i. Therefore property
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(I) of Lemma 2.4 is true for both P
(lk)
x,i+1 and P

(lk)
x,i , and both are (lk − 1)-

connected. Therefore by the Universal Coefficients Theorem for homology
and cohomology we have

Hm(P
(lk)
x,i+1;Z/p)

∼= Hm(P
(lk)
x,i+1)⊗ Z/p, ∀m ≥ 1, and

Hm(P
(lk)
x,i+1;Z/p)

∼= Hom(Hm(P
(lk)
x,i+1),Z/p), ∀m ≥ 1,

and for P
(lk)
x,i analogously, and these expressions are non-zero only for m = lk.

So if the map gi+1
i |

P
(lk)

x,i+1

: P
(lk)
x,i+1 → P

(lk)
x,i induces the zero-homomorphism

Hlk(g
i+1
i ;Z/p) : Hlk(P

(lk)
x,i+1;Z/p) → Hlk(P

(lk)
x,i ;Z/p), then for any ϕ ∈ Hom

(Hlk(P
(lk)
x,i ),Z/p), we have ϕ◦Hlk(g

i+1
i ) = 0 ∈ Hom(Hlk(P

(lk)
x,i+1),Z/p), that is,

the induced homomorphism H lk(gi+1
i ;Z/p) : H lk(P

(lk)
x,i ;Z/p) → H lk(P

(lk)
x,i+1;

Z/p) is the zero-homomorphism.

So let us show that Hlk(g
i+1
i ;Z/p) : Hlk(P

(lk)
x,i+1;Z/p) → Hlk(P

(lk)
x,i ;Z/p)

is the zero-homomorphism. Before proceeding, note that by Remark 1.5,
given an EW-resolution ω : EW(Pi,Z/p, lk)→ Pi, we know that ω−1(Px,i) =
EW(Px,i,Z/p, lk), so ω|ω−1(Px,i) : EW(Px,i,Z/p, lk) → Px,i is also an EW-
resolution.

Let σ be any (lk + 1)-simplex of Px,i+1, and let gσ be a generator of

Hlk(∂σ). Let µ : ∂σ →֒ P
(lk)
x,i+1, ν : P

(lk)
x,i+1 →֒ Px,i+1, and λ : P

(lk)
x,i →֒

EW(Px,i,Z/p, lk) be the inclusions. Notice that ω ◦ f̄i(Px,i+1) ⊂ Px,i implies
that f̄i(Px,i+1) ⊂ EW(Px,i,Z/p, lk), and since f̄i is a cellular map, we also

have f̄i(P
(lk)
x,i+1) ⊂ EW(Px,i,Z/p, lk)

(lk) = P
(lk)
x,i .

EW(Pi,Z/p, lk)

ω EW(Px,i,Z/p, lk)

ω|Pi+1

f̄i

gi+1
i

Pi

Px,i+1

gi+1
i

|

f̄i|

Px,i

P
(lk)
x,i+1

ν

gi+1
i

|

f̄i|
P

(lk)
x,i

λ

∂σ

µ
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Since Lemma 2.3 is true for |M | = Px,i and n = lk, we have f̄i|Px,i+1 ◦ ν ◦µ =

λ ◦ f̄i|P (lk)

x,i+1

◦ µ is null-homotopic, and

Hlk(f̄i|P (lk)

x,i+1

◦ µ)(gσ) =
r∑

e=1

εehe ∈ Hlk(P
(lk)
x,i ), where εe ≡ 0 (mod p).

By Lemma 2.4 applied to Px,i+1 with n = lk, we can select σ1, . . . , σs

to be some (lk + 1)-simplexes of Px,i+1 so that the images g1, . . . , gs of the

generators of Hlk(∂σ1), . . . , Hlk(∂σs) induced by the inclusions ∂σj →֒ P
(lk)
x,i+1

form a basis for Hlk(P
(lk)
x,i+1).

Then for any g ∈ Hlk(P
(lk)
x,i+1),

Hlk(f̄i|P (lk)

x,i+1

)(g) = Hlk(f̄i|P (lk)

x,i+1

)(

s∑

j=1

mjgj) =

s∑

j=1

mj(

r∑

e=1

εj,ehe),

where mj ∈ Z, and εj,e ≡ 0 (mod p).

Finally, since we know that gi+1
i |Px,i+1 ≃ ω ◦ f̄i|Px,i+1 and ω|

P
(lk)

x,i

= id, we

have that gi+1
i |

P
(lk)

x,i+1

≃ f̄i|P (lk)

x,i+1

. Therefore Hlk(g
i+1
i |

P
(lk)

x,i+1

) = Hlk(f̄i|P (lk)

x,i+1

),

so the last equation implies that Hlk(g
i+1
i |

P
(lk)

x,i+1

;Z/p) is the zero-homomor-

phism.

3. Proof of Theorem 1.1

Proof of Theorem 1.1. : Choose a function ν : N → N such that for
each i ∈ N,

(i) ν(i) ≤ i, and
(ii) ν−1(i) is infinite.

One may assume that X ⊂ Q = Hilbert cube. We are going to
prove the existence for each k ∈ N ∪ {∞} of a certain sequence Sj =
(nj , (P k

j ), εj , δj , (τ̃kj )), (τ
k
j )), j ∈ N, of entities, and a sequence of maps

(gj+1
j ), j ∈ N, such that:

• nj ∈ N;
• P 1

j ⊂ P 2
j ⊂ · · · ⊂ P∞

j are compact subpolyhedra of Inj ;
• εj, δj > 0;
• τ̃∞j is a triangulation of P∞

j , τ∞j is a subdivision of τ̃∞j ,

τ̃kj = τ̃∞j |Pk
j
is a triangulation of P k

j , τkj = τ∞j |Pk
j
is a subdivision of

τ̃kj , (we will consider P∞
j = (P∞

j , τ∞j ) and P k
j = (P∞

j , τkj ));

• gj+1
j : P∞

j+1 → P∞
j is a simplicial map relative to τ∞j+1 and τ∞j .
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A diagram that might help:

P 1
1 = P∞

1 ⊂ In1

P 1
2

g21 |

P 2
2 = P∞

2

g21

⊂ In2

P 1
3

g32 |

P 2
3

g32 |

P 3
3 = P∞

3

g32

⊂ In3

.

..

g43 | g43 | g43 |

.

..

g43

.

..

P 1
j P 2

j · · · P j−1
j P j

j = P∞
j

g
j
j−1

⊂ Inj

P 1
j+1

gi+1
i

|

P 2
j+1

gi+1
i

|

· · · P j−1
j+1

gi+1
i

|

P j
j+1

gi+1
i

|

P j+1
j+1 = P∞

j+1

g
j+1
j

⊂ Inj+1

We shall require that for each j ∈ N and k ∈ N:

(1)j>1 nj−1 < nj ;

(2)j≥1 if j ≤ k <∞, then P k
j = P∞

j and P r
j ⊂ intInj P r+1

j whenever r < j;

(3)j≥1 X ⊂ intQ(P
∞
j ×Qnj

) ⊂ N(X, 2j ), and,

whenever k < j, Xk ⊂ intQ(P
k
j ×Qnj

) ⊂ N(Xk,
2
j );

(4)j>1 pnj−1(P
k
j ) ⊂ intInj−1 P k

j−1;
(5)j>1 if u, v ∈ Q and ρ(u, v) ≤ εj , then ρ(pnj−1(u), pnj−1(v)) < δj−1;

(6)j≥1
9

2nj < εj ;

(7)j≥1 δj <
1

2nj−1 ;

(8)j≥1 τ∞j ||γ| is collapsible ∀γ ∈ τ̃∞j and mesh τ∞j <
δj
2 ;

(9)j≥1 if x ∈ X , then there exists a contractible subpolyhedron P∞
x,j of P∞

j ,
which is the closed star of a vertex in the triangulation τ̃∞j , i.e., P∞

x,j =

St(v, τ̃∞j ) for some v ∈ (τ̃∞j )(0), and such that N(pnj
(x), 2δj) ∩ P∞

j ⊂

P∞
x,j ⊂ N(pnj

(x), εj) ∩ P∞
j ; (P∞

x,j is considered with the triangulation

τ∞j , so it is a subdivided vertex star);
if k < j, and x ∈ Xk, then there exists a contractible subpolyhedron
P k
x,j of P k

j , which is the closed star of a vertex in the triangulation

τ̃kj , i.e., P k
x,j = St(v, τ̃kj ) for some v ∈ (τ̃kj )

(0), and such that

N(pnj
(x), 2δj) ∩ P k

j ⊂ P k
x,j ⊂ N(pnj

(x), εj) ∩ P k
j ; (P

k
x,j is considered

with the triangulation τkj ). This statement is also true when k ≥ j,

because then P k
x,j = P∞

x,j , P
k
j = P∞

j and Xk ⊂ X ;
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(10)j>1 whenever x ∈ P∞
j there exists a simplex σ of τ∞j−1 such that gjj−1(x) ∈

σ, and pnj−1(x) lies in N(σ,
δj−1

2 ) (and therefore, it follows from here

and (8)j−1 that, ρ(gjj−1(x), pnj−1 (x)) < δj−1/2 + δj−1/2 = δj−1 for all

x ∈ P∞
j );

(11)j>1 gjj−1(P
k
j ) ⊂ P k

j−1; and

(12)j>1 gjj−1|Pν(j−1)
j

≃ ω◦ f̄j−1, where ω : EW(P
ν(j−1)
j−1 ,Z/p, lν(j−1))→ P

ν(j−1)
j−1

is an Edwards–Walsh projection, and f̄j−1 : P
ν(j−1)
j → EW(P

ν(j−1)
j−1 ,

Z/p, lν(j−1)) is a cellular map. Moreover, for all x ∈ Xν(j−1), we have

that ω ◦ f̄j−1(P
ν(j−1)
x,j ) ⊂ P

ν(j−1)
x,j−1 , and gjj−1|Pν(j−1)

x,j

≃ ω ◦ f̄j−1|Pν(j−1)
x,j

.

EW(P
ν(j−1)
j−1 ,Z/p, lν(j−1))

ω EW(P
ν(j−1)
x,j−1 ,Z/p, lν(j−1))

ω|P
ν(j−1)
j

f̄j−1

g
j
j−1 |

P
ν(j−1)
j−1

P
ν(j−1)
x,j

g
j
j−1

|

f̄j−1|

P
ν(j−1)
x,j−1

Before proving the existence of such data, let us see why they would imply
the conclusion of Theorem 1.1. For each i ∈ N, let P∞

i correspond to Pi from
the statement of Lemma 2.1. Applying (5), (1), (6), (10) and (7), one sees
that the conditions (i)–(v) of Lemma 2.1 are clearly true. Condition (4)i+1

implies (vi) and one may use (3) to see that

X =

∞⋂

i=1

P∞
i ×Qni

.

Let

Z := lim(P∞
i , gi+1

i ).

Surely Z is a metrizable compactum, and we get the map π : Z → X defined
by the formula given in Lemma 2.1 (b).

To see that π is surjective, for each i ∈ N let Ti = Pi = P∞
i (in

Lemma 2.1). According to the notation of the last part of Lemma 2.1,
one sees that for x ∈ X , Sx,i = Bx,i = N(pni

(x), 2δi) ∩ P∞
i (while

B#
x,i = N(pni

(x), εi) ∩ P∞
i ). Notice that the first part of (2)i together with

(3)i implies

(13) pni
(X) ⊂ intIni P∞

i , and ∀k ∈ N, pni
(Xk) ⊂ intIni P k

i .
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So pni
(x) ∈ P∞

i and therefore pni
(x) ∈ Bx,i, showing that the latter is

not empty. The map π̃ is the same as π in this setting, so (g) of Lemma 2.1
shows that π is surjective.

One then checks that all the hypotheses of Corollary 2.2 except for the
very last one (which we do not need yet) are also satisfied. Thus (I)–(III)
of Corollary 2.2 hold true, so π is a cell-like map, and we are assured of the
existence of the closed subspaces Ak, k ≥ 1, where

Ak := lim((P∞
i )(lk), gi+1

i ),

as required by Theorem 1.1 so that dimAk ≤ lk, and when k ∈ N, π carries
Ak in a UVlk−1 manner onto X .

We must identify the closed subspaces Z1 ⊂ Z2 ⊂ . . . of Z, prove they
satisfy (a)–(c) of Theorem 1.1, and show that Zk ⊂ Ak when k ∈ N. Fix
k ∈ N. In the last part of Lemma 2.1, instead of putting Ti = P∞

i , as we just

did to obtain Z, π, and the sets Ak, this time put Ti = (P k
i )

(lk). Using (11),

the fact that τki = τ∞i |Pk
i
, and that gi+1

i is simplicial from τ∞i+1 to τ∞i , one

sees that

(14) gi+1
i ((P k

i+1)
(lk)) ⊂ (P k

i )
(lk).

Now let

Zk := lim((P k
i )

(lk), gi+1
i ),

i.e., Tk = ((P k
i )

(lk), gi+1
i ), and Zk = limTk. Using (2) we see that P k

i ⊂ P∞
i

for all i ∈ N. Of course, (P k
i )

(lk) ⊂ (P∞
i )(lk), and we deduce that Zk ⊂ Ak

as requested in Theorem 1.1. Moreover, dimZk ≤ dimAk ≤ lk, so (a) of
Theorem 1.1 has been resolved. It is also clear that Z1 ⊂ Z2 ⊂ . . . as required
by Theorem 1.1.

Next put π̃k = π|Zk : Zk → X . If (a1, a2, . . . ) is a thread of Zk, then
ai ∈ P k

i for each i ∈ N. Taking into account (b) of Lemma 2.1, as well as (3)i
which implies that

(15) Xk =

∞⋂

i=1

P k
i ×Qni

,

one sees that π̃k(Zk) ⊂ Xk.
Suppose now that x ∈ Xk. With the choice of Ti = (P k

i )
(lk), the sets Sx,i

in the last part of Lemma 2.1 become Sx,i = Bx,i ∩ (P k
i )

(lk).
If we can show that for each i ∈ N, Sx,i 6= ∅, then (g) of Lemma 2.1 would

yield π̃k(Zk) ⊃ Xk. Indeed, it is sufficient to show that B#
x,i ∩ (P k

i )
(lk) 6= ∅,

since B#
x,i+1 ∩ (P k

i+1)
(lk) maps into Sx,i under g

i+1
i (see (c) of Lemma 2.1 and

(14)). Because of (15), x ∈ P k
i ×Qni

, so pni
(x) ∈ P k

i . Applying (6)i–(8)i, we

find a vertex v ∈ (P k
i )

(0) ⊂ (P k
i )

(lk) such that ρ(pni
(x), v) < δi

2 < 1
2ni

< εi.

This means v ∈ B#
x,i ∩ (P k

i )
(lk), i.e., B#

x,i ∩ (P k
i )

(lk) 6= ∅. Therefore (b) of
Theorem 1.1 is true.
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Finally, after replacing Ak from the statement of Corollary 2.2 with Zk,
the ultimate condition of Corollary 2.2, involving infinitely many indexes, is
now operative because of (i) and (ii) of this section, and (12) for ν(i− 1) = k.
If we apply (IV) of Corollary 2.2, then we find that π̃k = π|Zk

: Zk → Xk is
a Z/p-acyclic map. Thus, our proof of Theorem 1.1 will be complete once we
have obtained the information in statements (1)–(12).

Inductive construction begins : For the basis of the induction (j = 1), we
choose n1 = l1 and P k

1 = In1 = I l1 for all k ∈ N ∪ {∞}. Thus (2)1 and (3)1
are satisfied. Next choose any ε1 > 9

2l1
, so (6)1 is satisfied. It remains to

produce δ1 > 0 and triangulations τ̃∞1 and τ∞1 of P∞
1 = I l1 so that (7)1–(9)1

are satisfied.
Begin by taking a triangulation τ̃∞1 of P∞

1 such that mesh τ̃∞1 < ε1
2 . The

open stars of the vertices in τ̃∞1 form a cover for P∞
1 = I l1 . Note that these

open stars are truly open sets in I l1 . For any x ∈ X , there exists a vertex
v of τ̃∞1 such that pl1(x) ∈ St(v, τ̃∞1 ). Note that for any y ∈ St(v, τ̃∞1 ),
ρ(y, pl1(x)) ≤ 2mesh τ̃∞1 < ε1, so St(v, τ̃∞1 ) ⊂ N(pl1(x), ε1) = N(pl1(x), ε1) ∩
P∞
1 .

Since U := {St(v, τ̃∞1 )| v ∈ (τ̃∞1 )(0)} is a cover for P∞
1 which is compact,

let λ be a Lebesgue number of U . Pick a δ1 > 0 such that 4δ1 <
min

{
λ, 4

2l1−1

}
. Now (7)1 is also satisfied. Then for any x ∈ X , the closed

ball N(pl1(x), 2δ1) is contained in some St(v, τ̃∞1 ), for a vertex v ∈ (τ̃∞1 )(0).
Pick one such star, and call its closure P∞

x,1. Notice that P∞
x,1 is contractible.

Thus we get (9)1 for x ∈ X : N(pl1(x), 2δ1) = N(pl1(x), 2δ1) ∩ P∞
1 ⊂ P∞

x,1 ⊂

N(pl1(x), ε1) ∩ P∞
1 . Finally, choose a triangulation τ∞1 so that it refines τ̃∞1 ,

and so that (8)1 is satisfied.
Assume that we have completed the construction of Sj for 1 ≤ j ≤ i,

and gj+1
j for 1 ≤ j ≤ i − 1. Choose an open cover V of P∞

i having the

property that meshV < δi
2 . Then select a finer open cover W such that

any two W-near maps of any space into P∞
i are V-homotopic. Let τ be a

subdivision of τ∞i such that N(St(v, τ), ε̃) lies in an element of W , for every
vertex v ∈ τ (0), where ε̃ > 0 is chosen so that: for any principal simplex σ
of the triangulation τ , all of the points of the open neighborhood N(σ, ε̃) are
at most one (principal) simplex away from σ (i.e., if u ∈ N(σ, ε̃) \ σ, then
u ∈ γ = a neighboring principal simplex of σ). (Surely this ε̃ exists because
P∞
i is compact. Also, it is clear that ε̃ ≤ mesh τ , and that it would be enough

to choose τ so that 2(mesh τ + ε̃) < some fixed Lebesgue number of W . Also
note that τ can be chosen so that τ ||γ| is still collapsible, ∀γ ∈ τ̃∞i .)

If i = 1, replace τ∞1 by τ , but continue to use the notation τ∞1 for it.
Note that properties (8)1 and (9)1, which are the only ones affected by this
change, are still true.
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If i > 1, choose a map µ : P∞
i → P∞

i which is simplicial from τ to τ∞i
and which is a simplicial approximation to the identity on P∞

i . Then the
map gii−1 ◦ µ is simplicial from τ to τ∞i−1, and f̄i−1 ◦ µ|Pν(i−1)

i

is cellular with

respect to the triangulation on P
ν(i−1)
i induced by τ for f̄i−1. If we replace

gii−1 by gii−1 ◦µ, f̄i−1 by f̄i−1 ◦µ|Pν(i−1)
i

, and τ∞i by τ , then all the conditions

(1)–(12) for index i still prevail (the only ones affected being (8)i–(12)i). So
we assume that these replacements have been made, but continue to use gii−1,

f̄i−1 and τ∞i to denote the respective bonding map, cellular map in (12)i and
triangulation.

Construction of the polyhedra P k
i+1 and the bonding map gi+1

i begins.
Apply Lemma 1.9 to Xν(i), which has dimZ/p Xν(i) ≤ lν(i), where ν(i) ≤ i,

and (using (13)) the map pni
|Xν(i)

: Xν(i) → P
ν(i)
i , to produce a map

f ′ : Xν(i) → EW(P
ν(i)
i ,Z/p, lν(i)) such that for any x ∈ Xν(i), when pni

(x)

lies in a particular simplex of P
ν(i)
i , then so does ω◦f ′(x). There is a principal

simplex σx of P
ν(i)
i that contains both ω ◦ f ′(x) and pni

(x). We can extend

f ′ over an open neighborhood Ũ of Xν(i) in the Hilbert cube Q, to get a map

f ′′ : Ũ → EW(P
ν(i)
i ,Z/p, lν(i)).

EW(P
ν(i)
i ,Z/p, lν(i))

ω

Ũ

f ′′

Xν(i) pni|

f ′

P
ν(i)
i

Now we can find a neighborhood U of Xν(i) in Ũ such that:

(16) for any u ∈ U , ω◦f ′′(u) and pni
(u) belong to the open ε̃–neighborhood

of some principal simplex σx of P
ν(i)
i .

Here is how we find U : since pni
is continuous (on Q ⊃ Ũ), for any x ∈ Xν(i),

and for the above ε̃, there exists an open neighborhood Q̃x of x in Ũ such

that pni
(Q̃x) ⊂ N(σx, ε̃). Since ω ◦ f ′(x) ∈ σx, then f ′(x) ∈ ω−1(σx) ⊂

ω−1(N(σx, ε̃)). Now f ′′(x) = f ′(x), so the continuity of f ′′ guarantees an open
neighborhood Q̄x of x with f ′′(Q̄x) ⊂ ω−1(N(σx, ε̃)). Of course, ω◦f ′′(Q̄x) ⊂
N(σx, ε̃).

Now let Qx := Q̃x ∩ Q̄x and define U :=
⋃

x∈X Qx. Clearly this U has
the needed property.

Using the uniform continuity of pni
on Q, choose εi+1 so that (5)i+1 holds:

if u, v ∈ Q are such that ρ(u, v) < εi+1, then ρ(pni
(u), pni

(v)) < δi.
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In order to choose ni+1: notice that one may find m0 ∈ N such that
if m ≥ m0, then X ⊂ pm(X) × Qm ⊂ N(X, 2

i+1 ), and for all k ≤ i, Xk ⊂

pm(Xk)×Qm ⊂ N(Xk,
2

i+1 ). Define ni+1 > max {li+1−1, ni,m0, log2(
9

εi+1
)}.

This ensures that properties (1)i+1 and (6)i+1 hold.
Now is the time to choose compact polyhedra P∞

i+1 = P i+1
i+1 , P

i
i+1, . . . ,

P
ν(i)
i+1 , . . . , P

1
i+1 in Ini+1 . First note that there is an open neighborhood Ṽ

of pni+1(X) in Ini+1 such that Ṽ × Qni+1 ⊂ N(X, 2
i+1 ). Choose a compact

polyhedron P∞
i+1 ⊂ Ini+1 so that

(17) pni+1(X) ⊂ intIni+1 P∞
i+1 ⊂ P∞

i+1 ⊂ Ṽ , and P∞
i+1 ⊂ p−1

ni
(intIni (P∞

i )).

This can be done because (3)i implies (13)∞i , i.e., pni
(X) = pni

(pni+1(X)) ⊂
intIni (P∞

i ), so pni+1(X) ⊂ p−1
ni

(intIni (P∞
i )). Note that (17) implies

properties (3)i+1 and (4)i+1 for P∞
i+1. To satisfy the first part of (2)i+1,

we name P k
i+1 = P∞

i+1 for all k ≥ i+ 1.

Let us now choose P k
i+1, for k = i, i−1, . . . , 1, which we do by a downward

recursion.
If k > ν(i), then here is how we make our choice: find an open

neighborhood Ṽk of pni+1(Xk) in Ini+1 such that Ṽk × Qni+1 ⊂ N(Xk,
2

i+1 ).

Choose a compact polyhedron P k
i+1 ⊂ Ini+1 so that

(18) pni+1(Xk) ⊂ intIni+1 P k
i+1 ⊂ P k

i+1 ⊂ Ṽk, and

P k
i+1 ⊂ p−1

ni
(intIni (P k

i ))
⋂

intIni+1 (P k+1
i+1 ).

This can be done because (3)i implies (13)ki , i.e., pni
(Xk) = pni

(pni+1(Xk))

⊂ intIni (P k
i ), so pni+1(Xk) ⊂ p−1

ni
(intIni (P k

i )). Also note that pni+1(Xk)

⊂ intIni+1 (P k+1
i+1 ), because before we reach the construction of P k

i+1, P
k+1
i+1 is

already constructed so that (13)k+1
i+1 is true, so pni+1(Xk+1) ⊂ intIni+1 (P k+1

i+1 ),
and also recall that Xk ⊂ Xk+1 ⊂ X .

Note that (18) implies properties (2)i+1 (the second part), (3)i+1 and
(4)i+1 for P k

i+1, when ν(i) < k ≤ i.
For k = ν(i), we require the above mentioned properties and, additionally,

that P
ν(i)
i+1 × Qni+1 ⊂ U , where U is the neighborhood of Xν(i) indicated in

(16).
For k < ν(i), proceed with the construction of P k

i+1 as in the case of
i ≥ k > ν(i). Conclude that properties (2)i+1–(4)i+1 are now true for all
k ∈ {1, 2, . . . , i} ∪ {∞} for which they apply.

Let f̃ := f ′′|
P

ν(i)
i+1 ×Qni+1

◦ i : P
ν(i)
i+1 → EW(P

ν(i)
i ,Z/p, lν(i)), where i :

P
ν(i)
i+1 → P

ν(i)
i+1 ×Qni+1 is the inclusion.

Choose δi+1 and triangulations τ̃∞i+1 and τ∞i+1 for P∞
i+1, which are also

triangulating all P k
i+1 for k < i (where τ̃ki+1 := τ̃∞i+1|Pk

i+1
and τki+1 := τ∞i+1|Pk

i+1
),

so that (7)i+1, (8)i+1 and (9)i+1 hold. Here is how this is done: begin by
taking a triangulation τ̃∞i+1 of P∞

i+1, which also triangulates all P k
i+1, such that
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mesh τ̃∞i+1 < εi+1

2 . The open stars in τ̃ki+1 of the vertices of τ̃ki+1 form a cover

Uk
i+1 = {St(v, τ̃ki+1)| v ∈ (τ̃ki+1)

(0)} for P k
i+1, where k ∈ {1, 2, . . . , i} ∪ {∞}.

Note that for x ∈ X , pni+1(x) has to belong to some St(v, τ̃∞i+1). Then

for any y ∈ St(v, τ̃∞i+1), ρ(y, pni+1(x)) ≤ 2mesh τ̃∞i+1 < εi+1, so St(v, τ̃∞i+1) ⊂

N(pni+1(x), εi+1)∩P
∞
i+1. Analogously, since for x ∈ Xk, pni+1(x) has to belong

to some St(v, τ̃ki+1) ⊂ St(v, τ̃∞i+1), we get St(v, τ̃
k
i+1) ⊂ N(pni+1(x), εi+1)∩P k

i+1,
for k ∈ {1, 2, . . . , i}.

On the other hand, since P k
i+1 is compact for k ∈ {1, 2, . . . , i}∪{∞}, each

cover Uk
i+1 of P k

i+1 has a Lebesgue number λk
i+1, k ∈ {1, 2, . . . , i}∪{∞}. Thus

it is enough to pick a δi+1 > 0 such that

4δi+1 < min

({
λk
i+1 : k ∈ {1, 2, . . . , i} ∪ {∞}

}
∪

{
4

2ni+1−1

})
.

Now (7)i+1 is satisfied. Also, for any x ∈ Xk, N(pni+1(x), 2δi+1) ∩ P k
i+1 is

contained in some St(v, τ̃ki+1), for a vertex v ∈ (τ̃ki+1)
(0). Pick one such star,

and call its closure P k
x,i+1. Notice that P k

x,i+1 is contractible. Thus we get
(9)i+1 for k < i+ 1:

N(pni+1(x), 2δi+1) ∩ P k
i+1 ⊂ P k

x,i+1 ⊂ N(pni+1(x), εi+1) ∩ P k
i+1.

Analogously, we get (9)i+1 for k = ∞ and x ∈ X . Finally, choose a triangu-
lation τ∞i+1 so that it refines τ̃∞i+1, and so that (8)i+1 is satisfied.

Now that we have a triangulation for P∞
i+1, and therefore for P

ν(i)
i+1 too,

take a cellular approximation

f̄i : P
ν(i)
i+1 → EW(P

ν(i)
i ,Z/p, lν(i))

of f̃ : P
ν(i)
i+1 → EW(P

ν(i)
i ,Z/p, lν(i)). Since P

ν(i)
i+1 × Qni+1 ⊂ U , (16) is valid

for any u ∈ P
ν(i)
i+1 , that is, ω ◦ f ′′(u, 0) and pni

(u, 0) = pni
(u) belong to the

ε̃-neighborhood of the same principal simplex σ ∈ τ∞i . We also know that
ω ◦ f ′′(u, 0) belongs to a principal simplex γ which is a neighbor of σ (the
choice of ε̃ makes sure that γ and σ are neighbors). Note that ω ◦ f ′′(u, 0) =

ω ◦ f ′′ ◦ i(u) = ω ◦ f̃(u) ∈ γ. Now ω ◦ f̄i(u) also belongs to γ, because f̄i is a

cellular approximation of f̃ , and properties of the Edwards–Walsh resolution
ω guarantee that f̃(u) ∈ ω−1(γ) implies that f̄i(u) ∈ ω−1(γ). So we have
found a simplex γ of τ∞i such that ω ◦ f̄i(u) ∈ γ, and pni

(u) belongs to the
ε̃-neighborhood of the closed star of a vertex v that is a common vertex of

γ and σ. Therefore ω ◦ f̄i : P
ν(i)
i+1 → P

ν(i)
i and pni

|
P

ν(i)
i+1

: P
ν(i)
i+1 → P

ν(i)
i are

W-near, and therefore V-homotopic. According to Lemma 1.10 there exists
a continuous extension ϕ : P∞

i+1 → P∞
i of ω ◦ f̄i such that ϕ and pni

|P∞
i+1

are

V-homotopic, and therefore V-near.
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EW(P
ν(i)
i ,Z/p, lν(i))

ω

P
ν(i)
i P∞

i

P
ν(i)
x,i+1 P

ν(i)
i+1

i

f̄i

f̃

pni
|

P∞
i+1

pni
|

gi+1
i

ϕ

U P
ν(i)
i+1 ×Qni+1

f ′′|

Xν(i)

pni
|

With this, (4)i+1, and the fact that we could have chosen V as fine as we
wish, we may assume that ϕ(P k

i+1) ⊂ P k
i , for all 1 ≤ k ≤ ∞.

Finally, making τ∞i+1 finer if necessary (but so that the properties of

collapsibility required in (8)i+1 are still preserved), take gi+1
i : P∞

i+1 → P∞
i

to be a simplicial approximation of ϕ. Therefore, for any u ∈ P∞
i+1, there

exists a simplex σ ∈ τ∞i such that gi+1
i (u), ϕ(u) ∈ σ. We also know that

ρ(ϕ(u), pni
(u)) < meshV < δi

2 , so pni
(u) ∈ N(σ, δi

2 ), i.e., property (10)i+1 is

true. Property (11)i+1 is true because gi+1
i is a simplicial approximation of

ϕ.
For property (12)i+1, first notice that gi+1

i |
P

ν(i)
i+1
≃ ϕ|

P
ν(i)
i+1

= ω ◦ f̄i. Also,

ω◦f̄i and pni
|
P

ν(i)
i+1

beingW-near implies that for all x ∈ Xν(i), ω◦f̄i(P
ν(i)
x,i+1) ⊂

P
ν(i)
x,i . To see why, take any u ∈ B

ν(i)#
x,i+1 := N(pni+1(x), εi+1) ∩ P

ν(i)
i+1 , i.e.,

ρ(u, pni+1(x)) < εi+1; by (5)i+1, ρ(pni
(u), pni

(x)) < δi. Therefore, since

mesh(W) < δi
2 ,

ρ(ω ◦ f̄i(u), pni
(x)) ≤ ρ(ω ◦ f̄i(u), pni

(u)) + ρ(pni
(u), pni

(x)) <
δi
2
+ δi < 2δi,

so ω ◦ f̄i(u) ∈ B
ν(i)
x,i := N(pni

(x), 2δi) ∩ P
ν(i)
i . Thus ω ◦ f̄i(B

ν(i)#
x,i+1 ) ⊂ B

ν(i)
x,i .

Since P
ν(i)
x,i+1 ⊂ N(pni+1(x), εi+1), ω ◦ f̄i(P

ν(i)
x,i+1) ⊂ P

ν(i)
x,i , too.

Also, ϕ(P
ν(i)
x,i+1) = ω ◦ f̄i(P

ν(i)
x,i+1) ⊂ P

ν(i)
x,i , so gi+1

i , being a simplicial

approximation of ϕ, has the property gi+1
i (P

ν(i)
x,i+1) ⊂ P

ν(i)
x,i . Finally,

gi+1
i |

P
ν(i)
x,i+1

≃ ϕ|
P

ν(i)
x,i+1

= ω ◦ f̄i|Pν(i)
x,i+1

,

so property (12)i+1 holds.
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Remark 3.1. Note that from our construction of Z, it follows that in
general Z is infinite dimensional.

Remark 3.2. If we take 1 < 2 < . . . < m < . . . instead of l1 ≤ l2 ≤ . . . ≤
lm ≤ . . ., the Theorem 1.1 becomes parallel to the result for dimZ from [1].

If li = li+1 but Xli ( Xli+1 , we get Ai = Ai+1, but Zi ( Zi+1.

What if the sequence of nonempty closed subspaces X1 ⊂ X2 ⊂ . . . of
the compact metrizable space X from the statement of Theorem 1.1 is finite,
that is, we are given X1 ⊂ X2 ⊂ · · · ⊂ Xm ⊂ X? And what if X itself is
replaced by an Xm, i.e., we have X1 ⊂ X2 ⊂ · · · ⊂ Xm = X , where for each
k ∈ {1, 2, . . . ,m}, dimZ/p Xk ≤ lk?

In either of these cases, Theorem 1.1 yields a compact metrizable space
Z with closed subspaces Z1 ⊂ Z2 ⊂ · · · ⊂ Zm ⊂ Z, as well as a cell-like map
π : Z → X with all of the properties mentioned in Theorem 1.1, but we can
adapt the proof so that it would use fewer polyhedra.

Namely, here are the changes that somewhat simplify the proof of Theo-
rem 1.1 in both of the finite cases mentioned above.

First, take a function ν : N→ {1, 2, . . . ,m} such that (i) and (ii) are still
satisfied.

Second, change the conditions (2)j≥1 and (3)j≥1 from the original proof
to the following:

(2)′j≥1 if k ≥ min {j,m+ 1} then P k
j = P∞

j , and

P r
j ⊂ intInj P r+1

j whenever r < min {j,m+ 1};

(3)′j≥1 X ⊂ intQ(P
∞
j ×Qnj

) ⊂ N(X, 2j ), and,

whenever k < min {j,m+ 1}, Xk ⊂ intQ(P
k
j ×Qnj

) ⊂ N(Xk,
2
j );

This will ensure that we produce only m + 1 sequences of polyhedra
(P k

j )j∈N, k ∈ {1, . . . ,m + 1}, rather than countably many sequences that
were required in the original proof for X1 ⊂ X2 ⊂ · · · ⊂ Xm ⊂ · · · ⊂ X .

The rest of the proof is the same, provided that the change in indexes
from (2)′ is taken into account in the remainder of the proof.

It is worth noting that, in the case when X = Xm, the property (3)′

implies that we can take P∞
j = Pm

j , ∀j. Still, Z and Zm would be different,

since Zm = lim((Pm
i )(lm), gi+1

i ), and Z = lim(P∞
i , gi+1

i ) = lim(Pm
i , gi+1

i ).
Also, the map π|Zm

: Zm → X is a surjective Z/p-acyclic map, while π : Z →
X is cell-like.

Remark 3.3. In particular, for m = 1 and X = X1 such that
dimZ/p X1 ≤ l1, Theorem 1.1 produces a compact metrizable space Z1 with
dimZ1 ≤ l1, and a surjective Z/p-acyclic map π : Z1 → X1. So Theorem 1.1
is indeed a generalization of Dranishnikov’s resolution Theorem 1.3.
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4. Proof of a particular case of Theorem 1.1

What follows is an outline of a proof for a particular case that Theorem 1.1
is covering, namely for the case when the sequence l1 ≤ l2 ≤ . . . of upper
bounds for dimZ/p does not become permanently stationary at any point.
This proof was suggested to us by an anonymous referee. It does not work if
this sequence is eventually constant, that is, if the spaces Xi keep changing,
but from some point i0 on we have li0 = li0+1 = . . ..

For the sake of simplicity, let us suppose that l1 < l2 < l3 . . . since the
proof of this case can be adjusted to work for all cases in which the sequence
is not eventually constant.

Let X1 ⊂ X2 ⊂ . . . be a sequence of nonempty closed subspaces of a
compact metrizable space X such that dimZ/p Xk ≤ lk, ∀k ∈ N. Apply
Dranishnikov’s Theorem 1.3 to X1 in order to build a compact metrizable
space Z1 and a Z/p-acyclic map q1 : Z1 → X1 such that dimZ1 ≤ l1. Let
Y1 = X∪M(q1) be the union ofX and the mapping cyllinder of q1. Notice that
the projection p1 : Y1 → X is cell-like and that dimZ/p M(q1) ≤ l1 + 1 ≤ l2,
which makes dimZ/p X2 ∪M(q1) ≤ l2. In order to produce Z2 and q2, apply
Theorem 1.3 to X2 ∪ M(q1), with the exception of requiring that q2 has
the property that q2|q−1

2 (Z1)
is a homeomorphism onto Z1. Then put Y2 =

X ∪ M(q2) and p2 : Y2 → X to be the projection. Keep the procedure
inductively and define Z as the inverse limit of the inverse sequence

Y1 ← Y2 ← · · · ← Yk ← · · · .
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