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ABSTRACT

We introduce a novel definition of a parabola into the
framework of universal hyperbolic geometry, show many
analogs with the Euclidean theory, and also some remark-
able new features. The main technique is to establish
parabolic standard coordinates in which the parabola has
the form xz=y2. Highlights include the discovery of the
twin parabola and the connection with sydpoints, many
unexpected concurrences and collinearities, a construction
for the evolute, and the determination of (up to) four
points on the parabola whose normals meet.
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Parabola u univerzalnoj hiperbolitkoj geometriji |
SAZETAK

Uvodimo novu definiciju parabole u okvir univerzalne
hiperboli¢ke geometrije, pokazujemo mnoge analogone s
euklidskom geometrijom, ali i neka izvanredna nova svoj-
stva. Osnovna je tehnika uspostavljanje paraboli¢nih stan-
dardnih koordinata u kojima parabola ima jednadzbu ob-
lika xz=y?. lIstitemo otkri¢e parabole blizanke, vezu sa
sidto¢kama, mnoge neolekivane konkurentnosti i koline-
arnosti, konstrukciju evolute te odredivanje (do najvise)
Cetiriju tofaka parabole u kojima normale parabole pro-
laze jednom to&kom.

Kljuéne rije€i: univerzalna hiperboli¢ka geometrija,
parabola

1 Introduction Of course the ancient Greeks also studied the familiar met-
rical formulation of a parabola: it is the locus of a point
This paper begins the study of tiparabolain univer- which remains equidistant from a fixed poknt called the

sal hyperbolic geometry (UHGYhe framework is that of ~ focus and a fixed linef, called thedirectrix. (We have a
[16], [17], [18], [19] and [20]; a completely algebraic and good reason for using the same letters for both concepts,
more general formulation of hyperbolic geometry which with only case separating them). Such a capicas a line
extends to general fields (not of characteristic two), and of symmetry: theaxis athroughF perpendicular tof. It

also unifies elliptic and hyperbolic geometries. We will see also has a distinguished poivtcalled thevertex which

that this investigation opens up many new phenomenon,is the only point of the parabola lying on the azisaside
and hints again at the inexhaustible beauty of conic sec-from the point at infinity. The verteX is the midpoint
tions! between the focuB and thebase pointB = af.

In Euclidean geometry, the parabola plays several distin-For such a classical parabofa hundreds of facts are
guished roles. 1t is the graph resulting from a quadratic known, see [1], [4], [5], [8], [10], [13], [14]; quite a few
function f (x) = a+ bx+cxX?, and so familiar as the sec- of them going back to Archimedes and Apollonius, others
ond degree Taylor expansion of a general function. The added in more recent centuries. Of particular importance
parabola is also a conic section in the spirit of Apollonius, are theorems that relate to an arbitrary p&iain the conic
obtained by slicing a cone with a plane which is parallel and its tangent ling. In particular the construction qi

to one of the generators of the cone. In affine geometryitself is important: there are two common ways of doing
the parabola is the distinguished conic which is tangent to this. One is to take the fodt of the altitude fronP to the

the line at infinity. In everyday life, the parabola occurs directrix f, and conned® to the midpoinM of TF; so that

in reflecting mirrors and automobile head lamps, in satel- p = PM. Another is to take the perpendicular lineo PF

lite dishes and radio telescopes, and in the trajectories ofthroughF, and find its mee§with the directrix; this gives
comets. p =PS The pointSis equidistant fromT andF, and the
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circle § with centerSthroughF is tangent to both the lines  has the convenient equatioz = y?. This allows a sim-

PF andPT. ple parametrization for the curve, as well as pleasant ex-
A related and useful fact is that a choRN is a focal plicit formulas for many interesting points, lines, conics
chord—meaning that it passes throlgh-precisely when  and higher degree curves associated to it.

the meet of the two tangentsRtandN lies on the direc-  In our study of the basic points and lines associated with
trix f, and in this case the two tangents are perpendicu-the parabola, concrete and explicit formulae are key ob-
lar. These facts are illustrated in Figure 1. Another result jectives, because they allow us a firm foundation for deeper
which figures often in calculus, is thatffandQ are arbi- investigations. The main thrust of the paper is then to show
trary points on the parabola with the meet of their tan-  how the hyperbolic parabola shares many similarities with
gentsp andg, andT,U andW are the feet of the altitudes the Euclidean parabola. The highlights include the duality
from P,Q andZ to the directrix, theW is the midpoint of leading to the twin parabola, a straightedge construction
TU of the evolute of the parabola, and a conic construction of
four points on the parabola whose normals pass through a
fixed point (in the Euclidean case there are at most three
points with this property).

This paper is the first of a series on the hyperbolic parabola.
In future papers we will show that there are many new and
completely unexpected aspects of the hyperbolic parabola;
it is a very rich topic indeed.

1.1 A brief review of universal hyperbolic geometry

We work over a fixed field, not of characteristic two, and
give a formulation of universal hyperbolic geometry valid
with a general symmetric bilinear form—this generality
will be important for us when we introduce parabolic stan-
Figure 1: The Euclidean Parabola dard coordinates. This is only a quick introduction; the

So when we investigate hyperbolic geometry, some naturaleader may consult [17], [18], [19], [20] for more details.
guestions are: what is the analog of a parabola in this con-A (Projective) point is a proportiora= [x:y: 7] in square
text, what properties of the Euclidean case carry over in Prackets, or equivalently a projective row vectar=
this setting, and what additional properties might the hy- [X ¥ 7 (unchanged if multiplied by a non-zero num-
perbolic parabola have that do not hold in the Euclidean Per). A (projective) line is a proportiorL = (I :m: n) in
case? These issues have been studied by several authorointed brackets, or equivalently a projective column vec-
such as [2], [15], [9]. tor

In this paper we answer these questions in a new and more I

general way, using the wider framework of UHG, and | _ [ml| .

allowing the beginnings of a much deeper investigation. n

There is a very natural analog of a parabola in this hyper-

bolic setting, and many, but certainly not all, properties o Theincidencebetween the poird = [x:y : Z and the line
the Euclidean parabola hold or have reasonable analogs fok = (I : m: n) is given by the relatioaL = Ix+my+nz=

it. But there are many interesting aspects which have noO. Thejoin of points is defined by

Euclidean counterpart, such as the existence of a dual or P Lo
twin parabola, and an intimate connection with the theory 2132 = xacyra]x[xeoy2 2]

of sydpoints, as laid out in [20]. = (Y1Zo — Yozu 1 ZaXo — ZoX1 © XaY2 — XoY1) 1)
The outline of the paper is as follows. We first give a
very brief review of universal hyperbolic geometry, where
the algebraic notions afuadranceandspreadreplace the
more traditional transcendental measurementisitnce  Lil, = (I3 :myg:ng) x (I :mp i np)

andangle We then define the parabola in the hyperbolic _ _ . _ : _

setting (we often refer simply to tHeyperbolic parabol = [Maftz — Mgy : Mgl =l lame — oy . @
give a dynamic geometry package construction for it, in- Collinearity of three pointss,az,az will here be repre-
troduce some basic points associated to it, and use some afented by the abbreviatidifeyaraz]], and similarly the
these and the Fundamental theorem of Projective Geome€oncurrency of three lineky, Lo, L3 will be abbreviated
try to definestandard coordinatesn which the parabola  [[L1L,L3]]. These are determinantal conditions.

while themeetLiL, of linesL1 = (I3 : my : ng) andlLy =
(2 : mp : ny) is similarly defined by
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The metrical structure is given by a (hon-degenerated3 Ly as

projective symmetric matri}C and its adjugat® (where T2
e O . . (a1Cal)
bold signifies a projective matrix- determined only uptoa q(aj,a) =1— = = and
non-zero multiple). The points anda, areperpendicu- (auCay) (a2Caj)
lar precisely whera;CaJ = 0, writtenay L ap, while lines (LT DL2)2

L, andL, areperpendicular precisely wherL]DL, = 0, S(Ly,Lz) =1~ ()

writtenL; | L,. The pointa and the linelL aredual pre- (LIDLl) (L;DLZ)

cisely wherL =a' =Ca', orequivalentha= L =LTD, While the numerators and denominators of these expres-
so that points are perpendicular precisely when one is inci-Sions depend on choices of representative vectors and ma-
dent with the dual of the other, and similarly for two lines. trices foras,az,C,L1,L2 andD, (which are by definition

A point a is null precisely when it is perpendicular to it- defined only up to scalars), the overall expressions are

self, thatis, whemCa' =0, while alineL isnull precisely ~ Wwell-defined projectively.

when it is perpendicular to itself, that is, whehDL = 0. It follows that q(a,a) = 0 and S(L,L) = 0, while
The null points determine theull conic, sometimes also ~ d(ai,a2) = 1 precisely whena; | a;, and dually
called theabsolute S(L1,Lp) =1 precisely whe; | L,. Also quadrance and
Universal Hyperbolic geometiy the Cayley Klein model ~ SPread are naturally dual:
arises from the special case S(af, aﬁ) —q(ay,a).

10 0 In [16], it was shown that both these metrical notions can
C=D=J=1l0 1 ol. 3) also be reformulated projectively and rationally using-sui

0 0 -1 able cross ratios (and no transcendental functions!) To

connect with the more familiar distance between points
d(a1,a2), and angle between liné{L,L>) in the Klein
In this framework the poina = [x:y: 7] is null precisely  projective model: when we restrict to points and lines in-
whenx? +y? — 72 = 0, and dually the liné. = (I : m: n) is side the null circle,
null precisely wher? + n? —n? = 0. So we can picture
the null circle in affine coordinates = x/zandY =y/zas
the (blue) circleXx?2+Y2 = 1. Thequadranceq between  S(Ly,Lz) = sir?(8(Ly,L2)).
points and thespread S between lines are then given by
essentially the same formulas:

q(ag,a2) = —sint?(d(a,a2))  and

For a triangleagazaz with associated trilateradl; Lol 3, we
defineq: = q(ag,a3), g2 = q(a1,a3) andgs = q(ag,a2),
andS; =S(Ly,L3), S =S(L1,L3) andSs = S(L1,L2). The

d(xa:yiial,xery2:2)) main trigonometric laws in the subject can be restated in
(X1X2 + Y1y — 2122)2 terms of these quantities (see UHG | [17]).
C(@+i-B) (8+v3-3) : .
S((l1:my ), (I mp :mp) @) 2 The parabola and its construction
1 (I1lo + mymp — ngnz)? In this section we introduce definitions and some basic re-
- (|% T m% _ nf) (@ T m% _ n%) : sults for aparabolain universal hyperbolic geometryVe

will work and illustrate the theory in the familiar Cayley-

Klein setting with our null circle/absolute the unit cirdte
The figures in this paper are generated in this model, with the plane. The situation is in some sense richer than in the
however the outside of the null circle playing just as big gyclidean setting because adiality: whenever we define
arole as the inside—this takes some getting used to for thegp, important poink, its dual lineX = x* is also likely to
classical hyperbolic geometer! In addition, it will be nec- pe important, and vice versa. We remind the reader that we
essary for us to adopt a more general and flexible approachyij| consistently employ small letters for points and capi-
to deal with projective changes of coordinates, which will 5] |etters for lines, with the convention thatfis a point,
be ne_eded to study the parabola in what we call standarthenx; — x- is the corresponding dual line and conversely.
coordinates. So what is a parabola in the hyperbolic setting? As already
So more generally, the bilinear forms determined by discussed in [9], the definition is not obvious: there are
a general 3< 3 projective symmetric matribxC and its several different possible ways of trying to generalize the
adjugateD can be used to define the dual notions of Euclidean theory. Recall thatéfis a point and. is a line,
(projective) quadrance q(az,az) between pointg; and then the quadranag(a,L) is defined to be the quadrance
ap, and projective) spreadS(L1,L,) between line&; and betweera and the foot of the altitude line fromato L.

16



KoG:17-2013

A. Alkhaldi, N. J. Wildberger: The Parabola in Universal Hypolic Geometry |

Figure 2: A parabola®, with foci f; and £

Definition 1 Suppose that if and % are two non-
perpendicular points such thag f> is a non-null line. The
parabola P, with foci f; and % is the locus of a point p
satisfying

(6)

The lines = fll and b = f2L are thedirectrices of the
parabola®y.

q(f1, po) +a(po, f2) = 1.

This definition is likely surprising to the classical geome-
ter. In Euclidean geometry, such a relation definesdce,

so at this point it is not clear what justification we have for
our definition of a parabola. The following connects our
theory with the more traditional approach in [11] and [7].

Theorem 1 (Parabola focus directrix) The point p sat-
isfies (6) precisely when either of the following hold:
or

d(f1, po) = d(po,F2) d(f2, po) = d(po,F1)-

Proof. If (fipo)F1 =t1 and (fopo) 2 = t, are the feet
of the altitudes from a poinpg on the parabola?, with
foci f1 and f, to the directrice$; andF, then f; andt;
are perpendicular points, as afeandt,. It follows that
q(f1, po) +d(po,t1) = 1 and q(fz, po) +d(po,tz) = 1.
But then (6) is equivalent tq(f1, po) = q(po,F2) or to
d(f2, po) = q(po,Fr)- O

In this way we recover the ancient Greek metrical defini-
tion of the parabola, but we note now that there tave
foci-directrix pairs: (f1,F») and (f,,F1). This is a main
feature of the hyperbolic theory of the parabola: a funda-
mental symmetry between the two foci-directrix pairs.
The reason for the index 0 on the poipy and the
parabola?y will become clearer when we introduce the
twin parabola?®. We observe that the fody and f; do

not lie on the parabolds, since for example iff; lies on

P, thenq(fy, f1) +q(fz, f1) = 1, which would imply that

q(fi, f2) = 1, contradicting that the assumption of non-
perpendicularity off; and f,. In Figure 2 we see an ex-
ample of a paraboldy, in red, with foci f; and fz, and
directricesd—; andF,, also in red.

Q]

Figure 3: Various examples of parabolas

In Figure 3 we see some different examples of parabolas
over the rational numbers, at least approximately. When
the foci f; and f, are both interior points of the null circle

C, there is no poinp satisfying the conditiom(p, f1) +

q(p, f2) = 1, since the quadrance between any two interior
points is always negative, and the quadrance between an
interior point and an exterior point is greater than or equal
to 1. This paper deals with non-empty parabolas, by ex-
tending the field if necessary, as we shall see.

Theorem 2 (Parabola conic) The parabola®, with foci
fy and % is a conic.

Proof. Supposethay =[x : y1 : z2] andfa = [x2 1 y2 : 22].
Then the poinp = [x:y: Z] lies on®, precisely when
(R +y2—2) (G +Y; - Z)

(- )
(1 etyy-z2)°
(C+y2—2) (G +Y5 - B)
which yields the quadratic equation
(C+y=2) (G +¥i—Z) (G +Y5 - B)
= (04 +yy1—22)° (G +Y3 - B)

+ (00 +yye —22)° (G +Yi - B).

(xxa +yy1 — zz)°

1

2.1 Basic definitions

We now define some basic points and lines associated to a
parabola®, with foci f; and f,, and directriced; = f;-
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and / = f5-. The axis of the parabola®, is the line
A= fif,. Theaxis point of % is the dual poina= Al.

By assumption the axi& is a non-null line, so that does
not lie onA.

If the axisA has null points, we shall call these thgis
null points of %, and denote them b1 andn2, in no
particular order. The axis point and line will generally be
in black in our diagrams, while the axis null points will be
in yellow.

Ry
fi

p0

Figure 4: Dual and tangent lines, twin point and focal
lines

Theorem 3 The axis A= f1fy of a hyperbolic parabola
P is a line of symmetry, and its dual point a is a center.

Proof. We denote the reflection of an arbitrary pojptly-
ing on® in the axis lineA by ra (po) = Po- Then we need
to prove thafpg also lies on?. Recall that the hyperbolic
reflection in aline (or equivalently the reflection in the Hua
point of that line) is an isometry, so for any two poimats
andb,

a(a,b) =q(ra(a),ra(b)).
Thus, sincefy, f> are fixed byra (they lie onA),

1=q(f1, po) +a(f2, po)

=q
a(ra(po),ra(fe))+a(ra(po),ra(fi))
=d(Po. f1) +a(Po. f2).

This shows thapg lies on the parabol&,. Since reflecting

po in Ais the same as reflecting in a, the pointais also
the center of the parabola. O

The base pointsof #y are the pointd; = AR andb, =
AF. The dual lineB; = af; andB; = af, are thebase
lines of P. Both base points and base lines will be shown
in blue in our diagrams.

Theverticesvy andv, are the points, if they exist, where

A generic point on®, will be denotedpg, and itsdual line
denoted?y. Both are shown in black in our diagrams, with
often a small circle drawn arounah to highlight it. The
tangent line to 2 at po will be denotedP®, and its dual
point p° will be called thetwin point of pg. Both p® and

PO will be shown in grey.

Thefocal lines of pgp are Ry = ppf1 andR, = ppfz, and
thealtitude base points ofpg aret; = RiF; andt; = RoF».
The duals of the focal lines are tifiecal pointsri = Rf
andr; = Ry of po. The duals of the focal base points are
the altitude base linesT; =t;- and T, =ty of po. The
focal lines and points will be shown in green in our dia-
grams. Figure 4 shows these various basic points and lines
associated to the parabadra.

2.2 Construction with a dynamic geometry program

Itis helpful to have a construction of a hyperbolic parabola
that can be used with a dynamic geometry package, such
as Geometer’'s Sketchpad, GeoGebra, C.a.R., Cinderella,
Cabri etc., used to create loci. For this it is helpful to re-
fresh our minds about the construction of the Euclidean
parabola, because a similar technique applies to construct
a hyperbolic parabola. We also mention some related facts
that will have analogs in the hyperbolic setting.

Firstly, we choose a poirf (focug, and a linef (direc-

trix), not passing througk. Draw the perpendicular line

a (axis) toF throughf. Using an arbitrary point on the
directrix f, construct the midpoir¥! of the sideT F, and
draw the perpendicular linp to TF throughM. Finally,

the intersection of the altitudeto f throughT and the line

pis a pointP on the parabol&, which is then the locus of

the pointP asT moves onf, as in Figure 1.

Figure 5: Construction of a hyperbolic parabolg

To construct a hyperbolic parabafg from a pair of foci
f1 and f, with axisA, we proceed as in the Euclidean case,

the parabola meets the axis; they are in no particular orderbut we must be aware that the existence of midpoints is

The duals of the vertices are thiertex linesVi = v;- and
Vo = vy. The vertices and vertex lines will be shown in
black.

18
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the property that the sidif, has midpoints, call them
mt andp?, with corresponding midlined? = (ml)L and

PO = (po)l. One way of choosing such a potais to first
choose an arbitrary poiag onF; and then refledt; = FA

in a1 to obtaint;. In the triangldot; f2, two sides now have
midpoints, so by Menelaus’ theorem ([17]) the third side
t1 f> will also have midpoints.

Now construct the mees = P°R; andn; = MRy, where
Ri1 =t1f1. Thenpp and ny will both be points on the
parabola®y. The Figure also shows the symmetry avail-
able here: it is equally possible to choose a ptimin the
other directrixm = f;- with the property that the sidef;
has midpoints, call them? and p°, with corresponding
midlinesM2 = (m?)~ andP® = (p°) . In that case the
pointspp = P°R, andny = M2R,, whereR, = to o, lie on
the parabola?. In Figure 5, the two pointg andt; are
related by the fact thatt, meets the axig\ at the same
point j© as doed?; this accounts for the fact thatf, and
t,f; have a common midpoint.

The justification for this construction will be given later,

after we establish a suitable framework for coordinates andhyperbolic parabole,

derive formulas for all the relevant points.

2.3 Dual conics and the connection with sydpoints

1

«~ o

Figure 6: The parabola?, and its twin?°

3 Standard Coordinates and duality

3.1 The four basis null points

In order to bring a systematic treatment to the study of the
we need an appropriate coordinate
system to bringP into as simple a form as possible. Al-
though there is a great deal of choice for such an attempt,
the one that we present here is the simplest and most ele-
gant we could find; in it the beauty of the parabolic theory

The theory of the hyperbolic parabola connects strongly is reflected in an elegance and coherence in the correspond-

with thenotion of sydpointas developed in [20].

The reason is that the sydpoirftsand f2 of the sidefy 5,
should they exist (and our assumptions on our field will

guarantee that they do) are naturally determined by the ge

ometry of Py, and then they become the foci for ttvein
parabola®? (in orange in our diagrams), which turns out
to be the dual of the coni€y with respect to the null cir-
cle C. The sydpoint symmetry between the side§ and

f1f2 is key to understanding many aspects of these conics

Although we will be studying the twin parabola more in

ing formulae.

The key point is that aside from the two fo&i and f;
which we used to define the parabola, there are four other

points which naturally lie on the parabola and which can

be used effectively as a basis for projective coordinates:
the two vertices; andvy, together with two null pointeg
andap which are symmetrically placed with respect to the
axis.

We need to say some words about the existence of four

such points. A priori there is no guarantee that the axis

the next paper in this series, it will be useful to be aware of A Meets the parabola; it will do so when the correspond-

it, as it explains some of our notational conventions.

In Figure 6, we see the parabakg with foci f1, f, and a
point po on it, as well as the twin parabofg’ with foci
f1, 2 and the twin poinp® on it, which is the dual of the
tangentP? to Py at po. Reciprocally the dual opyg is the
tangent to?° at p°. Note carefully that the tangents to
both the parabol& and the null circleC at their common
meets, namely the null pointg anday, pass through the
foci of the twin parabol@®. Dually, note that the tangents
to both the parabol#®® and the null circleC at their com-
mon meets, namely the null poirlig anddy, pass through
the foci of #. This Figure also shows the twin directrices
FlandF?, and the twin base points andb?.

ing quadratic equation formed by meeting the line with the
conic has a solution. The existence of the vertices is then
an assumptiorthat we may justify by adjoining an alge-
braic square root, if required, to our field.

We will use the four points/i,vo, a9 and g, no three
which are collinear, as a basis of a new projective coor-
dinate system.

Theorem 4 (Parabola vertices)If there is a non-null
point v lying both on the axis A and the parababg, then

the perpendicular pointy= v{ A also lies on both the axis
and the parabola, and these then are the only two points
with this property.
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Proof. Suppose that; lies on the axiA= fifpandonthe 3.2 The Fundamental theorem and standard coordi-
parabola. Then i¥; is not a null point, nates

We now invoke the~undamental Theorem of Projective
Geometry which allows us to make a unique projective
change of coordinates so that the four basis points become

q(fi,v1)+q(va, f2) = 1.

Definev, = viA, so thatq(vi,v2) = 1. Now recall that

if a,b andc are collinear points wittg(a,b) =1, then  v; =[0:0:1 v2=[1:0:0

q(a,c) +q(c,b) = 1. Soq(vl,_fl)Jrq(fl,vz):l and Go=[1:1:1 To=[1:-1:1.

q(vi, f2) + q(f2,v2) = 1. Combining all three equations

we see that|(f1,v2) +q(vo, f2) = 1, showing that/, also It follows that

lies on the parabola. Since a line meets a conic at most at o L .

two points, there can be no other points on the axis and ot =V1v2=[0:0:1x[1:0:0=(0:1:0.

Po. U These new coordinates will be callsthndard coordi-
natesfor the parabola?, or parabolic standard coor-

We can see from Figure 3 that a parabola need not necesdinates Note carefully that the introduction of such new

sarily meet its axis. However any given line will meet a coordinates will necessarily change the form of the quad-

given conic if we are allowed to augment the field to an rance and spread!

appropriate quadratic extension. So by possibly extend-We now define, as in Figure 7, the points obtained by re-

ing our field,we will henceforth assume that our parabola flectingo anddyg in vo: namely

Py meets the axis A f1f,. By the above theorem, it then — .

meets this axis in exactly two points, which we call the Po=Tv,(0o) and Bo=ry, (do).

verticesof the parabola, and denote yandv.. Because reflection is an isometry, these are also null points
What about the existence of null points @? The meet  Our notation with the overbar is something we will employ
of any two conics might have from zero to four points. consistently:ao and@p are reflections in the poirg, or

equivalently in the dual liné\, and so similarly fo3o and

Bo.

Theorem 5 (8 points) We havefo = (aovz2) (0ov1) and
Bo = (Tov2) (dpv1). Furthermore in the new coordinate
systenfo=[-1:1:1JandBo=[-1:-1:1].

Vi

Proof. The quadrangle of null pointse@oBoPo has one
diagonal points,, obviously from the definition oo and

Bo. It has another diagonal poiat because bottigtg and
BoPo pass it; the first by construction and the second be-
cause it is obtained from the first by reflectionvin which

lies onA = al. So the third diagonal point is the dual of
avz, which isvy by the previous theorem. It follows that
Bo = (0gv2) (Ggva) andPBp = (Tovz) (aove). Now we can
calculate that

Bo=([1:1:4x[1:0:0)x([1:-1:1x[0:0:1)

Figure 7: The four basis points;yv,, g andtg

The parabol@ with foci f; and f2 need not meet the null
conic C. However for most examples, especially those

of interest to a classical geometer working in the Klein = (0:1:=1)x(1:1:0=[-1:1:1
model in the interior of the unit disk, we do have such B, — ([1:-21:1x[1:0:0)x([1:1:1x[0:0:1)
an intersection—at least approximately over the rational ~ _ 0:1:Dx(1:-1:0=[-1:-1:1] 0

numbers. So by possibly extending our field to a quartic

extensionwe will henceforth assume that our paraboa P When we apply a general projective transformation of the
passes through at least one null poary. By the assump-  projective plane to get the four pointg,v2,0p and g
tion in the previous theorem such a null pot cannot into standard position, the metrical structure will change
lie on the axis, so if we reflect it in the axis we get a sec- While we started with the symmetric matdxor the form,
ond null point®g = ra(ap) which also lies onf, since the new symmetric matrix is of the for@ = MJM' for

P is invariant under,. Clearly no three of the fourasis some invertible matriM. However this matrixC is not
points vi,Vz2,00 and0g are collinear, since they all lie on  arbitrary; since we require that the four points lie on the
the parabola. parabola?y. We now arrive at the crucial result which sets
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up our coordinate system, and is the basis for all subse-But there is also the condition thaf is a parabola
guent calculations. This is the fact that the new ma@jx  with foci f; and f2, passing through all four basis points
and its adjugat®, have a particularly simple form, de- v; =[0:0:4,v» =[1:0:0,00=[1:1:1 anddg =
pending on a single parametrwhich subsequently ap- [1:—1:1]. Since the foci lie on the axi& = vyv2, we can
pears in almost all our formulas. write fy = [my : 0: 1 andf, = [mp : 0 : 1] for somemy, mp.

Then recall that the quadrance and spread are determined
by the projective matrice€ andD by the rules (5).

We then compute

Theorem 6 (Parabola standard coordinates)The sym-
metric bilinear form in standard coordinates is given by
V1 ® V2 = v1CV} where

amm, — 1)?
a? 0 0 Q(flv f2) =1- (an(ﬁ—l) (aﬁ‘%)— 1)
C=|0 1-0°2 0 and ;
o o0 -1 _ g (M-—mp)
a?2-1 0 0 (amg—1) (amg - 1)
D=adjC)=| 0 —o? 0 (") Sincef, andf are by assumption not perpendicular,
0 0 o?(1-0a?)

amm, —1+£0. 8)
for some numbea. In terms ofa, the parabola®y has _
equation xz- y> = 0 and its foci are Also v; andv; lie on #y, so that

fi=la+1:0:a(a—1)] and fo=[1—a:0:a(a+1)]. d(Mm:0:1,[0:0:1)+q([m:0:1,[0:0:1)-1
(amm —1) (amump + 1)

Proof. Suppose that our new bilinear form in standard co- = =0 and
ordinates is given by; © v, = v;Cv] where (amg—1) (amg - 1)
A d q(m:0:1],(1:0:0)+q([m:0:1],[1:0:0)—-1
C=1|d b g and :_(anhmz—l)(amlrnngl):O_
f g c (ami 1) (amp - 1)
bc—g> fg—cd dg—Dbf Both these conditions, given (8), are equivalent to the rela
D=adj(C)= |fg—cd ac—f? df—ag|. tion
dg—bf df—ag ab—d?

amm,+1=0 9)
The fact that the four pointsip = [1:1:1], O =
1:-1:1, Bo=[-1:1:1 andBp = [-1:—1:1] must
all be null points means 1

m =m and = ——
il m am

— —N\T
=T
apCag = GoC (05) " = BoCRG = BoC (BO) =0. for some non-zero numbe.
In addition we must ensure that and@g lie on P, but
since these are both null points, the quadrangéds, ag)
andq(fa,0p) etc. are undefined, and we must rather work
atbtct2d+2f +2g=0 with the general equation of the parabola. This is

which we henceforth assume, implying that we may write

These conditions lead to the following linear system of
equations involving the entries @f.

at+b+c—2d+2f—-2g=0 o o q 1 ] o )
m:0:1,[x:y:2)+ ——:0:1],[x:y:7 ) -1
at+b+c—2d—2f+29=0 all J:bcyid)+a am x:y:2

a+b+c+2d-2f-2g=0. damxz-y?(a—1) (an? — 1)

~ (amP—1)(ak—ay+y2—72)

From this we deduce thdt= f =g=0, anda= — (b+c).

So the matrices have the form, up to scaling, of: which shows the equation of the parabola to be
fa 0 O damxz-y?(a— 1) (an? — 1) =0. (10)
C=(0 1—-a O and . L _ ) )
Now the condition thatip=[1:1: 1 andog=[1:—-1:1]
0 o -1 : .
L lie on By is that
a—1 O 0
D=| o -a 0 . dam— (a— 1) (an? — 1) =a(1—a)m? +4am+ (a— 1)
| 0 0 -a(a—-1 =0. (11)
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Given that we started out with the existencdpandf, as- s
sumed, we see that the discriminant of this quadratic equa-
tion —

Py
Fy

(4a)? —4a(1—a)(a—1)=4a(a+ 1)

must be a square. But this occurs precisely whes a
square, say

a

PU
a=o02 .

In this case the quadratic equation (11) has the form
o? (1—o?) m? + 4a’m+ (a® — 1) = 0 with solutions
Figure 8: A standard coordinate view of a parabola

1+a —

Mm=m = m and mp = m- Theorem _7 (Parabola quadrance) Thequadrance of the
parabolais

Combining these with (10), the identity (02 n 1)2
q’PO = q(f17 fz) - 72

402 (a+1) xz—y? (a®—1) [ a? 1+a \* 1 o

aa—1)"" Ca) a(a—1)) Proof. We compute that
2
_ 4(xz—y?)a(a+1) ~0 dp,=q([o+1:0:a(a—1),[1-a:0:a(a+1)])
ot 1 (a2+1)?
L a2 2 _

shows that the equation of the parabola pleasantly simpli-  4a2 (@-1)7(a+1)77+1 402 =

fies to be : . .
We note thatyy, is a square. This is a reflection of the fact

Xz—y? =0 (12) that the assumption of the existence of vertices impliets tha

- the sidesfi1b, and fob; have midpoints, see the Midpoint
. theorem [17].

The foci may now be expressed as The condition for points and lines to be null, in other words
the equation for the null circle, is the following in standar

fi=[m:0:=[a+1:0:a(a—1)] and coordinates.

fo=Mm:0:=[1-a:0:a(a+1). O
Theorem 8 (Null points/ lines) The point p=[x:y:Zin
standard coordinates is a null point precisely when

Notice that
o+ (1-0?)y? —Z=0.

a? 0 0 . . . _
detlo 1-a2 ol = 0(2(0( ~1)(a+1)#£0 The line L= (I : m: n) is a null line precisely when
0 0 -1

(1-0?) 12+ a’n?+a?(a?— 1) n?=0.
soa # 0,41, sinceC is an invertible projective matrix.

The following Figure shows a view in the standard coor-
dinate plane, wheré:y: 1] is represented by the affine
point[x,y]. This corresponds roughly to a valueoot= 0.3. [x:y:ZC[x:y:Z"=0 and
While it is both interesting and instructive to see differen
views of such a standard coordinate plane, this is some—<I :
what unfamiliar to the classical geometer, so we will stick
mostly to the Universal Hyperbolic Geometry model for
our diagrams, where the unit circle always appears in blueWe can now give explicit formulas for quadrance and
as the unit circle® +y? = 1. spread in standard coordinates.

Proof. These follow by using (7) to expand the respective
conditions

m:n)" D(l:m:n)=0. O

3.3 Quadrance and spread in standard coordinates
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Theorem 9 (Quadrance formula) The quadrance be- equationL"BL = 0 (where we regard lines as projective
tween the points p= [x1:y1:z1] and p = [X2: Y2 2] column vectors).

in parabolic standard coordinates is More generally, we can regard the projective makias

a(pi, p2) = determining a projective bilinear form, which is equivalen
(a2 ey 0+ (5122 X022~ (i2o—yaz)>— (e 3oy ?) 02+ (12o-yoz)? to a duality betvx./een.points a'nd lines. Fora general point
- (@2 (@-1)-2) (%R (-1 —2) - p not .necessarlly Iylng. oit, its dual with respect toC
is the linep™ = Ap', while for a general poirit, its dual
Proof. From (4) and formula (7) fo€, with respect taC is the pointL- = LTB. These are inverse
procedures.
X1,Y1,21] C [X2, Y2, 2] T = a?XqXo — a?—1) —z12. _ . .
. y1,21] Cxay2, 2] 1 —yaY2 ( ) - az These notions of course go back to Apollonius, and it could
The formula follows using an identity calculation.  [J be argued that this duality between points and lines is the
essential feature or characteristic of a conic. But thisimod
Theorem 10 (Spread formula) The spread between = ern formulation in the language of linear algebra and matri-
(lizmging) and o = (I2:mpinp) is ces makes many of its aspects much easier to understand,
S(Lu.L2) see [3], [12].
((1am—1ans)? — (mune e ?) o 4 (s —lomy (T —13n2)?) In this work_, the main ex_ample of dughty is with respect
= @D - —E @ —1) B -1 - —g@-1)" t_o the nu!l cwpleC, fqr which we will stick with the nota-
tion that if x; is a point, therX; = Cx! refers to the dual
Proof. From (4) and line and conversely. However the secondary duality with
T respect to the parabofg will also be involved, as we now
(l1, M1, m] Dl2,mp, N2 see.
= l1lo (0 — 1) — a®mymp — a? (0 — 1) mny The equation (12) for the parabafi in standard coordi-

nates, namely (x,y,z) = xz— y?> = 0, can be expressed in

the formula follows using an identity calculation. [ homogeneous matrix form @& p’ = 0 or

Theorem 11 (Axis reflection) The reflection g in the

point a has the form x y 4A[x y 2" =

ra(x:y:z)=[x:-y: 7. where

Proof. We use the usual formula for reflection in a vector: 0 0 1 0 o0 7
(v _(uCV)v A=1|0 -2 0| and adjA)=B= |0 -1 0.

fv(u)=2 V-V —u=2 v 1 0 0 2 0 0

With the matrixC above, and working with regular vectors, o
we get Theorem 12 (Parabola parametrization) The parabola

Py is parametrized, using an affine parameteby p =
[0,1,0/C[x,y,Z" Ol — vz [t?:t: 1] = p(t) or by using a projective parametér: r]
0,1,0/C[0,1,0]" 0,1,0/ - x .7 as p = [t2:tr:r?] = p(t:r). The tangent line Pto the
parabola at p = [t?:t:1] is PP = (1:-2t:t?) = P(t)
or projectively the tangent togp= [t?:tr :r?] is P =
3.4 Duality with respect to a conic and parametriza- <r2 Al :t2> =P(t:r). Aline L= (I : m:n) is tangent
tions to the parabola precisely wher?re- 4nl.

Moo ((Xy,2) =2

=[xy, —7 =[x —-V,7. -

Let’s recall some basic facts from the general theory of

points and tangents to a projective conic. Suppose thatProof. The simple form of the equatiotz = y? makes the

a general conid” is given by the projective symmetric  parametrization immediate. The formula for the tangent
3 x 3 matrix A, with adjugateB, so that a general point |ine is a direct application of the discussion above, so that
p=[x:y:7 lies on C precisely whenpAp" = 0. The

tangent lineP to a pointp lying on Cis P = p- = Ap'. 0 0 -1 1

Dually, the point at which a tangent linemeets the conic 0_ AT _ 2 T_|_

is| =L+ =L"B. While a pointp on the conic satisfies P=ARo = _01 (2) 8 [ e 1) - t22t

the equatiorpAp™ = 0, a lineL on the conic (that is, a
tangent line to the conic at some point) satisfies the dual = >
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or using projective parameters Theorem 15 (Focus directrix polarity) The focus f is

0 0 2 the pole of the directrix fwith respect to the parabola

0 AT B T Po, and similarly the focusfis the pole of the directrix

PP=App=|0 2 O][t2 tr r?] = —22rt F.

-1 0 O t

_ <r2 ot :t2>. Proof. We check that
Th__ o _ N - _ _

The relation? = 4nl is exactly satisfied by those lines of P B= [G (@-1) 0 a+ 1] B=fa+1:0:a(a—-1)]=h
this form. O or

T T N -
Theorem 13 (Tangent meets)if po= p(t) and = p(u) Aff=Afa+1 0 a@-D] =(a(a—-1):0:a+1)=F.
are two distinct points or®, then their tangents Pand Similarly,
Q° meet at thepolar point z= P°Q% = [2tu:t+4u: 2]

while Z= pogo = (1: — (t+V) : tv). F{B=[a(@+1) 0 1-0/B=[-(a—1):0:a(a+1)]="F
Proof. We compute that or
A=A [1-a 0 0((0(+1)]T =(a(a+1):0:1—a)=F.

z=PQ°=(1:-2t:t*) x (1:—2u:u?) =[2u:t+u: 2]
O
In order for the parabolg? = xzto have a null poinp(t),
the parametet must satisfy[t?:t: 1] C [t?:t: 1]T =0,
which yields (t?— 1) (t?a?+1) = 0. Over the rational
field, the values = +1 agree with the null pointsg =
[1:1:1 anddp = [1:—1: 1] with which we begun our

and
podo= [t?:t: 1] x Vivil]=(1:—(t+v):tv). O

The projective parametrization afy has the advantage
that it includes the important point at infinigy(1: 0) =
[1:0:0 = v,o. We can recover the affine parametrization
by settingr = 1, and we can go from the affine to the pro- WOrk. _ _ .
jective parametrization by replacingiith t /r and clearing ~ However, there are also another two solutions which are in-
denominators. In practice we will generally use the affine V|3|b_le overthe_ra_ltl_onal field, but existin an extensm_n:flel
parametrization, since it is requires only one variableé, no ©btained by adjoining a square raaif —1. These points
two. The existence of this simple parametrization will be &r¢{1 = 1 -lac —0o] and(, = [1: —la —0o’]. In this
extremely useful for us: giving us the same amount of con- Paper we will not mention these points too much.

trol over the hyperbolic parabola as we have over the much
simpler Euclidean parabola (which of course can be posi-
tioned to have exactly the same equation!)

3.5 Formulas for directrices, vertex lines, base points
and base lines

We can now augment our formulas using standard coordi-

Theorem 14 The dual of the point = [t?:t:1] nates. The directrices are

on By is B = (tPa®:t(1-a?):-1). The dual

of the tangent line P = (1:-2t:t?) is pP° = Fi=ff=Cla+1:0:a(a—1)] =(a(a+1):0:1—a)
(0?2 —1:2t0%: —t?a® (a® - 1)]. Fo=fy=C[l—a:0:a(a+1)]"=(a(a—1):0:1+a).
Proof. We compute that The base points are the meets of the directrices and the axis
o2 0 0 line. They are
Po=Cp$=[0 1-o? 0][t2 t 1] br=FA=(a2(a+1):0:a(1-a))x(0:1:0
- 0 29 -1 =[a—1:0:a(a+1)
= (to®:t(1-0%): 1) by = FoA=(a?(a—1):0:a(1+a))x (0:1:0)
and =[a+1:0:0a(1—a).
0 0T a?-1 0 0 ] The duals are thbase linesB1, By, which are the altitudes
p’=(P’) D=1 -2 ¢}]| 0 -a? 0 to the axisA through the focify, f, of the parabola:
0 0 a?(1-a?) B
=[0®—1:20®: —t?a® (a® - 1)]. O Br=by =C[(a—1):0:a(a+1)]

=(—-a(a—1):0:a+1)
We will say thatp? is thetwin point to po. Later we will ol 0 (1
see that the locus qf° is also a parabola, whose fott Bz =by =Cl(a+1):0:a(1-a)]

and f? are the sydpoints of; f;. =(a(0+1):0:a-1).
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The vertex lines V1, V, are the altitudes to the axi&
through the verticeg,, v» of the parabola

Vi=vi =C[0:0:1=[0:0:1]  and
Va=vy =C[1:0:(0=[1:0:0.
\ %1
Bo "
N

By

2

\

Figure 9: Some basic points associated to a parahfja

3.6 Thej, handd points and lines

We define thexis null points to be the meets of the axés
and the null coni€. These points exist under our assump-
tions, and are

Nni=AC=1[1:0:a] and n,=AC=[-1:0:qa].

We now introduce some other secondary points and lines

associated to a generic pojmg on the paraboldy. The re-
flection of pg = [t2:t : 1] in the axis is thepposite point

Po=ra(po) = [t?: —t:1].

Clearlypg also lies on the parabola.
The meet of the dual linBy with the axisA is the j-point

jo=PoA=(t?0%:t (1-0?): —1)x(0:1:0=[1: 0 :t?a?|
with dual theJ-line
Jb=ap=[0:1:0x[t?:t:1] =(1:0:-t?).

By duality Jp is the altitude fronpg to the axis, and so also
Jo = poPo. The meet of thad-line with the axis is the foot
of this altitude; it is theh-point

ho=Ab=(0:1:0x(1:0:~t%) = [t?:0:1]
and its dual is théd-line
Ho=hg =ajo=[0:1:0x[1:0:t?a?]=(t?a?:0:-1).

The meet of the tangent lirR® with the axis is thewin
j-point

jP=PA=(1:-2t:t*) x(0:1:0 = [-t?:0:1]

with dual thetwin J-line
JP=ap’=[0:1:0x [0®-1: 2a? ~t?a?(0®~1)|={*a?0:1).

The meet of the twinl-line with the axis is théwin h-
point

P=AP=(0:1:0x(t?a?:0:1) = [-1:0:t%0?]
and its dual is théwin H-line

HO= (h%) " =aj®=[0:1:0x [t?:0:1 =(1:0:t?).

AN

Jo

0

h A nl

Figure 10: The j and h points and lines

P to the
parabola Py at po is a null line precisely when gplies
on a directrix, and in this case the twin poinf [ a null
point lying on the other directrix gjcoincides with a focus,
and P with the other focus.

Theorem 16 (Null tangent) The tangent

Proof. If the tangenP® = (1: -2t :t?) atpg = [t?:t: 1]
is a null line, then by the Null points/lines theorem

(1-0®) +40’t*+0® (a® - 1)t* =0.

This factors as

—~

a(a+1)t2— (a—1)) (o (a—1)t?+ (a+1)) =0

so that
, a-1 ) oa+1
=——  or = 13
a(a+1) a(a—1) (13)

Now po = [t2:t: 1] is on the directrixF; or F, precisely
when

—

[t?:t:1] [a®(a—1):0:a(1+a)
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and similarly, the poinp®=[0?—1: 2ta?: —t?02 (02 —1) ] parabola. Define the lines

is on the directriX; or F, precisely when

F2=ae@p=[1:1:1x[1:-1:1=(1:0:-1)
T J—

0?—1: 20%: —t?a® (0®~1)] [@®(a+1):0:a (1-a)] =0  Bl=ReBo=[-1:1:qx[-1:-1:1=(1:0:1)

or

T with corresponding axis meets
0?-1: 20?: —t?a? (a®~1)] [0?(a—1): 0:a(1+a)] =0.
b>’=F?A=(1:0:-1)x(0:1:0=[1:0:1
These conditions are exactly the same as (13). Using (13)f1 —BlaA— (1:0:)x(0:1:0=[-1:0:1.

we get eitherjo=[1:0:t?0%] = [a+1:0:0(a—1)] =

fi and j© = [-t?:0:1] = [1-a:0:a(a+1)] = The duals of these points and lines are
f or jo = [1-a:0:a(a+1)] = f, and j° = B
[@+1:0:a(a—1)] = fi. O f2=(F%) " =[1 0 -1]D=[1:0:0?

The pointsf! and 2 are thetwin foci, or t-foci for short
of the parabola@P. They will play a major role in the the-
ory. The dual lines off* and f?, namelyF* andF? re-
spectively, are thé-directrices of . The meets of the
t-directrices and the axié are F'A = b! and F?A = b?
respectively; these are thidase pointsof #. The dual
lines ofb! andb?, namelyB! andB? respectively, are the
t-base linesof . These are all shown in Figure 12.

Figure 11: Null tangents and g do points

We introduce the poinidy anddy to be the meets of the di-
rectrix F, with the parabola?, should they exist, and the
corresponding twin null point§y anddo lying on the di-
rectrixF1. These are important canonical points associated
with the parabola. Since their existence requires solation |/
to (13), and so a numbersatisfyingt® = a (a® — 1), we

may write

B2

do=FRP=[a-1:t:0(a+1)
do=FPr=[a—1:—1:a(a+1)]

and Figure 12: Sydpoints and the twin focit fand 2 of %

d®=& = {(G —1)?(a+1): —2ait:a(a+1)% (a— 1)} Theorem 17 (Parabola sydpoints)The points + and 2

— = are the sydpoints of the sidef,.
do =8 = [(a— 1) (a+1): 200 a o+ 1) (a— 1)] yap el

Proof. We calculate that
where(it)? = —a (0? - 1).
In Figure 11, notice that the linelgdy and f1 3y are joint

tangents to botl” and the parabold, touching?, at the
pointsdp anddp.

q(fr, fY)=q(ja+1:0:a(a—1)],[1:0:-1])

(a(a-1+a?(a+1)®  (a2+1)°
4a3 — 405 T 4a(a2-1)

q(f2 f)=q(l—o:0:a(a+1)],[1:0:-1])
It is a remarkable fact that the theory of sydpoints that we —1_

3.7 The sydpoints of a parabola
(a(a+1) —a?(a—1))? B (a241)

developed in [20] plays a crucial role in the theory of the 403 —4a® ~ 4a(az-1)

26



KoG:17-2013

A. Alkhaldi, N. J. Wildberger: The Parabola in Universal Hypolic Geometry |

q(f,f2) =q(la+1:0:a(a—1)],[1:0:a?])
(02 (a+1)—ad(a-1)* 1 (a?+1)
4a5—4a7 ~4a(o2-1)

q(f2f2) =q([1-a:0:a(a+1)],[1:0:a?])

(@®(@-1)+ad@+1)* 1 (a?+1)?

=1t 4a5—4a7 " 4a(a?-1)
Clearly q(fi,f!) = —q(f2,f!) and q(f,f?) =
—q(f2, f?) so f! and f2 are the sydpoints of the side
fifo. O

Theorem 18 (Parabola null tangents)The tangents to
the null circle atag and @y meet at £. The tangents to
Py at 0p andtg meet at .

Proof. The tangents to the null circle ap andadg are the
dual lines

ag =C[1:1:1" =(a?:1-a%:-1)  and

(@) =C[1:-1:]" =(a?:0?—1:-1)
and these meet at

ag (00) " =(a?:1—-0%: 1) x (a?:a?—1:-1)
=[1:0:0%] =2

The tangents to the parababa at g anddp are the lines
Al 1 T=(1:-2:1) and A[l -1 1]'=(1:2:1)

and these meet at
(1:-2:1)x(1:2: 1) =[-1:0:1 = fL O

3.8 Arrational parabola

In this section we show the existence of a two-parameter
family of rational hyperbolic parabolas, and give the asso-
ciated transformations to parabolic standard coordinates

The conic?y with equation
(B3 - 1) +2 (B3 + 1) x+ (B —8) Y+ (7 —1) =0

meets the null circle at the null pointg =
[1—t2: 2t :t2+ 1] anddo = [1—tf: —2t; :t2+1]. This
is a parabola with foci

fi = [h+t—ttf+t2:0: 1+t +it3 —t?,] and
fo = [ti—to—titd —t22: 01ty —tr+ tit3 +t9to],  axis
A=(0:1:0, and t-focif = [tZ+1:0:— (t?—1)] and
f2=[t2—1:0:— (2+1)]. The null pointsBo,Bo are
Bo=[1—t2:2t:t2+1] andBo = [1—t3: -2 :t3+1],
and the vertices argq = Jtit,—1:0:— (t1t2+1)] and

Vo = [tato+1:0:— (tato — 1)]. Note that
q(ftf2) -1
=q([tf+1:0:— (t#-1)],[tE-1:0:— (3 +1)])-1

1 2 (L+12)°
=2 (tl _tz) t2t2
12

4

is a square. o
We are now interested in sending these paint®o, o, Bo
tothepoint§1:1:1,[1:-1:1],[-1:1:1,[-1:-1:1]
respectively, using a projective transformation. Firstly
we send [1:1:1,(1:0:0,[0:1:0,[0:0:1 to
0o, 00, PBo,Bo respectively by the linear transformation
T1(v) = vN whereN is

—t(tf-1) —2uty t(tF+1)
N=|-t1(t—-1) 2ut, t(t5+1) |.
th(tZ—1) 2ut, -t (t2+1)

Its inverse sendag, 0o, o, Bo back to[1:1:1], [1:0:0,
[0:1:0,[0:0:7byT(v) = vRwhereR is the adjugate
of N:

—2t1 (t22 + 1) (t1—t)(tito—1) — (it +1)(t1 +1t2)
R= 0 t2—t2 t2 —t3

—2t1 (t22 — 1) (t1—t)(tito+1) — (it —1)(t1+1tp) .

Secondly, the linear transformatidp(v) = vM, whereM

sends1:1:1,[(1:0:0,[0:1:0,[0:0:Jto[1:1:1],
[-1:21:1, [-1:1:1, [-1:-1:1] respectively. Thus,
the required transformationis(v) = v(RM) whereRM is

{— (a2 +1) (1 +12) 0 (1 —t2) (tatp — 1)]
0 (tg —t2) (t1 +t2) 0 .
—(tito—1) (t1 +t2) 0 (t1—t2) (ata+ 1)

After applying this linear transformation, the matdxs
replaced by

C=(RM)1J ((RM)’l)T

(it (i —t2)2 0 0
= 0 a212 0 and
L 0 0 —titp(ty+1p)?
D= (RM)" J(RM)
_4'[11'2 (t1+ t2)2 0 0
= 0 (2 —12)? 0
I 0 0 —Atyty (t; —tp)?
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and we geta = g%g In this new coor- The focal linesR; andR; also meet the directrices at the
dinate system, the parabola ig? = xz with second altitude base pointsiy up, with dual linesUz,Us:
foci f1 = [tl (tl + tz) :0:—tp (tl — tz)] and f, =

[to (t1 4 12) 1 0 1ty (t1 — to)]. U =ReF1 = (00— 1)z 2ta (a® — 1) tar(a + 1) A

RiF

[~ (a+1)Ar:2ta (@®—1) 1a(a—1)4]

Example 1 If t; = 1/2 and & = 3 then the parabolafy U2
has equatior26x + 5x> — 35y° +- 5 = 0 which meets the
null circle at the null pointsog = [3:4:5 and Gg =
[3:—4:5]; hasaxis A=(0:1:0), foci ff =[-1:0:29
and b =[—31:0:11, verticesy=[1:0:-5 and vy =
[5:0:-1],t-foci f*=[5:0:3 and ?=[4:0:-5], and
Bo=[-4:3:5andBp=[4:3:-5].

3.9 Focal and base lines

We now define some other fundamental points and lines
associated with a poirip = [t? : t : 1] on the parabold.
It will be convenient to introduce the quantities

Ap (1) = a+1+t%a —t%a?
Do (1) = a—1+t%a+t%a?
A3 (t) = a+1—t?a+t%a?
As(t) =a—1—t%a®—t%a
which depends ot and so orpo, and which will appear ~ Figure 13:The rs;t and w points of pon %,

in many formulas to follow. Notice that Thet-base linesS;,S and their duals thé-base points
N2 -N=—4a (tPa?-1) (t°+1), AZ-A3=—dat?(a®—1) SnS2are defined by, and calculated as:
N-0F=—4a (t'a®~1), AZ-A5=4a(ta®-1) S = fitp = (—2ta?(a — 1) : (a2— 1) Ag : 2tax (a+ 1))

N—-Di=4tPa (0P-1), DZ-Dj=—4a(P-1)(t%a’+1). g = fot; = (2ta?(a+1):—(a®—1)A;: 2ta(a — 1))
Thefocal lines Ry, R, and the duafocal line pointsry,r» Ss=St=FT=[2t(a—1):4;: 2ta(a+1)]
are defined by, and calculated as: N
5 =S =RTi=[2t(a+1):A;:—2ta(a—1)].

Ri=fipo=[o+1:0:a(a—1)]x [t*:t:1]

=(ta(a—1):A1: —t(a+1)) TQeorem 19 (T_—base)Both g and $ lie on the tangent
5 P°. Dually the lines $and S meet at .
Ro=fopo=[1—a:0:a(a+1)]x [t*:t:1]

=(ta(a+1):—Az:t(a—1)) Proof. We verify thats; ands, lie on the tangenP® =
(1:—2t:t%) by computing

rn=R; =FiPy
— [t(a_1)2(a+1) : —aAlzta(a—l)(aH)z} 2t(a—1):Ap: 2t (a+ 1) [1:—2t:12] T =0
r, =Ry = FPy [2t(0(+1):A1:—2t0((0(—1)][1:—2t:t2]T:0.
= {t (a—1)(a+1)%:ad: —ta(a—1)%(a+ 1)} : The statement tha&; andS; meet atp? follows from du-

. 0 ality. O
SinceRy, Ry andP® are concurrent gtp, dually we see that

r1,r» andp® are collinear orP.
The altitude base pointst; andt, and the duahltitude
base linesT;, T, are defined by, and calculated as:

t1=FiR = [(a— 1)Aq : 4ta ;o (o + 1) 2] w1 = FiS = [(0° - 1)(a— 1Az —8ta®: o (0°~ 1) (a+ )47
th=FoRp = [(0+ 1)z : 4ta?: —a (0 — 1) Ay] Wy = RS = (@~ 1) @+ : 8ta®: —a (o’ —1) [ —1)Aq]
Ti=tf = fir=(a(a—1)Ay: —4ta @2—1):—(@+1)a) W= Fis=(
T =ty = farp=(a(a+1) Az : —4ta (a®—1) : (a—1)Az). Wo = fosp = (

The w-points wi; andw,, and their duald\y andWs, are
defined and computed as:
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Theorem 20 @ points collinearities) We have collineari-
ties [[tltzjoﬂ , [[jon_Uz]] aﬂd[[W]_szo]].

Proof. Using the various formulas above, we compute

((a—l)Al 40? a(a+1)40
det| (a+1)Az )

40’ —a(a—1)A;
—t2 0 1

0,

1 0 t%a?
det| —(a+1)A; 2ta(a®—1) a(a—1)A; | =0
(a—1)A; 2ta(a®—1) a(a+1)A;
and

(a®-1)(a—1)A; —8ta® a (a 1) (a+
det((az—l)(a+1)A1 8ta®  —a(a? 1) (a—1) Al)
1 0

=0. O

Theorem 21 (Null focal line) The focal line R of a point
po on the parabolap, is a null line precisely whefs; = 0.
Similarly, the focal line Ris a null line precisely when
Ay =0.

Proof. By the Null points/lines theorem, the focal line
Ri= (ta(a—1):Ar:—t(a+1)) of pp=[t?:t:1] isa
null line precisely when

(ta (a—1):A1: —t(a+1)) D {ta (a—1):Ap: —t (a+1))T =0
or

o (a+t%a® —t’a+1)° = 0.

Sincea # 0, this is equivalent td\3 = 0. Similarly R, =
(ta(a+1): —Ayz:t(a—1))is anullline precisely when

—a?(~a+t2a? +t2a+1)° =0
orA,=0. U

4 Parallels between the Euclidean and hy-
perbolic parabolas

4.1 Some congruent triangles

Recall that the focal lin@&®; = pofy meets the directri¥;
in the pointt;. We will assume that the focal linég and
R> are non-null line so that we havg # 0 andA4 # 0.

Theorem 22 (Congruent triangles) Suppose that the
tangent B to 7 at py meets =t f, at the point M. Then
the trianglespotym! and pofom! are congruent. In par-
ticular i) ¢ (Po,t1) = d(po, f2); ii) g (t,mt) = q(m*, f2);

iii) S» L PY; iv) the tangent B is a bisector of the vertex
RiRz; V) S(S,R1) = S(S,Rz); and vi) the tangent Pis

a midline of the sidé; f,. The same statements are true by
f1 — f2 symmetry if we interchange the indickand2.

Proof. i) The first statemeng(po,t1) = q(po, f2) comes
from the definition of the parabol&, and we can also cal-
culate quadrances to obtain

q(po,tr) =q([t?:t: 1], [(a—1)Ar: 4ta? o (a+1)A])
AZA‘Z‘AZ q([t>:t:1],[1-a:0:a(a+1)])
=d(po, f2).
ii) Calculate
mt = P°S,

= (1:-2t:t?) x (2ta?(a+1): — (@*~1)Ar 1 2ta(@—1))
- [tz (0 —1)204: —2tads: — (o + 1)2A4}
= [—tz(a —1)%:2ta: (o + 1)2} .

Here we have used the fact that the focal Rags non-null
so that/\4 is nonzero. Thus

q(t,m’) =
q([(a—l)Al:4t02:a(a+1)A1} , {—tz(a—
1 (0% —1)Ay

4  als

:q([—tz(a—l)z:Zta ; (a+1)2},[1—0( 10 :0((0(+1)])
=q(mt, ).

iii) Since the tangent link° passes through, which is the
dual of the lineS, = t; f», the tangenP? is perpendicular
to the lineSy; and we can also check that

1)2:2ta: (0(+1)2D

(1:—2t:t*) D(2to®(@+1): (0>~ 1)A;: 2ta (0(—1)>T =0.

iv) The tangenP? is a bisector of the verteR;R; since

S(Ry,PY) = S((ta(a —1): Az —t(a+1)),(1: —2t: %))
_ (0?-1) (A3 9)
40403
=S(ta(a+1): —Ap:t(a—1)),(1: —2t:t?))
=S(Ry,PY).

V) Now calculate the spreads
S(S2,R1) = S((2ta® (a+1): —(a? — 1) Ar: 2ta (a — 1)),
(ta(a—1):A1:—t(a+1)))
4P (a?+ 1)’
- 16203 - A% (02— 1)
=S((2ta® (o +1): — (0 — 1) Aq: 2ta (o — 1)),
(ta(a+1):—Azx:t(a—1)))
=S(S,Ry).
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vi) It is obvious that the tanger® is a midline of the
sidet; f,, sincePY is perpendicular to the in& =t; f,
through the pointm® which is, from ii), a midpoint of; f5.
The symmetry betweeffy and f2 in the definition of the

parabola®, ensures that all these statements hold also if

we interchange the indicesZ O

Figure 14: Two pairs of congruent triangles

In Figure14 we see also the poimt = P,S; and the con-
gruent triangleotom? and po f1m?. We call mt and n?
the t-perpendicular points of pp. Note that the theorem
allows us a simple construction of the tang&§tat po:
drop the perpendicular to the lingfs.

Corollary 1 We have i) the trianglestt; j° and m!f; O
are congruent, and ii) the trianglegot, j° and pof, jO are
congruent. The same statements are true py f, sym-
metry if we interchange the indicésaand 2.

Proof. The trianglesn! f, j% andmtty |0 are right triangles
sinceP? is perpendicular t&; we also havey (t;, m) =

q(mt, f2) andm! j° is a common side.

i) We calculate the quadrances

q(t2, % =a([(a—1)A1: 4to®: a (a+1)Aq], [-t2: 0: 1])
_ N
Y,
=q(1-a:0:a(a+1)], [-t?:0:1]) =q(j°% f2).

and spreads

oo q(ml’jO) B 16t%08
s@mth)—qaLp)_1&%3—¥@ﬂ—”
q(m,j° 0 fomt
a(jo f2) (f2F, o)
1 2 g
Ol 10 ) q(m',tr) _ (- 1)4]
SUPM. ) =6 10) ~ Tezed — a2 (2 - 1)
q(mt, f2) 01
= . :S rT]l’ Of ’
Qo) ~ SUm.i°R)

30

Therefore, the triangle®!t; j© andm! f,j° are congruent.
ii) The trianglespof2j® and pgt1 j© have one common side
PojP. Using the Spread law and the congruences above,

S(potz, Poi®) a(po, i°)

q(t1, j0)
~ S(pof2,p0i%) a(po, %) AZ—nZ
- a(fz, j9) N
= S(fgpo, fzjo) .

S(t1po,t1j°) =

Therefore, the trianglegy f2j© andpet1 j© are congruent.
Ul

Theorem 23 (Tangent base symmetry)Let = AP® be
the meet of the axis A and the tangeft 8nd hy the base
of the altitude from pto A Then i) g(bs, j°) = q(f2, ho)
and i) q(v1, j°) = g(v1,ho). The same statements are true
if we interchange the indicelsand2 by f; — f, symmetry.

Proof. i) We calculate the quadrances

q(b, %) =q([a(a—1):0:0%(a+1)],[-t?:0:1])

2
:ﬁ:q([l—a:o:a(a+l)],[tZ:O:l])
Zq(fz,ho).

i) Similarly, we calculate the quadrances

t*a®

q(vl,jo):q([O:O::IJ,[—tZ:Ozl]):,[40(2 1

=q([0:0:1,[t?:0:1]) = q(va,ho). O

Figure 15: The P and hy points

Theorem 24 (Two chord midpoints) Let = p(t), o=
p(u) be two points on a hyperbolic paraboig, with pg
the opposite point of gwith respect to the axis.Auppose
that the chordssgGo and gopo meet A at x and y respec-
tively. Then the verticesw, of & are the midpoints of
the sidexy.
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Proof. Supposep = [t?:t: 1] andgo = [u?:u:1]. The
line podo = (1: — (t+u) :tu) meetsthe axid=[0:1:0
atx=[—tu:0:1]. The chordpgqo = (1:t—u: —tu) in-
tersectA=(0:1:0 aty=tu:0:1]. Thus

Here then is another analog of the optical property, dealing
with the relationship between two spreads formed by the
tangent linePy. Recall that the quadrance of the parabola
was defined agg, = q(f1, f2).

Theorem 25 (Parallel line spread relation) Let py be a
point on the hyperbolic parabol&,. If T is the spread be-
tween the tangent IineO@t po and the parallel line  to
the axis through @ andS is the common spread between
the tangent Pand the lines Rand R, then

2422
q(vl,x):q([O:O:]},[—tu:O:l]):%

=q([0:0:3,[tu:0: 1)) =q(ve,y)

which showsy; is a midpoint of the sid&y. The other mid-
point will be perpendicular te;, which must bes, without (A f)é
calculation. O

1 =1-0qgp,.

_’I:
Proof. Using the Spread formula, we compute that

(a®—1) (A3 —A9)

~ o
S= S(Rl,P ) = AoDs
h and
—(a2—1) (t%a2+1)?
T:S(LO,PO>_ (a )(t a”+ )

(t402 - 1) A3\

Figure 16: Two chord midpoints

4.2 The optical property

Recall the famousptical propertyof a parabolaP in Eu-
clidean geometry: iP is a point lying on®, and light em-
anates from the focus heading towards the poift then

the light will be reflected to be parallel to the axis. An
analogous result in the hyperbolic case is the statement iv)
of the Congruent triangles theorem: that the tangent line
Py to a pointpg is a biline (bisector) of the verteR;R;.

So reflecting the focal lin®; = f1pg in the tangenk? re-
sults in the other focal lin&y, which is perpendicular to
the directrixr.

Recall from [16] that in Universal Hyperbolic Geometry
there is an important notion of parallelism, which is quite
different from the usage in classical hyperbolic geometry.

Figure 17: The parallel line spread relation

Note that 1- gs, = q(by, f2) sinceb; and f; are perpen-
dicular points. So in the limiting Euclidean case wh®n
is very close tafy, it follows thatSis very close tar .

We say rather generally that tparallel line P through a
point a to a line L is the line througha perpendicular to
the altitude fromato L.

Now recall that given a poirftp on the hyperbolic parabola
Py, the perpendicular to the axi& through pg is Jp =
(jo)" = apo = (1:0:-t?) with dual pointjo = PoA =
[1:0:t%a?]. Therefore, the parallel line to the axis
through the poinpg is

Lo=jopo= <—t302 tha?—1 Zt>.

4.3 Thespoints and S circles
Recall thats; = F;P° ands, = RPP.

Theorem 26 (The$; and S circles) The circle $1 with
center g passing through f also passes through,tand
is tangent at these points teRnd R respectively. In par-
ticulari) q(s1,t1) = q(st, f2); i) R1 L Fy;iii)) Ry L T and
iv) S(sit1,t1f2) = S(s1 o, fot1) . The same statements are
true if we interchange the indicelsand 2, giving also a
circle S with center s.
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Proof. i) Calculate

a(s,.tr) = q([2t (a—1):Az: 2ta(a+ 1)],
[(0—1)Ar:4ta?:a(o+1)Aq))
L
- 162083403 (02 - 1)

=q(s1, f2).

ii) The lineRy = f1pois clearly perpendicular to the direc-
trix F1 since it passes through the focfis= Fi-.

iii) Sincety = RoF, S = fitp, the linesRy, F and$; are
concurrent atp, so the lineT, = t2L passes througip, 2
ands;. Thereforerl; is perpendicular to the ling,.

iv) Calculate

S(t1sy,t1f2) =S({a(a+1):0:1—a),
(2toe?(a+1): —(0®~1)A;: 2ta (a—1)))
B C it 9%
16203 - AZ (02— 1)
= S(fasy, fat). 0

Figure 18: The$; and.$; circles

In particular, property iii) provides us with an important
alternate construction of the tangé¥itto the parabola

at po : namely we construct the altitude to po f2 through
f,, and obtains; = F1T,, giving P® = pos; (or similarly
constructpps,). In Figure 18 we see the circlgg and.S,.
Note that$, looks like a hyperbola tangent to the null cir-
cle, in factitis tangent at exactly the points wh&eneets
the null circleC — see the discussion in [18].

4.4 Focal chords and conjugates

A chordpop is afocal chord precisely wherpogo passes

Q0 %

Py

2 Uy

PO R qc

Figure 19: A focal chordpoQp with polar point z on direc-
trix

Theorem 27 (Focal tangents perpendicularity)If po =

p(t) and g = p(u) are two points onP thenPop is a

focal chord precisely when the respective tangeftami

QP are perpendicular; and precisely when the polar point

z=PYQC lies on a directrix.

Proof. Supposep = [t?:t: 1] andgo = [u?: u: 1] lie on
Po. Thenpogo = (1: — (t+u) : tu) is a focal line precisely
when it passes through eithérof f,, in other words pre-
cisely when

(1:—(t+u):twa+1:0:a(a—21)"
=d+1+tua(a—1)=0 or
(1:—(t+u:tw[l-a:0:a(a+1)"
=—0+1+tua(a+1)=0.
On the other hand the tanger® = (1:—2t:t?) and
Q%= (1:—2u: u?) are perpendicular precisely when
0=(1:-2t :t2>D<1:—2u:u2>T
= o? - dtua® — t?u?o? (0?2 - 1) - 1
=(a+1+tua(a—1))(a—1—tua(a+1)).
Thus the two conditions are equivalent.
As in the Tangent meets theorem, the tangétsand
Q° meet atz= [2tu:t+u:2]. This point lies onF; =
(a(a+1):0:1—a) or = (o(a—1):0:a+1) pre-
cisely when
[2tu:t+u:2)(a(a+1):0:1—a)"
=2(—a+tuo+tua®+1) =0 or
[2tu:t+u:2)(a(a—1):0:a+1)"
=2 (o —tuo +tuo®+ 1) = 0.

Since we work over a field not of characteristic two, the

through a focus. Such chords play an important role both conditions are equivalent to the previous ones. O

in the Euclidean and the hyperbolic theory.
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Given a pointpg on the paraboldy, we define theonju-
gate pointsny, n2 as the second meets of the focal lifgs
andRy with the parabol&@, respectively. Since one meetis
known, solving the quadratic equations is straightforward
and yields

n = [(a +1)%:ta (1-a?) :t?0® (o — 1)2}

N = [(a —1)%:ta(0®—1) :t%a®(a+ 1)2} : (14)

Figure 20: Focal conjugates nand np

The dual lines are theonjugate lines;

— <a (@+172:t(a®—1)%: —t%a(a— 1)2>
<—0( (@a—1)%:t(a®— 1)2 % (o + 1)2> .
Theorem 28 (Conjugate points parameter)Let p =
p(t) be a point on the parabol&y, then the point [u)
is the conjugate pointnof py with respect to the focus
f1 precisely when u= ——9+1_ while p(u) is the conju-
gate point i of py with respect to the focus fprecisely

at(a—1)
a-1

Proof. Let pp= [t?:t:1] andp(u) = [u?:u:1] lie on
Po. Then, the lingpogo = (1 : — (t+u) : tu) is a focal line
with respect to the focufy when it passes through the fo-
cusf; and then we have

[1:—(t+u):tu[a+1:0:a(a—1)]" =0  sothat

o —tud +tuo®+1=0.

This gives the condition = —#*_11).
direction is straightforward.

When the lingpogo = (1 : — (t +u) : tu) is a focal line with
respect to the focu§ , then the focal line passes through

the focusf, and we have

Similarly, the other

[1:—(t+u):tuy[l—a:0:a(a+1)]"=0  sothat

—a+tuo+tua’+1=0.

o—

This gives the condition = m(ujl).

direction is straightforward.

Similarly, the other
O

4.5 Quadrance cross ratios

Theorem 29 (Quadrance cross ratio)Suppose that
a,b,c,d are a harmonic range of points on a line L in
UHG. Then

a@c) _ q(b,c)
q(ad) dq(b,d)

Proof. We know from projective geometry that a harmonic
range of points, b, c,d in the projective space can be re-
alized agv], [u], [av+ Bu], [av — Bu] for two vectorss and

u and two scalara and3. Then using the short hand nota-
tionv? = v-vanduv= u-v, we calculate that

2
q([v], [av+Bu))=1— V-v) (E\év(i\ét)gl(?w Bu))
V(0224 2aB Y+ BAD) - (v +Buv)
- V2 (02v2 + 203 (uv) + B?u?)
B2 (42— (wv?)
V2 (a?v2 420 (uv) + B2u?)

and similarly
(u- (av+ Bu))®
u-u) ((av+pu)- (av+ Bu))

W02 4-2aB uy+BAd)—(a (U\M—Buz)2
u? (a2v2 + 2aB (uv) + B2u?)

- a? (uzv2 - (uv)z)

U2 (02v2+ 20B (uv) + B2u?)

Q([U], [(XV—|— BU]): 1- (

It follows that
g(ac) _ q(v,[av+pu) B
a(b,c)  q(ul,fav+Bu) o2

But this quantity is then unchanged if we replacedith
—a, or 3 with —f3. O

Theorem 30 (Conjugate cross ratios)Let pp be a point

on the parabola®y, with ; and rp the focal conjugates
and u and p the meets of Rand R with the directrices

F1 and F, respectively. Then

q(Po, f1) _ a(Po,U2) A(Po, f2) _ a(Ppo,u1)
q(fi,n)  q(uz,ny) q(fz,nz)  q(u,n)
Proof. From the Focus directrix polarity theorem, we

know thatf, andF; are a pole-polar pair with respect to
the parabola?. Hencef1, uz; po,n1 is @ harmonic range.
From the previous theorem, that implies that

a(po; f1)  q(po,u2)
a(fi,n)  q(uz,ng)’

The other relation follows similarly sincé&, us; po,n2 is
also a harmonic range of points. O
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4.6 Spreads related to chords of a parabola

Theorem 31 (Polar point spreads)If the tangents P
and @ at the points p= p(t) and ¢ = p(u) lying on the
parabola?, meet at the polar point zhen S f1po, f1z) =
S( f1Qo, flz) and afz Po, fzz) = S(szo, fzz).

Proof. Suppose thapy = [t?:t:1] andqgo = [u?:u: 1]
are on the parabol#. Thenz= [2tu:t+u:2] and we
calculate

at—u)?(a?-1)
(a+a2t2 —at2+1) (o 4 02u2 — au2 4-1)
a(t—u)?(a®-1)

= A3 (t)A3 (U) = S(f1QO7 le)

S( f1 Po, fj_Z) =

and

a(a?—1) (t—u)?
(a—u202—u2a—1)(—a+t202+t2a+1)
~—a(a?-1) (t—u)?
N Ag(t) A (u)

S(f2po, f22) =

= S(f20q0, f22).

Figure 21: The polar point z of the chorfipOp

Theorem 32 (Chord directrix meets) Let py = p(t) and

go = p(u) be two points on a paraboldéy. Let z be the
polar point of the chordpop, and x = F1(pogo) and

X2 = F2(podo). Theni) fiz L fixg, ii) foz L foxq and iii)

S(x1z,zfp) = S(xpz,211).

Proof. We suppose as usual thap = [t?>:t:1] and
go= [u?:u:1]. Then
i) We compute that
X2 = F2(podo)
=(0%(a-1):0:a(l+a)) x (1:—(t+u):tu)
= [(a+1)(t+u): a+tuo—tuo®+1:—a(a—1)(t+u)].

34

Also
fiz=(—a(o—1)(t+v):2(—a—tva+tva®—1)

H(a+1)(t+Vv))

fixo = (o (0 —1) (—a — tva + tva®~1) : 20 (a®—1) (t + V)
(a+1) (o +tva —tva?+1) )

and so we may verify that

0= (-a(a—1)(t+v):2(—a—tvo+tva®—1)

(a+1)(t+V))Dx
{a(a—1)(—a—tva+tvo®—1) : 20 (a® — 1) (t+V)
H(a+1) (a+tva—tva?+ 1))

Thus

S(f1z, fixo) = 1.

i) Similarly

X1 = F1(pogo) = (0 (a+1):0: 1—a) x (1: —(t+u): tu)

= [(a—1) (t+u): a+tuo +tuo®—1:a (o + 1) (t+ u)]
and the lines
foz=( —o(o+1)(t+u):2(a+tua+tua®—1)

P—(a—1)(t+u))

foxg = (@ (a+1) (o +tua +tua®—1) : —2a (a®—1) (t + u)
s (o —1) (a+tuo +tua®— 1))

are perpendicular, so that

S(faz, foxq) = 1.

iif) Another calculation shows that

1 (@2-1) ((2tu)2—(t+u)2)a2+ (t+u—4
S(xuzzh)="
bazzk) 4 (t2u02) o4+ ((t ) (t2u2 4 1)) a?+1

=S(xz,2f). O

Figure 22: Chord directrix meetsxand %

In Figure 22 we see the two triangldszx and fozx,
which are both right triangles sharing a common spread.
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Theorem 33 (Tangent directrix meets)If the two tan-
gents P and @ to a parabola? at p = p(t) and
go = p(u) respectively meet the directrix; Fat 5 and
s; respectively, and meet,Fat $ and $ respectively,
then Sflpo, f1CIo) = S( f15, f1§2) and szpo, f2Q0) =
S( f2817 f2§l)

Proof. Suppose thapy = [t?:t:1] andgo = [u?:u: 1]

are on the parabol&. Then

4o (02 —1) (t—u)®(a + a?tu — atu+ 1)2
B8

S(f1po, f100) =
= S(f;LSQ, f1§z) .
Also, we have that

S(f2po, f200)
_ —da(a?—1) (t—u)® (—o+ tuat + tua®+ 1)2
- AGEA()

= S(fle, fzg_]_) .

‘PO

Figure 23: Tangent directrix meetg ®nd $

Recall that in universal hyperbolic geometry, a triangle
may have four circumcircles.

Theorem 34 (Two tangents circumcircle) Suppose that
the two points p= p(t) and @ = p(u) on a parabola
Py have respective altitude base pointstd and ,t, on

F1,F respectively, and that their tangents meet at the po-

lar point z. Then z is a circumcenter of both the triangles
t1 fot] andtx f1t). In particular q(t1,z) = q(t1,2) =q(z f2)
and q(t2,2) =q(t5,2) = q(z f1).

Proof. Suppose thapy = [t?:t:1] andqgo = [u?:u: 1]

are on the parabol&, then,

qd(z,f2) =q([2tu:t+u:2],[1—a:0:a(a+1)])
_ Ag (1) Ag(u)
a ((4t2u2— (t+ u)Z) a2+ (t+u)?— 4)

=q(zt1) =q(zty).

Hencez is a circumcenter of the triangtefat;. Similarly,
zis the circumcenter of the trianglgeft), since
q(z, f1)=q([2tu:t4+u: 2], ja+1:0:a(a—1)])
o Az (t) Az (u)
a ((4t2u2 —(t+ u)2) a2+ (t+u)? — 4)
=q(ztz) =z 1)

Figure 24: Two points and polar circles

In Figure 24 we see the polar point p§p; together with
the twopolar circles centered at through the foci.

Corollary 2 Ifthetangentsat@=p(t) and g = p(u)ﬂ]
P meet at z then the linei 4 is a midline of the sidat;
and similarly £z is a midline of the sidet).

Proof. This follows immediately from the previous theo-

rem, sincef;zis the altitude frone to the directrixF;, so
it bisects the chortit;. O

Theorem 35 (Opposite triangle spreads)lf the tangents
at pp = p(t) and g = p(u) on B meet at z, then
S(zp,zh) = S(zp,zfz) and Sz, zf) = S(zep, zf1).

Proof. Using the Spread formula, we obtain

(02-1) (4202~ (t+u)? )02+ (t+u)*~4)

S(zp,zf) = IO
:S(Zq372fl)
and
a?—1) (4202 — (t+u)? ) o2+ (t+u)*—4
S(Zp)aZfl): ( )(( ) )

405 (U)Da (1)

=S(zp,zH). O
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on the evoluteE. The figure shows also that for points
above the evolute, there are three normals that meet there;
we exhibit also the other two points markBdvhose nor-
mals also pass through Below the evolute only one nor-
mal passes through any fixed point.

For a pointpp on the hyperbolic parabol&, the altitude

line P to the tangenP? throughpy is called thenormal

line at po.

Since the dual oP? is the twin pointp®, we see that

P=pop’= [t?:t:1] x [@®—1:2a?: —t?0® (0~ 1)]
Figure 25: Opposite triangle spreads — < _tg? (t2c12 24 2) : (02 _ 1) (t4a2 + 1)
't (2t%a® —a?+1)). (15)
5 Normals to the parabola‘?y

By symmetry, this means th&is both the normal line to

In the Euclidean case, it is well known that the evolute of parabola, at po as well as the normal line to the twin
the parabola, which is defined as the locus of the center Ofparabolaa’o at p°

curvature of the curve—namely the meet of .adja}cenj[ MO The meet o and the axish is the point
mals, as Huygens or Newton would have said—&emi-
cubical parabola For the curvey = X2, shown in Figure = pa

26, the evolute has equation
a = (—to? (1202~ 12+ 2) : (02— 1) (t%a? + 1)

( _})3:2_7)(2 t(2%a?—0?+1)) x (0:1:0)

2 16 = [t(2t%0® —o®+1):0:ta? (t?0? —t? 4 2)]
This formula suggests that there is no Euclidean ruler and = [2t?0% —a®+1:0:0a? (t?a® —t*+2)]
compass construction for the center of curvatty®f the _ . _ .
parabola for a general poif on it. We will see thatin ~ provided that 7 0. Since the norma? of is perpendicu-
the hyperbolic case, the situation is in some ways simpler, lar to the tangen®®, and since™ is a biline of the vertex

and indeed we will show how to give a straightedge con- RiRz, the normaP is the other biline for the vertei; R.
struction for the center of curvature! In fact we may calculate that

t2(0(2+1)2
Ri,P)=SPR)=———.
5.1 Conjugate normals and conics

Recall that the conjugate poims, ny of pg are the second
meets of the focal lineRy = f1pg andR, = fopg with the
parabola?, respectively. They are given in (14). The nor-
mal lines to, at the conjugate points; andn, can then
be computed using the formula (15):

P = <t0( (a—1) (2a2(a D24 (ot 1)3)
co? (a— 1"+ (a+1)*
- —ta(o+1) (2(a +1)— (o — 1)3t2) >
P, = <—ta (a+1) (20(2(0(+ 12+ (o — 1)3)

co? (a4 1)+ (a—1)*

Figure 26: Evolute of a Euclidean parabola

In Figure 26 we see a poiy on the Euclidean parabola,

with its tangentp®, obtained by finding the mee$ of ‘to(a—1) (2(0( —-1)—(a+ 1)3t2) >

the directrixf with the altitude to the focal line = FPy

through the focu§. The center of curvature is the poidg We will call these theconjugate normal linesof po.
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Theorem 36 (Conjugate normal conics)There are two  and similarly the conjugate normals, P, at ny,n, meet
conics# and #, with the following properties. Letjhbe Py respectively also at

the meet of the normal P and the conjugate normadia 2

point p on %. Then h lies on#4, which passes through  nj = [tzm2 ((a — 132 - 2(a+ 1))

fo and is tangent to Bthere. Similarly if b is the meet of

P and B at po, then b lies on#5, which passes through f Ttal (2(0( + 1)—(0‘—1)3'[2) (20‘2(0‘—1)'[2+ (a+ 1)3)
and is tangent to Bthere. Furthermore we have collinear- 5 ) 3\ 2
ities [[f152hz]] as well as{[ fs1hy]]. In addition #4 passes 1 (20‘ (a-Dt°+ (a+1) ) }

through the points glanddo. 2
n, = [tzaz ((a T 1324 2(1— 0())

Proof. The conjugate normd will meet the normaP at : (20(2(0(+1)t2+(0(—1)3) (a (a+1)3t3—20( (@-1) t)

hl = PPl =

: (20(2(0(+ 1t2+ (o — 1)3)2} .
[—az (a—1)3t*+40? (a+1)t?— (a—1)(a+1)?: ta <a2+1)A1

Lo (az(a+1) (a—1)2t4+4a2(a—1)t2+(a+1)3)}

dy = nlv‘

. , , , o =
A computation shows this point always lies on the conic c 2y (.
7 with equation o . o g
h ni bl YL\ \b2 X
L = b2l A 12N -

o (0 — 1) (14 4a +a?) X
2 2 o A
+2a (1-2a —0%) (1420 — o) xz 0 X
+320%? + (a?— 1) (1-4a +0a?) Z =0. Y !—/ P 5 d

Ro

The conjugate normdb will meet the normaP at ) ) )
Figure 27: Conjugate normal meetg land hp and conics

h =PPR, = Theorem 37 (Normal conjugate colliearities)Let g, n}
[02 (a+ 1)3t4— 402 (@ — 1) 2+ (a+ 1) (a — 1)2 and r}, be the second meets_ of the normals and conjugate
normals PP, and B of pg with the parabola?, respec-
‘ta (0 +1) Ay tively, and {,t; the altitude base points ofgp Then we

S (02(0 —1)(a+1)t* 4+ 40? (a +1)t? +(a _1)3)]. have collinearitieg[pyn;t1]] and[[pynsta]].

Proof. Since the forms of all the points involved are
known, it is straightforward (with a computer package)
to verify that the corresponding determinants for both
a2 (az _ 1) (1 _da+ GZ) 2 collinearities do evaluate identically to O. O

This point always lies on the coni with equation

—2a(2a+0®-1) (~2a +a®~1)xz These collinearities are illustrated in Figure 28.
—320%% + (a? — 1) (1+4a+a?) Z =0.

The collinearity[[f1s1hy]] is established by checking that
the determinant formed by the respective vectors is indeed
0 (it is!), and similarly for the collinearity[fasphy]]. We

can also check (with a computer package) that both of the
pointsdy anddyp identically satisfy the equation of;. [

The normaP at pg meets the parabofg again at a second
point

ph= [ (2202 —a?+1)°: ta? (1202 +1%—2)(2%a2—a?+ 1)

20 (1202 — 12+ 2)%] Figure 28: Normal conjugate collinearities
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5.2 Four points with concurrent normals The question of the existence of four points on the parabola
Py with a common normal point is closely related to an in-
teresting conic associated to four points on the parabola;
namely the conic? through those four points and the axis
point a, which has independent interest due to its form.
We call this conic4 (p1, p2, p3, p4) the four-point conic
throughps, p2, ps and pa.

In the Euclidean case, finding the three poiRt®n the
parabola whose normals pass through a given pbint
above the evolute is not straightforward [8]. We will show
that in the hyperbolic case there is an interesting conic,
related to the elementary symmetric functions of four vari-
ablesty, ts,t3,14, that allows us to findour such points.

Theorem 38 (Four parabola normals) If | is a point in 1 neorem 40 (Four point conic) For any four points p=
the hyperbolic plane, then there are at most four points p P(t);P2=p(u),ps = p(v) and py = p(w) lying ony, the
on the parabolaf, whose normals pass through . four-point conic4 (py, P2, p3, P4) has equation

Proof. We know that the normal tpo = [t?:t: 1] isthe 0 =x2—(t+ U+ V+W)Xy+(tu+tv+tw-+ v+ uw-+ vw)xz
line — (tuv+ tuw+ tvw+ uvw) yz-+ tuvw?Z. 17)
P=(ta?(—t2a®+t>—2): (a®—1) (t%a’+1
< ( 5 +2 ) ( )( ) Proof. We use a standard technique for computing a conic
(2%t —at+1)). through five given points: by taking a combination of the
degenerate line products formed by pairs of four points

If P passes through a poiht= [Xo : Yo : 2], thenIP = 0, P, P2, ps andpa. Now

which after rearranging is the equation
ging q pipz = (1:—(t4u):tu) p3pa = (1:—(V+w):vw)

o? (o — 1) yot* + & (1~ 0%) o+ 220) t° Pips=(1:=(t+V):tV)  popa=(1:—(t+W):tw)
+((1-a?)z0—2a%0) t + (0> — 1) yo = 0. (16) o _
so the general conic in the pencil througih p2, ps andpa,
This is a polynomial of degree four in so it has at most  has the form
four solutions. O
0=p(x.y,2) = (X— (t+u)y+tuz) (x— (Vv+w)y+vwz

Theorem 39 (Quadratric normal meets) Suppose = N

p(t) and g = p(u) are two points on the parabola, whose FAX—(t+V)y+tvz) (Xx— (U+wW)y+uwz).
respective normals P and Q meet at a point |, and sup- )

posea?+ 1+ 0. Then there ar®,1 or 2 other points on  NOW since als(0,1,0) = 0, we can solve foh to get
the parabola whose normals pass through | precisely when

0= (t2u?a®+ 1)2 —4tuo® (t+u)?is nota square, is zero, A = —w.

or is a non-zero square respectively. (t+v) (u+w)

Proof. The meet of the two normals is Substituting back and simplifying, we find that the equa-
| =PQ= tion of the required conic is (17). O

[(az—l) ((tu (22 —tu—t2—u?))a*+ ((tu—2) (tu+t2 + u?) +1) a®— 1)
C—tuo® (a2 + 1)% (t+ )
a?(a?-1) (Budat+ ((2u-1) (tu+ 2+ u?) —t3u) o+ (t2+tu+u2—2))]

and we need to check when a third paigts p(v) on
has a normaR also passing through This is equivalent
to IR = 0 which yields, after remarkable simplification,

—o2(a?-1) (2+ 1) (u—v)(t—v)
- (t+u+ v+ iAo’ + tPuva? + tu?va?) = 0.

Since a # 0,+1 and u,t,v are disjoint, this condi-
tion reduces to the quadratic equatituo?® (t + u)v? +
(t?u?02 4+ 1) v+ (t+u) = 0 in v with discriminant

Figure 29: Four points p with normals through | and asso-

(42,22 2 2 2
0= (tuo”+1)" —4tua“(t+u)”. - ciated conic4
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There is a clear similarity between the form of this conic
and the familiar identity

(x—t1) (x—12) (x—13) (Xx—tg) =X* — (t1 + 2+ t3+ t2) X
+ (tato + tots + taty + tots + tots + tats) X
— (tatots + tatots + tatata + totsts) X+ tatotsts
relating the coefficients of a degree four polynomial and

the elementary symmetric functions of its zeros. This may

be explained by noting that ip = [x:y:Z = [t?:t: 1]
is a point on the parabola, then the quantiiésy, xz yz
andZz® are respectively exactly, t3,t%,t and 1 while the
condition that the conic passes throwgknsures that the
coefficient ofy? is necessarily 0.

5.3 The conic4, and finding normals

Theorem 41 (Four normal conic) Suppose that the nor-
mal lines at four points  p2, p3, p4 lying on % are con-
current at a point I= [Xo, Yo, 2] not lying on the axis A
Then the conicg with equation
o (0% — 1) yox? + 0 (Xo + 220 — Xo0%) Xy

+ (20 — 200% — 2x00%) yz+ (0% — 1) yoZ = 0 (18)
passes through the six pointg, p2, ps, ps,a and |, so in
particular 4 = A (py, P2, Ps, P4)-

Proof. The condition (16) on for p= [t?:t: 1] on % to
have a normal line passing throubke [Xo, Yo, 2] may be
rewritten, sinceyg # 0, as

2 2 2 2
0, Co(-0%)+22) 5 (@(1-a®)-2x0%) =1 _
Yoy | -ty e

If we have four distinct solutions u, v, w of this equation,
then
o? (%o (1 0) + 22)

t+u+v+w=—
+Uu-+Vv+ azyo(az—l)

tu+tv+tw+uv+uw+vw=0

20 (1—0?) — 2x0?
02yp (a2 —1)

tuv+tuw-+tvw+ uvw= —

1
tuvw= o2

Theorem 42 (Conic construction of common normals)
Let | be a point of the hyperbolic plane with the property
that the dual line L of | meet$y at two points x and y.
Then the meet z of the tangent linesipat x and y, the
meet X of the tangent line at x and the dual line of x, and
the meet yof the tangent line at y and the dual line of y,
all line on the conicjg.

Proof. Suppose that the dual lineof | meets?y at two
pointsx = [t?:t:1] andy = [u?: u: 1]. Then the meets
of the tangent lines ig= [2tu:t+u: 2| from the Tangent
meets theorem. Alsb= (1: —(t+u) : tu) and

| =[0?—1:0%(t+u): —a’tu(a®-1)].

In this case the equation (18) for the cordc simplifies,
after some cancellation, to

o (t+u)x? + (1— 2tua® — a?) xy
+ (tuo® —tu—2)yz+ (t+u)Z = 0. (19)
The dual line ofx meets the tangent line atat
X = [t(o®?—t?+2) : ot +1:t (20%? — a® + 1)]
and the dual line of meets the tangent line giat

y

We check that both of these points identically satisfy the
equation (19).

[u(o?u? —u?+2) :a?u® +1:u(20%u? — o+ 1)] .

From the previous theorem, the conic passing through the

five pointspy = p(t),p2 = p(u),p3 = p(v), ps = p(W)

anda then has the form

> 02 (xo+220—%o0?)
az(a2—1)yo

(20—2%002—200?)
az(az-1)yo

which we can rewrite as the conf; (18). But now we can
check that alsb lies on this conic, since identically

a? (a? — 1) yox§ + o (xo (1— 0?) + 220) Xayo
+ (20 (1— a®) — 200°) yozo + (0* — 1) oz = O.

1
yz+¥22:0

O

Figure 30: Construction of points p or? with normals
through n

This also provides us with an elegant method to find all
normals through a given poiht Firstly, find the dual line

L of the pointl and then find the meetsy of this lineL
with the parabolafy. Construct the tangeni;, P, to Fy
atx andy and find their meet. Construct the dual lines
X andY of x andy, then find the meet of the tangentxat
and the dual line ok, that isx' = PX and the meet of the
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tangent ay and the dual line of, that isy’ = R/Y. Accord-

ing to the above theorem, the five poiht%’,y’,z a lie on

a conicA; which may meet the parabof in at most four
points which have the property that their normals meet at
[. We see that the number of normals passing thrdugh
determined by the meet of the corfi¢ with the parabola
. So if we can find the meets of these two conics, we
have the normals which pass through

This construction shows that some aspects of hyperbolic

geometry are surprisingly more simple than in Euclidean
geometry. In the latter, finding normals to points on a

parabola from a particular point is quite cumbersome, as

shown in [8].

Furthermore, the four normals drawn from a particular
points are also the normals to four points on the twin
parabolaP®. These points are the dual points of the tan-
gents to four points on the original parabdiga. This ob-
servation is the result of duality between lines and points.

5.4 Normal conjugate points

If po is a point on?, with tangent lineP® and normal line
P, then the other meet ¢t with the parabola gives a point
Py, which we call thenormal conjugate pointof po. Then
the tangent liné? to p meets withP° at the point

ko = POPY
= <t204(t2a2—t2+2)2: 2to? (t20® —t%+2) (2t%0%—a?+1)

: (220 —o® + 1)2> x (1:-2t:t%)
= [-2t2%0®—o®+1): (0®— 1) (t*a®+1): 2ta? (2 —t2+2)).

Figure 31 shows theormal conjugate curve % : the lo-
cus ofky as pp moves. This a higher degree curve which
passes through as well agdy anddp, and is tangent te

at those latter two points. It seems an interesting future di
rection to investigate more fully such associated algebrai
curves connected witt#y.

Figure 31: The normal conjugate coni&p
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5.5 The evolute and centers of curvature

Recall that theevolute of a curve is the envelope of the
normals to that curve, or equivalently the locus of the cen-
ters of curvature. Following the technique described in [4]
here is a pleasant construction of the center of curvaijire
to the hyperbolic parabol® at the pointpo.

b Wi <2\ TS| 1:,)1_
m v X 5 oo
B \
noe ‘\ 1&\(
PO .L

Figure 32: Evolute of a parabola

Theorem 43 (Center of curvature construction) Let P
be the normal at gto the parabola®, and construct the
altitude line Q to P through B= AP. Suppose that the meets
of Q with the focal lines Rand R are respectively xand
x2. Then the meet of the perpendicular line tptRrough

x1 and the perpendicular line toRhrough % is the re-
quired center of curvaturepdo %y at the point p.

Proof. Let po= [t?:t:1] andn= [2t?0%> —a?+1:0:
o2 (t?a?—t2+2) ], then the perpendicular tB through
| =nis
Q= pn=[0? (to?+1) (Pa? - 2+ 2)
't (20 — t?0 — 2t%0% + t?0® + a? - 1)
- (=20 +t?0 — 2t%0% — t?0® + a? - 1)
L (tfa?+ 1) (—2t%a +a? - 1) }

This line will meet the lindR; at

X1 :{—2a4t6+ (a5+3a4—3az—a)t4
+ (203 — o* + 40% + 20 — 1)t? + (1 - 0?)
‘ta (0 + 1) (t*o® + 1)
ra(—o®(o®—1)t°+ o (20 — 4a?+ 203 + o + 1)t
—(a®~1) (~30+a?+ 1)t2+20r)}
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and the lineR, at

Xo = {(20(4) to+ (05— 30 + 302~ a) tt
+ (0% + 203~ 40® + 20 + 1)t? + (0 — 1)
‘ta (0 +1) (t*a® + 1)
ca(a® (a?—1)t°+ (2a4—05+4a3+2a2—a)t4
+ (3a—303—a4+1)t2—2a)]
The perpendicular line t&; throughx; is X; = x1r1 and

the perpendicular line tB, throughx, is Xo = Xoro which
meet at

Co=X1Xo =
[ (a®—1) (20(4t6 +30% (1—0?)t* - 60%t% + (a® - 1))
- 2632 (a2 4 1)°

:a?(a?-1) (02 (0?—1)t° + 60%t* + 3 (1-a?) t2—2)]

To evaluate the center of curvature, we note that adjacent

normals, say ap(t) andp(r), meet at

(

f(tr)=
K

tr
o? — 1) (—2r¥%3a® + rdta® - r3ta? + r’t?a® — ri%a?
+2r%0® + rt3o® — rt3a® + 2rta® + 2t%0% — o® + 1)
srta? (r+t) (o + 1)2
—a? (a? - 1) (rP*t®a’ - r*3a® + 2r3ta? + 2r%t%0?

—r2a? 41?4 2rt30® - rto® +rt — t?0% +t2 - 2)}

where we have removed a common factor eft. Now let
r =t to find thatf (t,t) = co. O

5.6 Formula for the evolute

Can we get a formula for the evolute? Working with affine
coordinates (setting= 1), we need eliminate from the
equations

o (2ot —3ttat + 3ta® — 6t°0® o — 1)
02 (ta% —tba2 4 6t402 — 3t202 + 32— 2)
~23 (a2 41)°
a?—1) (ta# — a2 + 6t402 — 3t202 + 3t2 - 2)

=1

Figure 33:Normals to a parabola

We could use a Grobner basis to calculate this, but the
polynomials are small enough to do it by hand with classi-
cal elimination. We get, after some calculation, thaind

y satisfy the affine equation

0=h(xy) = 3208 (a? — 1)° X6 — 25602 (a2 — 1)°yP
+3a* (8 + 6a? — 8® + 30* + 3) (—8a + 6a? + 8a® + 30* + 3)

(o —1)? (a4 1)°x*
+384a* (0271)5X2y4+48(16 (20 +a?~1) (20 +a?—1) ((J(Zfl)zx5
—1920% (—20+ a® — 1) (204 a® — 1) (a® — 1) 32
+1922 (—20+ a2 — 1) (20+a2— 1) (a2 — 1) xy*
+24a* (a?-1) (—2a — 62+ 203+ o*+ 1) (20 — 60° — 203+ a*+ 1) x*
38402 (a2 —1)°y*
+ 62 (1962 - 3780 + 1960° + 0 + 1) (? - 1)y
+40? (20 +a?~1) (~2a +a?~1)(~36a>+ 86a* - 36a°+ P+ 1)
+1922 (—20+ a? 1) (20 +a?— 1) (a®— 1)°xy?
—240%(0®—1) (20 — 60° — 203+ a4 1) (— 20 — 6a®+ 203+ &+ 1)
+3(—8a + 602+ 8%+ 30*+ 3) (8a + 602 — 803+ 304+ 3) (02— 1)°y?
+4802 (~20+ 0%~ 1) (2a + 02— 1) (a? — 1)°x— 3202 (02— 1)°.
So the evolute is a six degree curve, with coefficients that
depend in a pleasant way @n Note that all the coeffi-

cients are divisible bya® — 1, with the exception of the
coefficient ofx®.
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