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Abstract. Similar quantum phase diagrams and transitions are found for three classes of one-dimensional 
models with equally spaced sites, singlet ground states (GS), inversion symmetry at sites and a bond order 
wave (BOW) phase in some sectors. The models are frustrated spin−1/2 chains with variable range  
exchange, half-filled Hubbard models with spin-independent interactions and modified Hubbard models 
with site energies for describing organic charge transfer salts. In some range of parameters, the models 
have a first order quantum transition at which the GS expectation value of the sublattice spin SA

2 of odd 
or even-numbered sites is discontinuous. There is an intermediate BOW phase for other model parameters 
that lead to two continuous quantum transitions with continuous SA

2. Exact diagonalization of finite  
systems and symmetry arguments provide a unified picture of familiar 1D models that have appeared  
separately in widely different contexts. (doi: 10.5562/cca2324)  

Keywords: bond order wave phases, quantum phase transitions, frustrated spin chains, extended Hubbard 
models, neutral-ionic transition models 

 
INTRODUCTION 

Phase transitions occur in the thermodynamic limit  
of interacting many-body systems. Thermodynamic 
phase transitions reflect competition between internal 
energy and entropy that depends on parameters such as 
temperature, pressure or volume. The Gibbs free energy 
G(T, P) or Helmholtz free energy A(T, V) are state func-
tions that describe phase transitions of one-component 
systems. By definition, quantum phase transitions occur 
at absolute zero in the ground state (GS) of infinite 
systems whose Hamiltonian has at least two  
non-commuting operators. The GS energy per particle,  
E0(X, Y), depends on model parameters X, Y. In complete 
analogy with thermodynamic free energies, E0(X, Y) is a 
continuous function that is doubly degenerate at the 
boundary Xc, Yc of two quantum phases. The transition 
is first order or continuous, respectively, when first 
derivatives of E0(X, Y) with respect to X or Y are discon-
tinuous or continuous at Xc, Yc. The major challenge is 
to obtain the exact GS of infinite quantum systems. 
Exact E0(X, Y) are largely limited to one-dimensional 
(1D) models, and even then derivatives of E0(X,  Y) are 
rarely known.  

In principle, E0(X, Y) per particle yields quantum 
phase diagrams for models with three parameters, one 
of which sets the energy scale. In this paper we discuss 
the quantum phase diagrams of three classes of 1D 
models, all with equally spaced sites, including proto-
typical special cases that have been extensively studied 
separately. We rely on exact diagonalization (ED) of 
finite models and mention other methods as needed. We 
point out some striking similarities among phase dia-
grams of models that support a bond order wave (BOW) 
phase in some parameter range of X and Y. The BOW 
phase has broken inversion symmetry and finite energy 
gap Em from the singlet GS to the lowest triplet state. 
1D models are paramagnetic with finite magnetic sus-
ceptibility at absolute zero when Em = 0 or diamagnetic 
with vanishing magnetic susceptibility when Em > 0. 

The first class is E0(U, V) in half-filled Hubbard 
models with on-site repulsion U > 0, transfer integral  
t = 1 and spin independent interactions V of arbitrary 
range. Not so long ago, Nakamura1 realized that the 
extended Hubbard model (EHM) with V > 0 between 
neighbors has a narrow BOW phase that has since been 
confirmed by multiple methods,2−5 although the U, V 
phase diagram is still approximate. E0(U, V) is doubly 
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degenerate in the BOW phase, inversion symmetry is 
broken, and Em(U, V) to the lowest triplet state is finite.1 
The second class is E0(g, 1/) in spin chains6 with frus-
trating exchange g between second neighbors and nor-
malized nonfrustrating exchanges with range 1/. The 
J1J2 model is the short-range limit, 1/ = 0, of nearest 
neighbor exchange J1 = 1 and g = J2 / J1. Okamoto and 
Nomura7 found the onset of the BOW phase at g = 
0.2411. Majumdar and Ghosh8 showed that the exact 
GS at gMG = 1/2 are the Kekulé structures K1 and K2 
of organic chemistry. As sketched in Figure 1a, K1 and 
K2 are two ways to form singlet pairs of adjacent s = 
1/2 sites and clearly break inversion symmetry at sites. 
The third class is E0(, V) in the restricted basis9 of 
modified Hubbard models with site energy ±, transfer 
integral t = 1 and electrostatic (Madelung) energy EM = 
MV for Coulomb interaction V between neighbors. The 
model has been applied to neutral-ionic transitions10 
(NIT) in organic charge transfer (CT) salts11−13 that 
contain mixed 1D stacks of planar -electron donors (D) 
and acceptors (A). The neutral and ionic limits sketched 
in Figure 1b have two electrons in the HOMO of D and 
one electron transferred to the LUMO of A, respective-
ly. Virtual transfers lift the 2N-fold spin degeneracy of 
the ionic state and generate a singlet GS. 

Although different in many ways, these models 
share features that are central to their quantum phase 
diagrams. In addition to equally spaced sites, the total 
spin S is conserved and GS is a singlet, S = 0, over the 
entire parameter range of interest. The models have 
inversion symmetry  at sites. The excitation E is to 
the lowest-energy singlet with opposite  to the GS 
while Em is to the lowest triplet state. The models sup-
port first order or continuous quantum phase transitions. 

They are all candidates for a BOW phase where 
Eand have fundamentally different GS in different 
parameter sectors. Competition among U, V and t in 
half-filled Hubbard models with both charge and spin 
degrees of freedom is analogous to frustration in spin 
chains in the sense that comparable E0(X, Y) is achieved 
with completely different properties. 

The limit of no overlap between sites offers both 
insight and simplicity. The formation energy of ionic 
crystals can be viewed as a first order quantum phase 
transition when the Madelung energy EM exceeds the 
energy ID – AA to ionize the donor and transfer the elec-
tron to the acceptor. Finite overlap, and hence finite 
electron transfer t, complicates the analysis of NITs that 
typically involve partial electron transfer because the 
neutral phase is slightly polar and the ionic phase is not 
fully ionic. NITs may be considered to be quantum 
transitions since they occur at temperature that is low 
compared to any electronic excitation. It has long been 
recognized that the magnetic properties of a half-filled 
1D Hubbard model with U > 4t, the bandwidth of a 1D 
tight binding or Hückel chain, are given by a linear 
Heisenberg antiferromagnet (HAF) with s = 1/2 sites 
and isotropic exchange J1 = 4t2/U between first neigh-
bors. The HAF also describes the magnetic properties of 
modified Hubbard models on ionic side for t << ECT, the 
optical CT excitation polarized along the stack.  

Klein and Seitz14 performed degenerate perturba-
tion theory in t / U on the half-filled Hubbard model. In 
fourth order, they obtained J2 = 4t4

 / U3 between second 
neighbors and reduced J1 by –4t4

 / U3. They found what 
would later be called spin frustration since antiferro-
magnetic J2 > 0 is frustrating for either positive or nega-
tive J1. The sixth order correction14 has t6

 / U5 contribu-
tions to J1 and J2 as well as an additional interaction that 
involves four spins. Later, van Dongen15 studied the 
EHM and obtained J2 = 4t4

 (1 + V / U)/(U – V)3. Hirsch16 
used quantum Monte Carlo to characterize the first 
order transition of the EHM from a Heisenberg spin 
chain at V < U / 2 to a charge density wave (CDW) with 
two electrons on every other site. The phase boundary is 
accurately given by perturbation theory15 for U > 10t.  
A motivated search using other methods such as field 
theory, symmetry and renormalization is needed to find 
the BOW phase.1−5 Frustrating J2 is intrinsic to quantum 
cell models with spin-independent interactions but it is 
not a free parameter and both spin and charge degrees of 
freedom must be considered in general. 

As noted above, we rely on ED of finite systems. 
Exact eigenstates in addition to energies compensate to 
a considerable extent for the limitations of finite size. 
We choose models with N = 4n sites, equal spacing 
between sites, and periodic boundary conditions (PBC), 
thereby explicitly retaining inversion symmetry  at 
sites and ensuring integer S ≤ 2n. There are several 

Figure 1. (a) Schematic representation of adjacent singlet
paired spins, ( – ) · 2−0.5, in the two Kekulé structures
K1 and K2 of an infinite chain of s = 1/2 spins; the sites are
equally spaced; sites 1 and N = 4n are singlet paired in K2.
(b) Schematic representation of a neutral donor-acceptor chain
with two electrons in the HOMO of D and a radical ion chain
with one electron transferred to the LUMO of A. 
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ways to identify quantum phases and phase boundaries 
based on the symmetry and degeneracy of E0(X, Y; 4n), 
on excitation energies, and on correlation functions. For 
example, E0(X, Y; 4n) is doubly degenerate at Xc, Yc 
where one GS transforms as  = 1 and the other as –1. 
We then have E(Xc, Yc; 4n) = 0 and plus or minus linear 
combinations break inversion symmetry as required in a 
BOW phase. A magnetic gap Em(X, Y; 4n) that exceeds 
finite-size corrections in models with equally spaced 
sites is another signature of a BOW phase. The GS 
charge distribution (X, Y; 4n) is discontinuous at Xc, Yc 
for a first order transition. We seek to identify and relate 
the quantum phases and phase transitions of three  
classes of models. Determination of phase boundaries 
depends on the model and almost always requires  
approximation. 

 

FRUSTRATED SPIN−1/2 CHAINS 

Frustrated spin−1/2 chains illustrate quantum phases 
more simply and directly than models with both spin 
and charge degrees of freedom. The Hamiltonian of the 
J1J2 model with 4n spins, PBC and isotropic exchange 
J1 = 1, J2 = g ≥ 0 between first and second neighbors is 
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The g = 0 limit is a linear HAF while 1 / g = 0 cor-
responds to linear HAFs on sublattices A and B of odd 
and even-numbered sites. We draw on extensive exact 
and numerical results17−19 for HAFs with Em = E = 0 in 
the infinite chain as well as on results20,21 at gMG = 1/2. 
The total spin is S = SA + SB and the GS is in the S = 0 

sector for any frustration g ≥ 0. Sublattice spin is  
conserved only at 1 / g = 0, where SA = SB = 0. Quite 
generally, the GS expectation value in the singlet sector 
of models with PBC is22 
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Spin correlation functions C(2p – 1) ≤ 0 between 
spins in opposite sublattices are negative for g ≥ 0 and 
clearly vanish for noninteracting HAFs at 1 / g = 0. 

Figure 2 shows the excitation energies22 Em and E 
as a function of frustration g for 24 spins in Eq. 1. Six 
arrows from gMG =1 / 2 to g10 indicate degenerate GS 
where E(g) = 0. The notation g10 is related to the ana-
lytical model summarized in the Appendix, whose GS 
in the sectors SA = SB = 1 and 0 are degenerate at g10. 
Since ED respects all symmetries, eigenstates are even 
or odd under inversion. Plus and minus linear combina-
tions of degenerate GS break symmetry and lead at gMG 
to the Kekulé diagrams K1 and K2 in Figure 1a. We 
find E(gj) = 0 at n points gj in systems of 4n spins up to 
the largest solved system of 28 spins.22 An expanded 
energy scale is needed to show E(g) in this range, and 
it is plausible to anticipate that the infinite chain has 
doubly degenerate GS with broken inversion symmetry 
over an interval in g. The  = ±1 GS at g10 are well 
approximated22 by the product GG of sublattices in 
their singlet GS and the singlet linear combination 
1TT of sublattices in the lowest triplet state. Moreo-
ver, the magnetic gap Em(g) in Figure 2 exceeds finite-
size effects in the interval gMG < g < g10. The J1J2 model 
has a BOW phase with broken  symmetry and finite 
Em. 

Finite-size effects are significant at phase bounda-
ries, where theory indicates1,2 that Em opens very slowly 
at a Kosterlitz-Thouless transition that is beyond finite 
models. Degenerate GS over a finite interval requires an 
infinite chain. Both Em and E are HAF excitations at g 
= 0 or 1 / g = 0; they decrease approximately as 1/N and 
converge slowly with logarithmic corrections.23 The 
condition E(g) ≤ Em(g) is minimally required to have 
two singlets at lower energy than any triplet. Hence the 
excited-state crossings g* and g** in Figure 2 are  
finite-size estimates of the boundaries of the BOW 
phase. The weak size dependence of g*(4n) makes it 
possible to extrapolate7 very accurately to g* = 0.2411. 
The stronger size dependence of g**(4n) leads21,22 to 
g** ~ 2.02(3). 

As mentioned in connection with ionic solids and 
NITs, first order transitions are simple in the limit of 
zero overlap. The limit for spin chains is less familiar. 
We always have SA = SB = 0 at 1 / g = 0. The largest 
possible values are SA = SB = n for ferromagnetic 
sublattices, when the singlet GS is a linear combination 

Figure 2. Excitation energies Em and E with increasing frus-
tration g in the 24-spin J1J2 model, Eq. 1; Em is to the lowest
triplet, E is to the lowest singlet with reversed inversion
symmetry. Arrows indicate g where the ground state is doubly
degenerate, E(g) = 0; points g* and g** mark the excited-
state degeneracy Em = E. 
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of product functions with Sz components –n ≤ MA ≤ n on 
sublattice A and MB = –MA on sublattice B. We recently 
constructed and solved an analytical model22 with  
N = 4n spins, and conserved SA, SB. As summarized in 
the Appendix, the infinite chain has a first order quan-
tum transition at gc = 1/(4 ln2) where SA = SB changes 
discontinuously from n to 1, followed at g10 = 4 / 2 by 
changing from SA = SB = 1 to 0. All spin correlation 
functions C(2p – 1) in Eq. 2 vanish rigorously for g > 4 / 

2. The GS for g < gc with SA = SB = n and ferromagnet-
ic sublattices is completely different from the GS for  
g > g10 with SA = SB = 0 and antiferromagnetic sublattic-
es. Both phases of the infinite chain rigorously have  
Em = 0. 

To discuss spin chains with nonfrustrating  
exchange beyond first neighbors, we retain frustrating g 
between second neighbors and generalize6,22 the first 
term in Eq. 1 to 

2 1 4 2
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The resulting models H(g, ) = H() + gpsp
.sp+2 

have two parameters, frustration g and range 1 / of 
nonfrustrating Jr() between spins p and p + r. 
Sublattice spin is not conserved in general. The chosen 
distance dependence is a power law,  
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with normalization rJr = 1. The J1J2 model is the limit 
1 / = 0 while constant Jr is the opposite limit  = 0. At 

g = 0, the GS has24 long-range order (LRO) for  < 2, 
long-range spin fluctuations but no LRO for  > 2 and 
there are some exact field theory results25 at  = 2. 

Two points are worth noting before turning to 
models with fixed . First, C(2p – 1) ≤ 0 holds for any 
H() in Eq. 3 and the 1 / g = 0 limit is always decoupled 
HAFs on sublattices with SA = SB = 0. Second, each 
sublattice is an HAF with 2n spins and PBC whose 
eigenstates may be classified as 0 ≤ SA, SB ≤ n. Product 
functions r, SAr’, SB with r, r’ = 1, 2,… form a com-
plete orthonormal basis at any frustration g. Hence the 
sublattice spin SA

2 in Eq. 2 always decreases with 
increasing g and vanishes at 1 / g = 0. 

Figure 3 shows the excitation energies Em and E 
as a function of frustration g in chains with exchange  
= 1 in Eq. 4 and LRO at g = 0. We find E(g, 4n) = 0 at 
two points, g1 and g10, that correspond in the analytical 
( = 0) model22 to degeneracy between SA = n and 1 and 
between SA = 1 and 0, respectively. The  = 1 model of 
4n = 20 spins, odd n, has E(4n) = 0 at g10 and an avoid-
ed crossing the E kink at g1 because the GS is even 
under inversion at both SA = n and 1 in the analytical 
model. As shown in the Appendix, the analytical model 
has constant Em(g, 4n) = 2 / (4n – 1) for g ≤ g10 and dou-
bly degenerate triplet for g ≥ g10:  

   m m 10( ,4 ) 2  –  2 / 4 –  1 ;  (4 )E g n gE n n g g n   (5) 

where Em(2n) is the singlet-triplet gap of a 2n-spin 
HAF. Exact results account well for the  = 1 model in 
Figure 3: Em(g) is almost constant for g < g10 and the 
triplet is doubly degenerate for g > g10; the slope dEm/dg 
= Em (2n) holds to better than 1 %. Moreover, the g > 
g10 excitation E(g, 4n) with opposite inversion sym-
metry is the singlet 1TT constructed from a triplet on 

Figure 3. Excitation energies Em and E as functions of frus-
tration g in models with exchanges  = 1 in Eq. 3 and 4n = 24
or 20 spins; Em is to the lowest triplet, E to the lowest singlet
with reversed inversion symmetry. The ground state is doubly
degenerate at g10 where E(g10) = 0 and at g1 for 24 spins. For
g > g10, the triplet is doubly degenerate and the excited singlet
is 1TT, a triplet on each sublattice. 

Figure 4. Ground-state sublattice spin SA
2 in Eq. 2 as a

function of frustration g for the J1J2 and  = 1 models with 20
and 24 spins.  The quantum transition of the  = 1 model is
first order. The J1J2 model shows finite-size gaps; the infinite
chain has continuous SA

2 per site and continuous quantum
transitions. Dotted lines for g > g10 refer to SA

2 of the excited
singlet 1TT with a triplet on each sublattice. 
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each sublattice. The slope dE/dg in Figure 3 is within a 
few percent of 2Em(2n), the exact result in Appendix. 
The  = 1 model has LRO at g = 0, a first order quan-
tum transition at g1 to the decoupled phase, and Em = E 
= 0 in the infinite chain over the entire range g ≥ 0. 

The evolution of SA
21/2

 / [4n (n + 1)]1/2 ≤ 0.50 with 
frustration g in Figure 4 highlights the difference  
between models with first order and continuous  
quantum transitions. The  = 1 model has almost ferro-
magnetic sublattices at g = 0 where the J1J2 model has 
smaller SA

2 associated with the HAF and long range 
spin fluctuations. LRO at g = 0 leads to a first order 
transition and fundamentally different GS on either side 
as seen clearly in the analytical model. The models have 
similar SA

2 at large frustration g > g10 where dotted 
lines refer to 1TT with SA

2 = 2 at 1 / g = 0. The g = 0 
behavior is not relevant in the decoupled phase. The 
excited state of either model at g10 is already within 5 % 
of the 1 / g = 0 limit of decoupled sublattices. At still 
larger frustration g’, the lowest singlet excitation is 
doubly degenerate, AG or GA, where A is the 
lowest singlet excited state of the sublattice. 

The quantum phase diagram for frustrated spin 
chains in Figure 5 is based22 on models with 24 spins 
and = 1–4 in Eq. 4 in addition to the J1J2 model. Open 
symbols refer to GS degeneracy with E(g) = 0, closed 
symbols to E(g) = Em(g) in models with continuous 
quantum transitions and a BOW phase. We find closely 
similar phase diagrams for 20 or 16 spins.22 Models 
with LRO at g = 0 have a first order transition to a de-
coupled phase. The BOW phase narrows with increas-
ing range 1 /  of nonfrustrating exchange and shrinks to 
a multicritical point6,22 around t ~ 1.8, gt ~ 0.4. The 

same pattern is found below in systems with charge as 
well as spin excitations. Some parameters return contin-
uous quantum transitions and an intermediate BOW 
phase; other parameters lead to a first order quantum 
transition and no BOW phase. 

 

COMPETING INTERACTIONS IN QUANTUM 
CELL MODELS 

1D models with both spin and charge degrees of free-
dom have richer quantum phase diagrams than spin 
chains. We are considering half-filled bands with inver-
sion symmetry  at sites, equally spaced sites, con-
served total spin and singlet GS. Gaps associated with 
adding or subtracting an electron discriminate between 
insulators and conductors; such gaps are not needed 
here. Models with a BOW phase have E = 0 and two 
continuous transitions associated with Em and E. Both 
gaps open at a first order transition. 

The EHM has on-site repulsion U ≥ 0 for two 
electrons in the same Wannier orbital, repulsion V for 
electrons on adjacent sites and electron transfer t = 1 
between adjacent sites. The Hamiltonian with PBC is 

4
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where ap
+ (ap) creates (annihilates) an electron with 

spin  in the orbital at site p, h.c. is the hermitian conju-
gate and np is the number operator. Half-filled bands 
have one electron per site. There are four simple limits: 
U = V = 0 is a Hückel or tight-binding band of width 4t 
that is readily solved for any size; U >> V > 0 has singly 
occupied sites, np = 1, and magnetic properties given by 
an HAF with J1 = 4t2

 / (U – V); the GS for large V is a 
charge density wave (CDW) with doubly occupied sites 
on one sublattice and empty sites on the other; when 
both U and V are large, there is a first-order quantum 
transition at V ~ U / 2 between spin liquid and CDW. 
Hirsch16 found the t2

 /(U – V) correction to the phase 
boundary and van Dongen15 the t4 correction. Nakamu-
ra1 used symmetry, field theory and ED to establish the 
existence of a BOW phase U < Ut, the tricritical point 
that has subsequently been independently estimated3–5 
as Ut ~ 6.7 for the EHM. 

The EHM has electron-hole (e-h) symmetry26  
J = ±1 that corresponds to a phase factor and  
interchanged empty and doubly occupied sites. E-h 
symmetry holds in half-filled bands with any site-
diagonal interaction instead of V in Eq. 6, including 3D  
interactions or two-center integrals in the Pariser-Parr-
Pople (PPP) model of conjugated molecules. But of 

Figure 5. Quantum phase diagram E0(g, 1/) of 24 spins with
frustrating J2 = g between second neighbor and nonfrustrating
exchange Jr() in Eq. 4. Open and solid points indicate degen-
erate GS with E = 0 and degenerate excited states Em = E,
respectively. Dashed lines are approximate boundaries of the
BOW phase. Solid lines are approximate boundaries of the
decoupled phase in models with LRO at g = 0; the dotted line
separates models6 with long-range fluctuations and order at
small frustration. 
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course Ut depends on the chosen potential.5 The crucial 
requirement for e-h symmetry is electron transfer be-
tween sites in opposite sublattices, the first term in Eq. 
6. The following discussion holds for other quantum 
cell models than the EHM. According to the Hellmann-
Feynman theorem, the density of doubly occupied sites 
is 

0
2

( , )
( , )

V

E U V
ρ U V

U

    
 (7) 

Charge conservation leads to the same density of 
empty sites in half-filled bands and to 1 – 2ρ2 for the 
density of singly occupied sites. Increasing V at constant 
Uc > Ut generates a first order quantum transition at 
Eσ(Uc, Vc) = 0. The partial derivative is more directly 
related to a quantum phase transition than the sublattice 
spin SA

2 in Eq. 2. However, since only singly occupied 
sites contribute to SA, discontinuous ρ2 clearly implies 
discontinuous SA

2. 
The schematic quantum phase diagram1–5 in Fig-

ure 6 holds for the EHM and for models with spin-
independent Coulomb interactions. If we suppose that 
singly occupied sits are neutral, then empty sites are 
positively charged and doubly occupied sites are nega-
tively charged. The electrostatic energy of the ionic 
lattice is EM = MV per ion pair, where V is the Cou-
lomb interaction between neighbors and M is the  

Madelung constant; M = 2 for the EHM, 2ln2 for a 1D 
array of point charges and M can be evaluated for 3D 
lattices. The dashed line in Figure 6 is the limit of zero 
overlap that separates the spin liquid phase, a Curie spin 
system at t = 0, from the CDW phase. We notice simi-
larities and differences to frustrated spin chains in Fig-
ure 5. Finite N = 4n systems have a single point E(Uc, 

Vc, 4n) = 0, as do5 N = 4n + 2 systems with antiperiodic 
(twisted) BC. The quantum transition is first order for 
Uc > Ut as estimated, for instance, from discontinuous 
E0 derivatives. In contrast to the J1J2 model with  
multiple GS degeneracies in Figure 2, the width of the 
BOW phase for Uc < Ut in Figure 6 is entirely based on 
excited-state degeneracies. The spin gap opens at  
Em(Uc, V1, 4n) = E(Uc, V1, 4n) with V1 < Uc / M. The 
inversion gap opens at E(Uc, V2, 4n) = EJ(Uc, V2, 4n) 
with V2 > Uc / M where EJ is the excitation energy of the 
lowest singlet with opposite e-h symmetry to the GS. 
Finite Em(Uc, Vc) for Uc < Ut can be estimated5 by ex-
trapolation of ED results or by density matrix renormal-
ization group (DMRG) calculations. Although not as 
decisively as in Figure 2, Em(Uc, Vc) exceeds5 finite-size 
effects for intermediate U and supports to the existence 
of a BOW phase that narrows at small U, V and shrinks 
to a point at U = V = 0 in Figure 6. The BOW phase 
near the band limit has been established by other  
theoretical methods27 and is beyond the scope of the 
present discussion. 

To pursue the analogy with frustrated spin chains, 
we note that SA

2 increases with U at V = 0 and de-
creases with V at constant U. The largest possible SA

2 
at U >> V = 0 is just that of an HAF, the J1J2 model at  
g = 0. The GS has long range spin fluctuations but no 
LRO. The same limit holds for U > MV and U – V >> t. 
We always have SA

2 = 0 at large V where the GS is a 
CDW, doubly degenerate in e-h symmetry, and both Em 
and E are of order V – U. Although the CDW is doubly 
degenerate, all linear combinations transform as  = 1 
and two singly occupied sites are minimally needed for 
either a triplet or a singlet state that is odd under inver-
sion. Systems with a BOW phase again have two con-
tinuous quantum phase transitions while systems with a 
first order transition do not support a BOW phase. 

Organic CT crystals contain11,12 mixed 1D stacks 
of planar -electron donors (D) and acceptors (A). 
There are two sites per unit cell. Inversion symmetry is  
retained on the neutral side but is broken on the ionic 
side by the Peierls instability to dimerization. The pre-
sent discussion is limited to models with equal  
spacing in Figure 1b. As sketched there for zero over-
lap, the neutral stack is a CDW with both electrons in 
the HOMO of D while the ionic stack has one electron 
on each D+ and A–. We have reversed spin-charge rela-
tions with paired spins in the neutral limit and s = 1/2 
sites in the ionic limit. It is convenient and physically 

Figure 6. Quantum phase diagram of extended Hubbard mod-
els, Eq. 6, with on-site U > 0, nearest-neighbor V > 0, and 1D 
potential with Madelung constant M. The dashed line is the
first order transition from the spin liquid to the CDW phase in
the limit of zero overlap. In units of t = 1, the tricritical point
Ut, Vt separates first order and continuous transitions. The line 
V2(U) is a first order transition from spin liquid to CDW for
U > Ut and a continuous transition from BOW to a CDW for
U < Ut. The BOW phase between V2(U) and V1(U) has a finite 
magnetic gap, Em, that opens at V1 and vanishing gap E that 
opens at V2. 
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sensible to focus on neutral and singly ionized sites with 
spin  or , but to exclude doubly ionized D2+ or A2–.  If 
we take the D and A sublattices to have odd and even-
numbered sites, respectively, the restricted basis has 
charge operators qp which assume the values 0, 1 at odd 
p for D, D+ and qp = 0, –1 at even p for A, A–. 

The CT models has site energies ± at A and D 
sites and Coulomb interactions Vpp’ between ions in the 
stack or the 3D crystal at the mean field level. The 
Hamiltonian in the restricted basis with t = 1 is 

4

CT
1

4 4

,σ 1,σ ' '
1,σ ' 1

( , ) ( 1)

( h.c.)

n
p

p
p

n n

p p pp p p
p p p
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


  

  

 



 

 

 (8) 

The charge operator qp is 2 – np at D sites and –np 
at A sites. Hence Vpp’ > 0 corresponds to attraction for 
ions in different sublattices and repulsion for ions in the 
same sublattice. The special case HCT(, 0) is the modi-
fied Hubbard model (MHM) whose continuous NIT has 
been treated in detail.28 The GS electron density nD(, V) 
per site is 

0 ( , )
( , ) 1

V

E V
n V

    
D





 (9) 

The GS energy per site is – for a neutral lattice in 
Figure 1b for  >> V. The bond order between site m 
and m + 1 is the GS expectation value 

 0
m m, m 1, m, m 1,

m,m 1 ,
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p a a a a
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
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PBC returns equal bond orders for nondegenerate 
GS. Linear combinations of doubly degenerate GS lead 
to BOWs with amplitude ±B. The ionic limit Γ << 0 is 
again an HAF. Virtual transfers in the ionic limit are 
reduced by a factor of two in the restricted basis, there-
by reducing J1, but are not reduced in the neutral limit. 
Hence the MHM phase boundary29 at Γ = 0 for t = 0 
shifts to Γ < 0 for finite t while the EHM phase bounda-
ry16 at V = U / 2 for t = 0 shifts to V > U / 2 for finite t. 

The MHM has a continuous28 NIT at Γc = –0.666 
where the ionicity ρ(Γc) = 0.684 is the fraction of an 
electron transferred from D to A. The dipole-allowed 
CT excitation is Eσ on the neutral side. We have Eσ = 0 
for Γ < Γc and very little oscillator strength for what 
becomes a spin excitation on the ionic side. Table 1 lists 
Γc(4n) where the GS is doubly degenerate, Eσ = 0, the 
BOW amplitude B(Γc, V) and Γ(4n) where the excited 
states are degenerate, Em = Eσ. We start with the MHM 
model and return below to V = 0.3. The magnetic gap 
opens at Γ; Em exceeds finite-size effects28 at Γc; and 
the size dependence of Γ or Γc is weak. The width of 
the BOW phase is Γ – Γc ~ 0.30 in units of t. The BOW 
amplitude at Γc is large, B = 0.139 for 20 spins, compa-
rable to the mean value, (p1 + p2)/2 = 0.377.  For com-
parison, the BOW amplitude of the Kekulé structures in 
Figure 1a is B = 3/8, as follows from (s1·s2 – s2·s3) / 2 
= ± 3 / 8. 

The MHM has strong electron correlation en-
forced by the restrictions np = 1 or 2 at D sites and np = 
0 or 1 at A sites. The model is not cooperative, however, 
since there is no dependence on the number of ions. 
Coulomb interactions Vpp’ in Eq. 8 between D+ and A– 
sites are attractive and cooperative, preferentially stabi-
lizing more and more ions. Either by exact solution of 
finite stacks or in mean-field theory of 1D or 3D lattic-
es, increasing Coulomb interactions lead13,12 to a first 
order NIT. The continuous NIT of the MHM with  
E0(, 0) and equal spacing becomes first order in  
models with E0(, V) and V > Vt, at a tricritical point that 
depends on Vpp’. Just as for spin chains in Figure 5 or for 
extended Hubbard models in Figure 6, the , V quantum 
phase diagram of HCT(, V) has a BOW phase at V = 0 
between a spin liquid for  <  and a CDW for  > c. 
The BOW phase narrows and disappears for V > Vt. The 
first order NIT at c, Vc for Vc > Vt is directly from a 
spin liquid with Em = E = 0 to a CDW with finite spin 
and charge gaps. 

If attractive interactions in HCT(, V) induce a first  
order transition, repulsive interactions should broaden 
the BOW phase. With this motivation, we chose  
Vpp’ = Vp,p+2 in Eq. 8 with V > 0 for repulsion between 
adjacent ions in the same sublattice. As seen in Table 1, 
small V = 0.3 hardly changes the BOW amplitude  
B(c, V) at the GS degeneracy while noticeably  
increasing the width  – c of the BOW phase. The 

Table 1. Ground and excited state degeneracy Eand E = Em at c and , respectively, of HCT with 4n sites in Eq. 8; B is the 
BOW amplitude at c; V = 0.3 refers to repulsion between second neighbor ions. 

Size  MHM (V = 0) V = 0.3 

N = 4n  c B(c,0)  + V c + V B(c,V)

12 –1.018 –0.644 0.1707 –1.143 –0.724 0.1717          

16 –0.994 –0.654 0.1516 –1.119 –0.736 0.1526

20 –0.972 –0.658 0.1387 –1.112 –0.740 0.1398
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same trends are observed with increasing V until large V 
induces charge disproportionation in each sublattice. 
The GS in the limit V >> 2 is a four-fold degenerate 
CDW-BOW of neutral and ionic dimers, (DAD+A–)n or 
(ADA–D+)n, with interchanged molecules and ions in the 
other two GS.  Singlet pairing of radical ions leads to 
finite Em. 

The normalized sublattice spin SA
21/2

 / [4n · (n + 
1)]1/2 is shown in Figure 7 for HCT(, 0) as a function of 
for 4n = 12, 16 and 20. The infinite chain has contin-
uous SA

2, as seen by extrapolation of the finite-size 
jumps at E(Vc, 0, 4n). The HAF result of 0.412 for 16 
spins and 0.378 for 20 spins is the   – limit, some 
10 % higher than at  = –2. The HAF is also the g = 0 
point in Figure 4 for the J1J2 chain or the U >> V limit 
of extended Hubbards models. The neutral lattice at  
 >> 0 has SA = SB = 0 for filled and empty sublattices. 

We close this Section with some remarks about 
the ionic Hubbard model (IHM) with site energy ± on 
the sublattices of even and odd sites,30,31 

,σ) 1,σ)
,σ

( , ) ( h.c.)

        ( 1) / 2 ( 1)

IHM p p
p

p
p p p

p p

H U t a a

U n n n


  

   



 




 (11) 

The IHM has a BOW phase30 and its quantum 
phase diagram in the (U, ) plane has been discussed31 
in detail mainly in terms of DMRG. The IHM is closely 
related to HCT(, V) and illustrates the different contexts 
and motivation in which the models were studied. The 
IHM is a Hubbard model at  = 0, an insulator at U = 0 
with energy gap 2 between the valence and conduction 
bands, and a CDW in the limit  >> U, t. It has simple 
familiar limits and is ideal for exploring quantum phas-
es. The IHM always has two continuous quantum phase 
transitions:31 With t = 1 as usual and constant , both Em 

and E are finite for U < Uc1, a first critical point beyond 
which E = 0; Em goes to zero at a second critical point 
Uc2; the BOW phase is the interval [Uc1,Uc2]. Two con-
tinuous transitions and a BOW phase are fully con-
sistent with the preceding discussion of HCT(, 0). The 
IHM cannot support a first order transition that requires 
cooperative attractive interactions since Eq. 11 has no 
interactions Vpp’ between ions. 

In the context of CT crystals, on the other hand, 
large 3D electrostatic interactions were recognized10–12 
from the outset to be necessary to stabilize the ionic 
phase and drive neutral ionic transitions. Interactions 
Vpp’ can be treated explicitly in 1D models or at the 
mean field level with Madelung sums over Vpp’, and 
preceded the basic model HCT(, 0). Both on physical 
grounds and to reduce the number of parameters as well 
as the size of the basis, the  and U parameters in  
Eq. 11 were combined into the site energy  defined9 as 

 – U / 2 in the limit , U   such that the difference 
is finite. The limit gives the restricted basis for  
HCT(, V). As discussed elsewhere,13,32 the model with 
coupling to vibrations describes IR, optical and dielec-
tric properties of CT crystals with continuous or first-
order neutral ionic transitions. 

 

DISCUSSION 

We have explored similarities among the quantum 
phase diagrams of three classes of 1D models with 
equally spaced sites: frustrated spin chains with variable 
range exchange, half-filled Hubbard models with spin-
independent interactions and ionic or modified Hubbard 
models with site energies. These models have been 
studied separately in quite different contexts. We would 
like to understand why models with BOW phases have 
similar quantum phase diagrams and phase transitions. 

The common thread is the spin–1/2 linear Heisen-
berg antiferromagnet (HAF). The HAF is the narrow 
band limit 4t << U – V of the EHM in Eq. 6 or of related 
quantum cell models; it is the  << 0 limit of the MHM 
or related models in Eq. 8; it is the limit 1 / g = 0 of frus-
trated spin chains with arbitrary range 1 /  of 
nonfrustrating exchange; and of course it is the g = 0 
chain in Eq. 1. The HAF conserves total spin S but not 
the sublattice spin SA, SB of odd and even numbered 
sites. The infinite HAF is rigorously known to have a 
nondegenerate GS and Em = E = 0. The GS expectation 
value SA

2 / 4n per spin in Eq. 2 is of order ln(4n) due to 
long range spin correlations. The analytical spin chain22  
in the Appendix has perfect LRO and SA

2 = n(n + 1) for  
g < 1/(4 ln2). Increasing frustration g always reduces 
SA

2 and leads to SA = SB = 0 at 1 / g = 0. Increasing V in 

Figure 7. Ground-state sublattice spin SA
2 in Eq. 2 as a

function of site energy  in the modified Hubbard model,
Eq. 7 with V = 0, for 12, 16 and 20 sites. The infinite stack has
continuous SA

2 per site while finite stacks are discontinuous
at c. In the limit   – of a linear HAF, SA

2 coincides
with g = 0 of the J1J2 model in Figure 4. 
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Hubbard models with U > 4t or  in the MHM also 
reduces SA

2 as shown in Figure 7. Sublattice spin 
changes discontinuously in a first order transition from 
spin liquid to CDW as can readily be seen from the limit 
of no overlap. In either case, we have SA = SB = 0 in the 
limit of large V or large , when one sublattice is filled 
and the other one is empty. 

These models all have inversion symmetry  at 
sites. The GS of a 4n-spin HAF in the sector S ≤ 2n 
alternates between  = ±1 with increasing S. Quite gen-
erally, the GS symmetry changes at least once with 
increasing g in spin chains, with increasing V in Hub-
bard models or with increasing  in CT models. The 
degeneracy E(Xc, Yc) = 0 marks a first order quantum 
transition when a partial derivative of E0, the charge 
density 2(U, V) in Eq. 7 or nD(, V) in Eq. 9, is discon-
tinuous at the transition. SA

2 is discontinuous whenev-
er 2 or nD is and SA

2 is discontinuous in spin chains 
with LRO at g = 0. The discontinuity refers to the infi-
nite system rather than to small jumps that decrease 
with increasing size. 

The degeneracy E(Xc, Yc) = 0 indicates a BOW 
phase when 2(U, V) or nD(, V) is continuous and the 
finite gap Em(Xc, Yc) to the lowest triplet exceeds finite-
size effects. Quite remarkably, frustrated spin chains in 
Figure 5 have multiple points at which E = 0 for mod-
els with  ≥ 2 and no LRO at g = 0. The continuous 
phase transition is then estimated from the excited state 
degeneracy E(Xc, Yc; 4n) = Em(Xc, Yc; 4n) where Em opens 
in the infinite system. A finite energy gap has major 
implications at absolute zero: the BOW phase is dia-
magnetic rather than paramagnetic and its specific heat 
decreases exponentially rather than linearly as T  0. 

We have exclusively discussed spin or electronic 
excitations. Reference to possible experimental realiza-
tions must take into account lattice and molecular vibra-
tions as well as 3D interactions. Electron-phonon (e-ph) 
or electron-molecular-vibration (e-mv) coupling has 
important consequences in quasi-1D materials.33,34 Lin-
ear coupling such as (dt / du)0 or (dJ / du)0 about equi-
librium plus a harmonic potential generates models with 
Peierls or spin-Peierls transitions. The adiabatic or 
Born-Oppenheimer approximation then leads to elec-
tronic models with additional parameters such as the 
dimerization amplitude and higher-dimensional phase 
diagrams that are beyond the scope of this paper. Since 
dimerization breaks inversion symmetry, totally sym-
metric molecular vibrations seen in Raman spectra for 
equally spaced sites become strongly infrared allowed 
by borrowing intensity from the optical CT transition.35 
The Peierls instability of 1D systems to dimerization 
becomes conditional in CT salts.12,13 NITs are quantum 
phase transitions since Tc < 100 K is well below any 
electronic excitation. Spin-Peierls transitions,36,37 by 
contrast, are thermally driven in systems with J1 ~ 10 K. 

We have remarked that the three classes of models 
have appeared in different contexts to address other 
issues than mentioned here. Dozens of organic CT crys-
tals have either first order or continuous NITs.12,13 
Tetrathiofulvalene-Chloranil (TTF-CA) has received the 
most attention, but related families have been well char-
acterized and there are many donor-acceptor complexes. 
TTF-CA has a first order dimerization transition on 
cooling and is consequently not a BOW candidate. TTF-
Bromanil has a thermal Peierls transition38 with signifi-
cant Boltzmann population of spin states at low temper-
ature. Some recurring NIT themes are to obtain crystal 
structures, including 3D changes, to measure and model 
polarized optical spectra, including pump-probe  
experiments, to model coupling to lattice phonons and 
to molecular vibrations, and to characterize elementary 
excitations such as spin solitons or charged polarons. 
Organic CT salts are semiconductors with challenging 
optical and magnetic properties that have been modeled, 
to the best of our knowledge, without invoking a BOW 
phase. 

Quantum cell models such as the EHM or PPP 
model are approximate many-body theories that apply 
to solids or molecules in general. Hubbard models ini-
tially addressed the formation of local moments in nar-
row bands. The models have also been studied theoreti-
cally as interesting many-body problems, and the BOW 
phase was identified1 in the EHM. We recently pro-
posed that Rb-TCNQ(II), the second polymorph of 
alkali-tetracyanoquinodimethane salt, is a realization of 
a BOW phase.39 The anion radical stacks at 100 and  
300 K are equally spaced,40 not dimerized at low  
temperature. The magnetic gap is large, Em > 400 K, 
thereby suppressing excitations40 below 200 K, and the 
optical gap is even larger. Yet the strong, characteristic 
coupling of CT fluctuations to molecular vibrations in 
the mid infrared clearly indicates broken inversion 
symmetry below 200 K that cannot be due to structural 
dimerization. 

The magnetic properties of spin chains of transi-
tion metal ions or of organic radicals have been inter-
preted as HAFs for many years. Generalizations include 
larger spin than s = 1 / 2, anisotropic and/or antisymme-
tric exchange, and weak exchange between chains. 
Recent interest has focused in frustrated systems such as 
copper oxides41 with chains of spin–1/2 Cu(II) ions with 
either antiferromagnetic J1 > 0 or ferromagnetic J1 <  0 
between neighbors and presumed J2 > 0 between second 
neighbors. Exotic GS can be realized42 in J1J2 models in 
an applied magnetic field as observed in saturation 
magnetization at low temperature, or due to deviations 
from isotropic exchange. Spin-phonon coupling and 
magnetic interactions between chains also come into 
play. We are not aware of decisive evidence for a BOW 
phase system but the field is active and such a material 
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may be identified. Very low temperature is needed to 
freeze out spin excitations. An even greater challenge is 
to demonstrate a phase transition to a BOW phase. 

 

CONCLUSION 

In summary, we have discussed the quantum 
phase diagrams and transitions of three classes of 1D 
models with singlet GS and inversion symmetry at sites. 
In some parameter sectors, the models have a first order 
transition where the sublattice spin SA

2 is discontinu-
ous. In other parameter ranges, the models have two 
continuous transitions, continuous evolution of SA

2 
and an intermediate BOW phase with a doubly degener-
ate GS and a finite gap Em to the lowest triplet state. Our 
principal result is the similar quantum phase diagrams 
of spin chains with frustrating second-neighbor ex-
change and variable range nonfrustrating exchange, of 
half-filled Hubbard models with spin independent inter-
actions, and of modified Hubbard models with site en-
ergies ± in a restricted basis. All three classes of mod-
els reduce in some limit to a linear spin–1/2  
Heisenberg antiferromagnet. 
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APPENDIX: ANALYTICAL SPIN CHAIN WITH 
FRUSTRATION 

We consider a chain of 4n spin with PBC and uniform 
exchange Jr = 2 / (4n – 1) in Eq. 3 between all spins in 
different sublattices, as in the Lieb-Mattis model,43 and 
exchange –Jr between all spins in the same sublattice. 
Uniform normalized exchange is the  = 0 limit of Eq. 
3, which can readily be written as 

2 2 2
A B2 2 3

(4 )
(4 1)

S S S n
H n

n
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


 (A.1) 

The integer ranges are 0 ≤ S ≤ 2n, 0 ≤ SA, SB ≤ n 
and the index  has been omitted. The GS is evidently 
always in the S = 0 sector. In the absence of frustration, 
the GS is a linear combination of 2n + 1 states with SA = 
SB = n and z components MB = – MA. The singlet GS has 
antiferromagnetic coupling between sublattices with 
perfect ferromagnetic order. 

The g terms in Eq. 1 correspond to two linear 
HAFs with PBC and antiferromagnetic exchange g 
between neighbors in sublattices of 2n spins. The  
 

eigenstates of the frustrated spin chain H(4n) + gH2 are 
product functions r, SA, 2nr’, SB, 2n of HAF states r, 
r’ = 1,2… in sectors with spin SA, SB. The energy of the 
singlet GS in the sector with SA = SB is 
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where E0(SA, 2n) is the lowest total energy for SA ≤ n. 
Increasing g leads to crossovers of E(0, SA, 4n) between 
SA = n and m < n. The degeneracy between SA = n and 1 
occurs at the smallest frustration that we call g1(4n). The 
relation E(0, n, g1) = E(0, 1, g1) gives 
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Since the infinite HAF has Em = 0 and energy per 
site is –ln2 + 1 / 4, the first order transition from SA = n 
to SA = 1 occurs at gc = 1 / (4ln2). The next transition 
with increasing g is from SA = 1 to SA = 0. The relation 
E(0, 1, g10) = E(0, 0, g10) leads to 
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where Em(2n) is the singlet-triplet gap. The size depend-
ence is more delicate. The Bethe ansatz for finite  
systems gives23 Em(2n) to leading order and the second 
expression22 in Eq. A.4. All spin correlations in Eq. 2 
vanish rigorously in the infinite chains for g > g10 =  
4 / 2, when both sublattices are in the singlet GS. 

The lowest triplet excitation has S = 1 in Eq. A.2 
and constant Em = 2 / (4n – 1) for g < g10(4n). Since the 
sublattice spin is finite, the triplet does not require 
changing SA or SB. The sublattices are in the singlet GS 
for g > g10(4n), however, and Em(g, 4n) is given by Eq. 5 
in the text. The second term is the H(4n) contribution. 
The triplet is doubly degenerate, localized on either 
sublattice, with S = 1 and SA + SB = 1. For g > g1(4n), 
the singlet linear combination of a triplet on each 
sublattice leads to the excitation energy E(g, 4n), 

σ
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               2 (2 ) 8/ (4 1)

E g n E g E g
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These excitations of the analytical model are relat-
ed in Fig. 3 to the  = 1 model that does not conserve 
sublattice spin. 
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