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ABSTRACT 

Energy-related Clean Development Mechanism (CDM) projects contribute to sustainable 

development through reducing air pollutants in addition to CO2 emissions. This paper 

evaluates the co-benefits of ten coal-fired power generation CDM projects which are 

currently in registration and validation with a power generation mix linear programming 

model in India’s power sector from 2006 to 2031. Two scenarios are developed to 

identify impacts of the CDM projects. As a result, the co-benefits are invoked by the 

CDM projects in India’s power sector. CO2 emissions decrease by 79 Mt CO2 and SOx 

and NOx emissions decrease by 0.8 Mt SOx and 0.6 Mt NOx from the baseline in 2031. 

Including benefits from the reduction of the air pollutants warrants sustainable 

development benefit and contributes to enhance the generated CER prices. Thus, we 

argue that addressing co-benefits encourages both host countries and investors to 

participate CDM projects. 
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Energy-related CDM project, Power generation mix mode, India, Co-benefit, CO2 
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INTRODUCTION 

There have been high specific emissions of CO2 from coal-fired power plants. 

Coal-fired power generation accounts for 54.1% of total installed capacity as on 31.03.2011 

in India [1]. Most coal-fired power plants generate electricity in a lower thermal efficiency 

than commercialized coal-fired power plants in developed countries. Furthermore, Indian 

domestic coal tends to have high ash content (30 - 50%) and low fuel value (18,840.6 kJ/kg, 

as against the international average with 25,120.8 kJ/kg) [2]. Electricity demand is projected 

to increase substantially in response to a large increase in economic, population and 

electrification ratio [3]. High dependent on coal-fired plants is considered as a threat of 

climate change. Ghosh (2010) states that moving away from coal till 2030 is not viable 
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solution given the time taken for new technologies to be researched and made commercially 

[4]. Although one of the effective ways to reduce CO2 emissions is an increase in the 

efficiency of thermal power stations in India, the country faces technological and financial 

constraints.  

The Clean Development Mechanism (CDM) is an economic regime which has two aims, 

assisting Annex 1 countries in achieving their emission reduction targets and encouraging 

developing countries to achieve sustainable development. The scheme enables developing 

countries to overcome the constraints and shorten time for commercialization. Coal-fired 

power generation for CDM projects have a large potential with substantial coal resources in 

India. However, investment on CDM is small due to a low CO2 price. 

Energy-related CDM projects also reduce air pollutants and resulting impacts on human 

health, which is known as co-benefits. In this way, the energy-related CDM projects 

contribute to sustainable development in developing countries. Aunan et al. (2004) discuss 

that measures related clean coal technology and energy efficiency are considered eligible 

under CDM in part because of the substantial local co-benefits [5]. An awareness of the 

expected co-benefits will motivate developing countries to participate in international 

agreements on climate change since effects of co-benefits is likely to be strong in the case of 

developing countries [6]. In this regard, Vennemo et al. (2006) assess the extent of the 

environmental co-benefits that would arise if and when China exploits its potential for 

CDM from various studies [7]. However, such sustainable benefits are not monetized in the 

carbon market. It is expected that monetizing sustainable development raises the economic 

value of CDM and motivates investors toward CDM. 

While different modelling methodologies like accounting, optimization, 

macroeconomic, general equilibrium simulation and system dynamics simulation have 

been developed and extensively used for analysis of different kinds of energy–economy–

environment policy and planning concerns in industrially advanced countries, they are 

inadequate for analysing a large number of policy concerns of developing countries [8]. 

Furthermore, most of the models which evaluate climate change actions do not include 

the full range of environmental effects [9]. Some studies examine co-benefits using a 

MARKAL model in the power sector [10-12]. Although these studies discuss the future 

possibility of the implementation of the CDM through the obtained results from CO2 

prices, they do not examine the effects of CDM projects.  

This study evaluates co-benefits of ten coal-fired power generation CDM projects which 

are currently under registration and validation with a power generation mix linear 

programming (LP) model in India’s power sector quantitatively. Optimized power 

generation mix is evaluated to clarify the impacts of the CDM projects using scenario 

analyses which enable us to examine additionality. The installed locations of CDM projects 

are specified. Therefore, unlike other studies of India such as [14-16], the power generation 

mix is examined in each grid. The changes of CO2, SOx and NOx emissions are calculated to 

investigate the effects of the co-benefits of the CDM projects.  

CDM AND CO-BENEFITS 

The CDM has been an important catalyst of low-carbon investment in developing 

countries [16]. The CDM was specified by Article 12 of Kyoto Protocol in 2003 in which 

developed countries obtain credits through the projects in developing countries to meet their 

reduction targets. Developed countries reduce GHG emissions with low investment cost 

since reduction costs of GHG emissions in developing countries are normally smaller than 

those in developed countries. Developing countries accelerate environmental technology 

transfer and financial assist from developed countries. Thus, the CDM aims to achieve both 
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cost-effective reduction of GHG emissions in developed countries and sustainable 

development in developing countries. 

According to Marrakesh accords, CDM projects are additional to the baseline and 

defined as additionality. The baseline indicates GHG emissions without CDM projects and 

the difference between emissions of the baseline and those of CDM projects is regarded as a 

credit of emissions reduction. Energy projects generate small amounts of Certified 

Emissions Reductions (CERs) comparing with other types of projects because CO2 gas 

impacts less on global warming potential than the other GHGs while they contribute to 

sustainable development in developing countries. Investors refrain from entering the offset 

market due to the poor visibility [16]. Olsen (2007) reviews the research literatures on how 

the CDM contributes to sustainable development and argues that as sustainable 

development benefits are not monetized in the carbon market, the CDM does not 

significantly contribute to sustainable development in developing countries [17].  

To counter the weaknesses mentioned above, we suggest that addressing co-benefits 

quantitatively leads energy projects more competitiveness and favourable to invest in terms 

of sustainable development of developing countries, which results in a larger decrease of 

energy-related CO2 emissions at a lower CO2 price. Energy-related CDM projects are 

associated with a decrease of air pollutants. Human health impacts are the largest benefits 

from the decrease of the air pollutants. Sutter (2007) introduces the air quality and change of 

air pollutants emission relative to baseline as sustainable development criteria and 

respective indicators of environmental development [18]. Olsen and Fenhann (2008) 

develop a taxonomy to measure sustainable benefits and assess the sustainability of 296 

CDM projects and show that energy efficiency projects highly contribute to improved air 

quality [19]. Alexeew et al. (2010) apply the multi-criteria approach to 40 projects in India 

and assess the sustainability development benefits [20]. They state the limitation of the 

study that these analyses collect data from Project Design Document (PDD) and the 

project’s contribution to sustainable development tends to be favourable since the PDDs are 

designed and written by the project developers themselves. The decrease of the air 

pollutants from the baseline benefits developing countries and should be included into 

CDM as effects of co-benefits quantitatively.  

The inclusion of the co-benefits into CDM will encourage investors to invest in the 

energy-related CDM projects. The benefits only considering climate change effects are 

underestimated under the current CDM regime. Alexeew et al. (2010) propose a CER 

discounting scheme to solve the dilemma between sustainable development and GHG 

reductions [20]. This is based on the idea that a net atmospheric benefit should be provided 

to CER prices. Including the monetary value of the air pollutants to CDM enhances the 

marginal abatement costs of energy-related CDM projects. This warrants investors to invest 

at a lower CER price which induces the higher abatement of CO2 emissions and air 

pollutants. As a result, the inclusion of the co-benefits contributes to decrease of 

energy-related CO2 emissions at a global level and sustainable development at a local level.  

POWER GENERATION MIX LINEAR PROGRAMMING MODEL  

This paper analyses India’s power mix by using an LP model to assess co-benefits from 

energy-related CDM projects. The model optimizes long terms of a region or a country of 

electricity structure in multilevel. The power generation system of the base year is given to 

represent the base year. Efficiencies, costs, availability, capacity factors and constraints of 

the power generation technology are specified. The reference energy system is the structural 

backbone of the model. The objective function is to minimize a system cost with satisfying 

future final power demand given exogenously. The system costs consist of investment costs, 
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fixed operation and maintenance (O&M) costs, and variable O&M costs. Moreover, the 

costs of the primary energy consumption are added for fossil fuel-fired power generation. 

The objective function is expressed as an equation (1): 
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A variety of constraints are supplied to make the solution more realistic. The 

constraints include resource availability, installed period, and plant life of power 

generation technologies. Other constraints can be added in accordance with the intention 

of the study such as an environmental constraint. 

The structure of the model is shown in Figure 1.  

 

 
 

Figure 1. The structure of power generation mix LP model 

 

The model outputs optimized power capacities and generating electricity; technology 

installation period, and system costs. The model is suitable for a quantitative assessment 

of energy technology under various scenarios of technological and political assumptions. 

Scenarios are developed in accordance with the energy and environmental policies and 

the assumption of the technological innovation. The model is re-examined and the 

difference of the results among scenarios is regarded as impacts invoked by technological 

innovation or policy. This enables national and regional policy makers to understand the 

interplay of the power generation system, the system costs, and the policies by comparing 

the scenarios. In addition, the model calculates consequent global and local emissions.  

DATA AND FUTURE SCENARIOS 

Generic details 

The base year is 2006 and the terminal year is 2031. These twenty-five years are 

divided into five periods consisted of five years. The discount rate of 9% is considered 

referring from [21]. We cover only the centralized power sector due to limited data 

availability. Current capacity decreases with actual lifetime, and no constraint is set on 

investment money used to meet increased electricity demand in the future. The 

commercial and transmission and distribution (T&D) losses have a large impact on 

electricity generation in India. These amount to 20% for the base year and the progressive 

decrease is assumed to reflect an improvement of the transmission loss [14]. The 

commercial and T&D losses reach 14% in 2031. 
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Specifications of India’s power generation technologies 

Specifications of power generation technologies have important impacts on power 

mix in the future. Table 1 shows the specification of power generation technologies 

determined based on [13, 15, 21].  

 
Table 1. Specifications of power generation technologies 

 

The efficiencies of the existing plants are calculated from actual data for two grids, 

integrated Northern, Eastern, Western, and North-Eastern regional grids (NEWNE) and 

Southern grid. Advanced thermal plants and renewable energy are included as power 

generation technologies in addition to existing technologies. For coal-fired power 

generation, existing plants are based on sub-critical steam pressure systems (CSUB) 

whose thermal efficiency is 30.9% in the NEWNE grid and 34.4% in the Southern grid in 

2006. Two types of advanced thermal plants are considered, coal supercritical (CSC) and 

coal ultra-supercritical (CUSC). CSC and CUSC generate electricity in higher pressure 

and temperature and can attain 37% and 44% efficiencies respectively. For gas-fired 

power generation, advanced natural gas combined cycle (ANGCC) is adapted in this 

analysis. ANGCC introduces a class of turbines that is more advanced than what is used 

in existing natural gas combined cycle (NGCC). Although IGCC and CCS are advanced 

thermal power plants, these technologies are not competitive without emission 

constraints. Thus, they are not taken into account in this study.  

In addition, DeSOx and DeNOx technologies equipped to fossil fuel-fired power 

generation for the purpose of the mitigation of SOx and NOx emissions are specified. Flue 

gas desulfurization (FGD), low NOx burner (LNB), and selective catalytic reduction 

(SCR) are taken into account in this study and their specifications are shown in Table 2.  

 
Table 2. Specifications of DeSOx and DeNOx technologies 

 
Investment cost 

(US$/kW) 

Variable O&M cost 

($/kWh) 

Efficiency loss 

(%) 

Removal rate 

(%) 

FGD 63.5 0.00338 5 80 

LNB 7.61 0 0 30/40 

SCR 63.5 0.00021 0.5 47/40 

Technology 

 

Efficiency  

(%) 

Investment 

cost 

(US$/kW) 

Fixed O&M 

cost 

(US$/kW) 

Variable O&M 

cost 

(US$/kWh) 

 NEWNE SOUTH    

CSUB 30.9 34.4 1,073 12.876 0.017 

CSC 37.7 37.7 1,155 13.860 0.018 

CUSC 44.0 44.0 1,386 16.632 0.022 

Lignite 26.6 26.7 1,085 13.020 0.017 

NGOC 28.9  433 10.392 0.019 

NGCC 45.2 43.0 868 20.832 0.038 

ANGCC 60.0 60.0 1,003 24.072 0.044 

Oil 51.2 42.0 315 11.025 0.021 

Nuclear 21.4 21.4 1,627 16.270 0.002 

Small hydro   2,441 85.435 0.732 

Large hydro   1,085 47.740 0.732 

Wind   1,031 29.899 0 

Pumped storage   759 33.396 0.732 
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The left side of the removal rate of the LNB and the SCR corresponds to coal- and 

oil-fired power generations and the right side corresponds to gas-fired power generations. 

The assumption of the FGD is based on [22, 23] and the assumptions related to the LNB 

and the SCR are determined through taking the technological level of the FGD into 

account. These technologies are installed on both the existing plants and the newly 

installed plants. 

Fuel prices  

Energy sources of power generations are greatly dependent on fuel prices. The 

domestic fuel prices in the base year of 2006 are derived from [13] for gas and [24] for 

coal and lignite. The escalations of the fuel prices are derived from assumptions about the 

international prices of fossil fuels [25]. The energy prices in the time horizon are shown 

in Table 3.  
Table 3. Fuel prices in the time horizon 

 

 Unit 2006 2011 2016 2021 2026 2031 

Coal T 20.2 23.4 20.4 22.9 23.5 24.0 

Lignite T 17.6 20.4 17.9 20.0 20.5 21.0 

Gas 1000 m
3
 0.17 0.20 0.20 0.23 0.25 0.26 

Oil T 4.86 6.01 5.79 6.58 7.07 7.57 

 

Increase rates of fossil fuels are settled between 2011 and 2016 reflecting a large 

increase through 2009 with the gas prices and the oil prices. The prices rise steadily after 

2016 in response to expected higher demand and lower resource availability. Thus, the oil 

and the gas prices rise relatively larger than the coal prices.  

Energy resources  

Nuclear power generation and renewable energy play important roles in decreasing 

CO2 emissions and air pollutants. However, these technologies have social and resource 

constraints. Upper bound of the capacity installations are given to reflect the constraints. 

Table 4 shows the upper bound imposed on the model for nuclear power generation and 

renewable energy.  

 
Table 4. Upper bound of nuclear power generation and renewable energy (10 MW) 

 

  2006 2011 2016 2021 2026 2031 

Nuclear 
NEWNE 310 346 841 1,336 1,586 1,836 

SOUTH 115 132 398 664 914 1,164 

Small hydro 
NEWNE 60 1,536 3,017 4,499 5,981 5,981 

SOUTH 30 219 413 607 801 801 

Large hydro 
NEWNE 2,500 4,884 7,139 9,824 12,645 12,645 

SOUTH 950 1,277 1,261 1,676 2,225 2,225 

Wind 
NEWNE 269 2,136 2,136 2,136 2,136 2,136 

SOUTH 446 2,720 2,720 2,720 2,720 2,720 

 

The upper bound of nuclear power generation is applied based on national electricity 

plan [21]. The resource constraint of renewable energy corresponds with the 
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technological potential for wind and hydroelectric power. The potential of hydroelectric 

power and wind power is derived from [26] and [27] respectively. 

Electricity demand 

Electricity demand is the principal driver of electricity generation and thus CO2 

emissions and air pollutants from the power sector. Electrical demand has been growing 

in India and is expected to rise significantly in the future. In 1990, the total electricity 

demand was 212 TWh and had increased to 567 TWh in 2007. The demand growth is a 

result of strong economic growth and greater accessibility to electricity grids during the 

period. This increase is expected to persist in medium and long terms. The future 

electricity demand is determined based on the projection of [3]. The projection is based 

on an econometric model which considers social and economic changes to examine 

future Asian energy demand. The model also contains a shift of end-use technologies. 

The annual electricity growth rates are 5.8% from 2007 to 2020, 5.7% from 2020 to 2030, 

and 5.5% from 2030 to 2035. The growth rates are assumed to be identical among each 

grid.  

Marginal environmental damage costs of emissions 

Local air pollution attributable to SOx and NOx emissions and climate change 

attributable to CO2 are considered in this study. Marginal environmental damage costs of 

the emissions are required to make the emissions comparable.  

There are few studies related to marginal environmental damage costs of the 

emissions in India due to limited available data, while a number of estimations are found 

in developed countries (for example [28]). They are set 549 USD per SOx ton and 450 

USD per NOx ton derived from [29] which estimates marginal damage costs of Mumbai 

applying a rapid damage assessment model. The major damage from the air pollutants is 

human health effects. The monetary value of CO2 emissions is assumed as 12.7 USD per 

ton from the actual CER price [16] in correspondence with the objective of this study. It is 

assumed that the offset market reflects the marginal damage costs of CO2 emissions.  

Scenarios 

A scenario analysis enables us to assess impacts under different policies. We develop 

two scenarios, a BAU scenario and a CDM scenario. The BAU scenario assumes no 

changes in policies. The scenario is intended as a baseline to assess the additionality of 

CDM projects. Although energy-related CDM projects intend to reduce CO2 emissions, 

some of the projects contribute to decrease air pollutants. The CDM scenario takes into 

account of the ten CDM projects of the coal-fired plants in India that are under 

registration and validation. These ten projects are aggregated in this study to examine the 

difference of CO2 emissions and air pollutants caused by these. To examine the 

additionality of the projects, the installed capacity and the power generation of nuclear 

power generation and renewable energy are fixed from the BAU scenario. The 10 CDM 

projects are referred from [30] and [31]. The name, the start year of operation, and the 

installed capacity depicted in PDD are listed in Table 5.  

There are ten PDDs related to coal-fired power generation CDM projects under 

registration and validation in India’s power sector by May 2011. The operation starts 

after the validation and the start year of the operation ranges from 2011 to 2014. All 

projects shown in Table 5 cover CSC and there exist no projects of CUSC, IGCC, and 

CCS in India. The projected CSC plants have higher thermal efficiency than the expected 

thermal efficiency in India shown in Table 1. Once higher thermal efficiency of advanced 

thermal plants is in place, India learns the generation technology and starts to 
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commercialize. Thus, the thermal efficiency level of the plants will disseminate to all 

plants of India in response to the technology transfer induced by the CDM projects. It is 

assumed that the thermal efficiency of the CSC increases to 40% after the first 

introduction of CSC in 2011 in the CDM scenario. In addition, CSC installed through 

CDM projects must be up to date, which indicates that they equip DeSOx and DeNOx 

technologies. However, there is no incentive to reduce SOx and NOx emissions from 

power generation in India currently. Thus, this study assumes that DeSOx and DeNOx 

technologies do not spill over to other coal-fired power plants. 

 
Table 5. Coal-fired power generation CDM projects which are in registration and validation 

 

Project 
Start 

year 

Installed capacity 
(MW) 

Energy efficient power generation in Tirora, India 2011 1,320 

Greenhouse Gas Emission Reductions Through Super 

Critical Technology - Sasan Power Ltd. 
2011 3,960 

Mitigation of GHG emissions through power generation 

at high efficiency 
2011 1,980 

Greenhouse Gas Emission Reductions through 

Super-critical Technology - Coastal Andhra Power Ltd. 
2011 3,960 

Grid connected energy efficient power generation in 

Jhajjar, Haryana 
2012 1,320 

Grid Connected Power Generation through Supercritical 

technology 
2012 1,320 

Grid connected super-critical technology based power 

generation in Tirora, India 
2013 1,980 

Energy efficient power generation by GCEPL 2013 1,370 

Greenhouse Gas Emission Reductions Through Super 

Critical Technology - Jharkhand Integrated Power Ltd. 
2014 3,960 

Energy Efficient Power Generation by Talwandi Sabo 

Power Limited 
2014 1,980 

Energy Efficient Power Generation by Nabha Power 

Limited 
2014 1,400 

 

RESULTS 

The electricity generation of India up to 2031 is estimated by an LP model. Changes 

in the electricity generations of India’s power sector induced by the coal-fired power 

generation CDM projects which are under registration and validation are identified. The 

consequent environmental effects of SOx, NOx, and CO2 emissions are assessed in order 

to identify the effects of the co-benefits invoked by the CDM projects.   

Power generation 

Total power generation increases from 663 TWh to 2517 TWh. Coal-fired generation 

has been dominant through the objective term and accounts for 90% of total power 

generation after 2011. CSC starts to expand since 2011 as a base load power plant owing 

to a higher efficiency than CSUB and reaches 41.5% of total power generation in 2031. 

CSUB steadily increases as a peak load power plant with a low investment cost. CSUB 

increases substantially to satisfy increased peak load in 2031 and reaches 49.9% of total 
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generation in 2031. CUSC is not installed until 2031 since coal price is relatively cheap in 

India. Although hydro requires no fuel, the low availability and the high O&M cost 

prevent hydro to expand and be only used in the base year. Nuclear power and wind 

power increase electricity generation but reach only 5.5% and 1.9% of total power 

generation in 2031 respectively. Figure 2 shows power generations for two scenarios.  

 

 
 

Figure 2. Power generations for two scenarios 

 

When CSC is introduced through the CDM projects which are currently under 

registration and validation, the share of the generation type varies from the BAU scenario 

through the objective years. Since the power generation of nuclear power generation and 

renewable energy are fixed to examine the additionality of the CDM projects, their share 

of total generation remains unchanged from the BAU scenario. CSUB falls in 

substitution for CSC in 2011 and 2016. CSC expands after the CDM with improved 

thermal efficiency invoked by the CDM projects and substitutes for CSUB after 

terminating CSC as CDM projects. CSC reaches 49.8% of total power generation while 

CSUB falls to 41.6%.  

CO2 emissions  

CO2 emissions increase monotonically in the BAU scenario and reach 2,384 Mt CO2 

four times as the base year in 2,031. CO2 emissions reach 2,305 Mt CO2 in the CDM 

scenario and decrease 79 Mt CO2 as compared to the BAU scenario at the end of the time 

horizon. CDM contributes to reduce CO2 emissions in the longer term than in the term 

when CDM is implemented. CO2 emissions in the CDM scenario are 36 Mt CO2 lower 

than in the BAU scenario in 2016 when most of the CDM projects are implemented due 

to installation of CSC in substitution of CSUB. Higher reduction can be achieved after 

the implementation associated with increase of higher thermal efficiency of CSC. CO2 

emissions fall to 1,227 Mt CO2 through the objective period. Figure 3 shows CO2 

emissions for two scenarios.   
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Figure 3. CO2 emissions for two scenarios 

 

CO2 emissions increase monotonically in the BAU scenario and reach 2,384 Mt CO2 

four times as the base year in 2,031. CO2 emissions reach 2,305 Mt CO2 in the CDM 

scenario and decrease 79 Mt CO2 as compared to the BAU scenario at the end of the time 

horizon. CDM contributes to reduce CO2 emissions in the longer term than in the term 

when CDM is implemented. CO2 emissions in the CDM scenario are 36 Mt CO2 lower 

than in the BAU scenario in 2016 when most of the CDM projects are implemented due 

to installation of CSC in substitution of CSUB. Higher reduction can be achieved after 

the implementation associated with increase of higher thermal efficiency of CSC. CO2 

emissions fall to 1,227 Mt CO2 through the objective period.  

Air pollutants 

Figure 4 shows SOx and NOx emissions for two scenarios.  

 

 
Figure 4. SOx and NOx emissions for two scenarios 
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SOx and NOx emissions rise during the whole time horizon in both scenarios. The 

increase of the generation from CSUB and CSC raises SOx and NOx emissions. In the 

BAU scenario, SOx emissions increase from 2.3 Mt SOx to 10.4 Mt SOx and NOx 

emissions from 1.8 Mt NOx to 7.8 Mt NOx. In the CDM scenario, the SOx and NOx 

emissions decline 14.4 Mt SOx and 10.4 Mt NOx from the BAU scenario through the 

objective period. This indicates that the ten coal-fired generations CDM projects which 

are currently under registration and validation in India’s power sector achieve 

co-benefits. The SOx and NOx emissions decrease in 2011 with a higher efficiency of 

installed CSC through the CDM projects. In addition, this decrease is associated with the 

introduction of CSC from the CDM projects which are assumed to equip DeSOx and 

DeNOx technologies. If energy-related CDM projects include co-benefits, investors of 

fossil fuel-fired power generation will increase investment with DeSOx and DeNOx 

technologies which contribute to sustainable development in host countries.  

SOx and NOx emissions rise during the whole time horizon in both scenarios. The 

increase of the generation from CSUB and CSC raises SOx and NOx emissions. In the 

BAU scenario, SOx emissions increase from 2.3 Mt SOx to 10.4 Mt SOx and NOx 

emissions from 1.8 Mt NOx to 7.8 Mt NOx. In the CDM scenario, the SOx and NOx 

emissions decline 14.4 Mt SOx and 10.4 Mt NOx from the BAU scenario through the 

objective period. This indicates that the ten coal-fired generations CDM projects which 

are currently under registration and validation in India’s power sector achieve 

co-benefits. The SOx and NOx emissions decrease in 2011 with a higher efficiency of 

installed CSC through the CDM projects. In addition, this decrease is associated with the 

introduction of CSC from the CDM projects which are assumed to equip DeSOx and 

DeNOx technologies. If energy-related CDM projects include co-benefits, investors of 

fossil fuel-fired power generation will increase investment with DeSOx and DeNOx 

technologies which contribute to sustainable development in host countries.  

Emission reduction benefits 

Table 6 shows emission reduction benefits of the CDM projects in 2031.  

 
Table 6. Emission reduction benefits in the CDM scenario in 2031 (M$US/year) 

 

CO2 reduction SOx reduction NOx reduction Total 

1,008 437 266 1,711 

 

The benefits are split into each emission to identify the contribution of each emission. 

The emissions reductions from the BAU scenario are shown as Figure 3 and Figure 4. 

The resulting benefits from all the emissions indicate that the CDM projects listed in 

Table 5 have more beneficial to developing countries than currently considered. The 

benefits from the reduction of the air pollutants should be addressed in addition to CERs. 

Thus, the benefit from the aggregated projects should be raised 1.7 times higher than 

CERs in 2031. The benefits from CO2 reduction account for 59% of total benefits. If the 

benefits from reduction of air pollutants are included into CDM, contribution to 

sustainable development will be visible and investors will increase their investment on 

energy-related CDM projects at a lower CER price. This benefits developing countries to 

achieve sustainable development and also investors from developed countries to meet 

their reduction target cost-effectively.  
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CONCLUSION 

It is estimated that CO2 emissions in India increase with a strong growth of electricity 

demand in the future. CDM is one of the solutions to decrease CO2 emissions in 

developing countries. However, energy-related CDM does not progress recently owing to 

low CER prices although they have important environmental benefits at both local level 

and global level. We examined the co-benefits of CDM projects of coal-fired generations 

which are currently under registration and validation with a power generation mix LP 

model in India’s power sector quantitatively. We found two remarkable results in this 

study. 

First, this is proved by the estimation that co-benefits are invoked by the ten coal-fired 

generations CDM projects which are currently in registration and validation in India’s 

power sector. In the CDM scenario, SOx and NOx emissions decrease by 0.8 Mt SOx and 

0.6 Mt NOx at the end of time horizon from the BAU scenario in addition to CO2 

emissions. Addressing co-benefits invoked by energy-related CDM projects raises 

motivations of host countries toward the CDM projects. Consequently, large CO2 

emissions decreases will be attained through higher amount of CDM projects. 

Second, reduction benefits increase with an inclusion of reduction benefits of the air 

pollutants invoked by the CDM projects. This warrants 1.7 times higher benefit than 

CERs which attracts investors to offset markets. While the reduction benefits from the air 

pollutants accounts for 41% of total reduction benefits in the case of the aggregated CDM 

projects taken in this study, this is due to the fact that the DeSOx and the DeNOx 

technologies are not transferred from the CDM. When India considers decreasing SOx 

and NOx technologies, the CDM projects are considered contributing to higher reduction 

of the air pollutants since India will learn DeSOx and DeNOx technologies from the CDM 

projects. Thus, this is identified that taking co-benefits into account benefits both of 

developed countries and developing countries.  

However, environmental damage costs from GHG emissions and air pollutants are 

estimated with different value method and might affect the findings. CO2 emission 

reduction benefits vary widely due to a complexity of climate change impacts. CO2 price 

is determined in the emission market and there is a large uncertainty in the future. 

Marginal damage costs of SOx and NOx emissions are estimated by value of life year lost 

which basically assigns a willingness-to-pay (WTP) to the risk of reducing life 

expectancy. Even though they still inherit uncertainty, marginal damage costs are 

determined and will not change largely in the future. Thus, the weight of reduction 

benefits of each emission changes accordingly. When CO2 prices are low, the weight of 

reduction benefits of marginal damage costs of air pollutants becomes larger. Thus, it is 

identified that the inclusion of the co-benefits accelerates the utilization of CDM projects 

by both investors and host countries particularly when CO2 prices are low.  
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NOMENCLATURE 

C - the system cost 

crft - the capital recovery factor in t per installed capacity 

fgt - the fuel costs for the technology g in t per power generation  

g - the technology  

invg - the investment cost for the technology g per installed capacity 
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r - the discount rate 

t - the number of years 

vg - the variable O&M cost for technology g per power generation. 

Xgt - the newly installed capacity for the technology g in t 

Yt - the power generation in t for the technology g  

εgt - the efficiency for the technology g in t  

REFERENCES 

1. Central Electricity Authority, Ministry of Power, Government of India website, 

http://www.powermin.nic.in, [Accessed: 15-Apr-2013] 

2. Aswathanarayana, U., A Low–Carbon, Technology–Driven Strategy for India’s 

Energy Security, Current Science., Vol. 94, No.4, pp 440–441, 2008 

3. IEEJ, Asia/world Energy Outlook 2009 – The Role of Technology towards the 

Resolution of Energy & Environmental Issues in Asia – Japan, The Institute of 

Energy Economics; 2009 

4. Ghosh, S., Status of Thermal Power Generation in India - Perspectives on Capacity, 

Generation and Carbon Dioxide Emissions, Energy Policy, Vol.38, pp 6886–6899, 

2010, http://dx.doi.org/10.1016/j.enpol.2010.07.004 

5. Aunan, K., Fang, J., Vennemo, H., Oye, K. and Seip, H.M., Co-benefits of Climate 

Policy—Lessons Learned from a Study in Shanxi, China, Energy Policy, Vol.32, pp 

567–581, 2004, http://dx.doi.org/10.1016/S0301-4215(03)00156-3 

6. Pittela, K. and Rübbelkeb, D., Climate Policy and Ancillary Benefits: A Survey and 

Integration into the Modelling of International Negotiations on Climate Change, 

Ecological Economics, Vol. 68, pp 210–220, 2008, 
http://dx.doi.org/10.1016/j.ecolecon.2008.02.020 

7. Vennemo, H., Aunan, K., Fang, J., Holtedahl, P., Hu. T. and Seip, H.M., Domestic 

Environmental Benefits of China’s Energy-related CDM potential, Climatic Change, 

Vol.75, No.1, pp 215–239, 2006, http://dx.doi.org/10.1007/s10584-006-1834-0 

8. Pandey, R. Energy policy modelling: agenda for developing countries, Energy 

Policy, Vol.30, pp 97–106, 2002, http://dx.doi.org/10.1016/S0301-4215(01)00062-3 

9. Nemet, G.F., Holloway, T. and Meier, P., Implications of Incorporating Air-quality 

Co-benefits into Climate Change Policymaking. Environ Res Lett, Vol.5, 014007, 

2010, http://dx.doi.org/10.1088/1748-9326/5/1/014007 

10. Shrestha, R.M. and Pradhan, S., Co-benefits of CO2 emission reduction in a 

developing country, Energy Policy, Vol.38, pp 2586–2597, 2010, 
http://dx.doi.org/10.1016/j.enpol.2010.01.003 

11. Mondal, M.A.H., Denich, M. and Vlek, P.L.G., The future choice of technologies and 

co-benefits of CO2 emission reduction in Bangladesh power sector, Energy, Vol.35, 

pp 4902–4909, 2010, http://dx.doi.org/10.1016/j.energy.2010.08.037 

12. Shakya, S.R., Kumar, S. and Shrestha, R.M. Co-benefits of a carbon tax in Nepal, 

Mitigation and Adaptation Strategies for Global Change, Vol.17, pp 77–101, 2012., 
http://dx.doi.org/10.1007/s11027-011-9310-1 

13. TERI, National Energy Map for India. Technology Vision 2030, PSA/2006/3, The 

Energy Research Institute, New Delhi, 2006, 
http://dx.doi.org/10.1007/s11027-011-9310-1 

14. Shukla, P.R., Dhar, S., Victor, D.G. and Jackson, M., Assessment of Demand for 

Natural Gas from the Electricity Sector in India, Energy Policy, Vol.37, pp 3520–

3534, 2009, http://dx.doi.org/10.1016/j.enpol.2009.03.067 

15. Mallah, S. and Bansal, N.K., Allocation of Energy Resources for Power Generation 

in India: Business as Usual and Energy Efficiency, Energy Policy, Vol.38, No.2, 

pp.1059–1066, 2010, http://dx.doi.org/10.1016/j.enpol.2009.10.058 

http://dx.doi.org/10.1016/j.enpol.2010.07.004
http://dx.doi.org/10.1016/S0301-4215(03)00156-3
http://dx.doi.org/10.1016/j.ecolecon.2008.02.020
http://dx.doi.org/10.1007/s10584-006-1834-0
http://dx.doi.org/10.1016/S0301-4215(01)00062-3
http://dx.doi.org/10.1088/1748-9326/5/1/014007
http://dx.doi.org/10.1016/j.enpol.2010.01.003
http://dx.doi.org/10.1016/j.energy.2010.08.037
http://link.springer.com/journal/11027
http://dx.doi.org/10.1007/s11027-011-9310-1
http://dx.doi.org/10.1007/s11027-011-9310-1
http://dx.doi.org/10.1016/j.enpol.2009.03.067
http://dx.doi.org/10.1016/j.enpol.2009.10.058


Journal of Sustainable Development of Energy, Water  
and Environment Systems 

Year 2013 
Volume 1, Issue 4,  pp 326-339  

1 

Page 339 

16. World Bank, State and Trends of the Carbon Market 2010, World Bank, Washington 

DC, 2010 

17. Olsen, K.H., The Clean Development Mechanism’s Contribution to Sustainable 

Development: A Review of the Literature, Climatic Change, Vol.84, No.1, pp 59–73, 

2007, http://dx.doi.org/10.1007/s10584-007-9267-y 

18. Sutter, C. and Parreno, J.C., Does the Current Clean Development Mechanism 

(CDM) Deliver Its Sustainable Development Claim? An Analysis of Officially 

Registered CDM Projects, Climatic Change; Vol.84, pp 75–90, 2007, 
http://dx.doi.org/10.1007/s10584-007-9269-9 

19. Olsen, K.H. and Fenhann, J., Sustainable Development Benefits of Clean 

Development Mechanism Projects: A New Methodology for Sustainability 

Assessment Based on Text Analysis of the Project Design Documents Submitted for 

Validation, Energy Policy, Vol.36, pp 2819–2830, 2008, 
http://dx.doi.org/10.1016/j.enpol.2008.02.039 

20. Alexeew, J., Bergset, L., Meyer, K., Petersen, J., Schneider, L. and Unger, C., An 

Analysis of the Relationship between the Additionality of CDM Projects and their 

Contribution to Sustainable Development, International Environmental Agreements: 

Politics, Law and Economics, Vol.10, pp 233–248, 2010, 
http://dx.doi.org/10.1007/s10784-010-9121-y 

21. CEA, National Electricity Plan (Volume-I). Government of India: Central Electricity 

Authority; 2004 

22. ESMAP, Environmental Issues in the Power Sector: Long-term Impacts and Policy 

Options for Karnataka, World Bank, Washington DC, 2004 

23. ESMAP, Environmental Issues in the Power Sector: Long-term Impacts and Policy 

Options for Rajasthan, World Bank, Washington DC, 2004 

24. Koizumi, K., Maekawa, K., Yudate, K. and Inada, N., Coal Supply and Demand 

Trends in India –Role of Coal and its Future– Japan, The Institute of Energy 

Economics, 2006 

25. IEA, World Energy Outlook 2009, IEA, Paris, 2009 

26. Ramanathan, K. and Abeygunawardena, P., Hydropower Development in India: A 

Sector Assessment, Asian Development Bank, 2007 

27. Ministry of New and Renewable Energy, http://www.mnre.gov.in/, [Accessed: 

15-Apr-2013] 

28. Eco2data,  http://eco2data.com/, [Accessed: 15-Apr-2013] 

29. Yoshitaka, M. and Shimura, Y., High-efficiency Coal Fired Thermal Power Plants 

and CDM, Energy and Resources, Vol.31, No.6, pp 325–329, 2010 (in Japanese). 

30. Krewitt, W., External Costs of Energy - Do the Answers Match the Questions? 

Looking Back at 10 Years of ExternE. Energy Policy, Vol.30, pp 839–848, 2002, 
http://dx.doi.org/10.1016/S0301-4215(01)00140-9 

31. Lvovsky, K., Hughes, G., Maddison, D., Ostro, BD. and Pearce, D., Environmental 

Costs of Fossil Fuels: A Rapid Assessment Method with Application to Six Cities, 

World Bank, 2000 

 

 

 

 
Paper submitted: 16.04.2013 

Paper revised: 15.05.2013 

Paper accepted: 07.06.2013 

 

http://dx.doi.org/10.1007/s10584-007-9267-y
http://dx.doi.org/10.1007/s10584-007-9269-9
http://dx.doi.org/10.1016/j.enpol.2008.02.039
http://dx.doi.org/10.1007/s10784-010-9121-y
http://dx.doi.org/10.1016/S0301-4215(01)00140-9

