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FUZZY REASONING AS A BASE  
FOR COLLISION AVOIDANCE DECISION SUPPORT SYSTEM

ABSTRACT

Despite the generally high qualifications of seafarers, 
many maritime accidents are caused by human error; such 
accidents include capsizing, collision, and fire, and often re-
sult in pollution. Enough concern has been generated that 
researchers around the world have developed the study of 
the human factor into an independent scientific discipline. 
A great deal of progress has been made, particularly in the 
area of artificial intelligence. But since total autonomy is not 
yet expedient, the decision support systems based on soft 
computing are proposed to support human navigators and 
VTS operators in times of crisis as well as during the execu-
tion of everyday tasks as a means of reducing risk levels.

This paper considers a decision support system based 
on fuzzy logic integrated into an existing bridge collision 
avoidance system. The main goal is to determine the appro-
priate course of avoidance, using fuzzy reasoning.
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1.	INTRODUCTION

Collision avoidance is one major task of every ma-
rine navigator. Each of them must obey the Internation-
al Regulations for Preventing Collisions at Sea 1972 
(COLREG) [1], which governs the rules for preventing 
collision at sea. Every seafarer must strictly consider 
COLREG rules in all situations, regardless of time, sea 
area and weather conditions. Since human error re-
mains, proportionately, the most common cause of 
accidents at sea, knowing the COLREG rules is not 
enough to prevent collisions. Vessels also require ex-
perienced navigators who are capable of properly as-
sessing a situation and making the correct decision at 
the right time to avoid other vessels at sea.

Many researchers around the world are engaged 
in the development of the autonomic Collision Avoid-
ance System (CAS). Models of research may be divided 
into three categories: mathematical models and algo-
rithms, soft computing (the evolutionary algorithms, 
neural networks, fuzzy logic and expert systems), and 
a combination of all - a hybrid navigation system [2].

Perera et al. [3] proposed a decision making sys-
tem based on fuzzy logic in which the highlighted situ-
ations that occur at high seas when the “stand-on” 
vessel must make a manoeuvre to avoid collision. 
The stand-on vessel is the one with the right of way 
and should maintain her course and speed, while the 
“give-way” vessel is obligated to yield to the stand-on 
vessel.

The same authors soon presented an advance-
ment by combining fuzzy logic and the Bayesian net-
work, which works as an inference medium between 
collision avoidance decisions and collision avoidance 
actions [4]. Smierzchalski also tried to combine two 
computer techniques: evolutionary algorithms for the 
determination of the optimal path of passages and 
fuzzy logic to control the vessel after a set path of pas-
sage [5] (in this case fuzzy logic works as fuzzy control 
of the course and speed). Pietrzykowski et al. [6, 7] 
presented a collision avoidance trajectory with solu-
tions determined by the method of multi-stage control 
in a fuzzy environment. In their paper they also pre-
sented a prototype of a navigational decision support 
system which utilizes knowledge of experienced navi-
gators using artificial intelligence methods and tools 
including fuzzy logic. More complex hybrid systems for 
autonomous navigation were presented by Lee [8], 
where in addition to fuzzy logic, a Virtual Force Field 
from the field of mobile robotics was proposed.

Vessel’s trajectories in collision avoidance situa-
tions were the focus for the exploration of Szlapczynski 
who used a method called “Evolutionary sets of coop-
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erating ship trajectories”, which enable the navigator 
to predict the most probable behaviour of a target ves-
sel and to plan their own vessel’s manoeuvre in ad-
vance [9]. In a situation of heavy traffic this method 
also allows the VTS (Vessel Traffic Service) operator to 
coordinate the manoeuvres of all vessels. He used the 
evolutionary algorithms and the corresponding proce-
dures for finding the fittest solution; in this case, the 
optimal trajectories of the vessel.

Expert systems are part of intelligent systems as 
well, which operate in accordance with the knowledge 
base. One way to present knowledge in the expert sys-
tem is also the case-based reasoning (CBR), which was 
used for collision avoidance at sea by Liu [10]. A CBR 
system solves a new problem by retrieving a similar 
one from a case base. Liu et al. [11] also introduced 
the use of the computational information fusion meth-
od for the decision model. This consists of two types 
of virtual agents – vessel and VTS agents who monitor 
and process information of own and target vessels in 
the immediate surroundings, and on the basis of these 
data mutually decide which vessel has the right of way, 
when there is a change of the direction or speed, and 
the duration of these changes.

2.	COLLISION RISK ASSESSMENT

Investigating the human factor error in maritime 
transport leads to Safety Management and, conse-
quently, Risk Assessment. The latter has become the 
basis for a variety of studies assessing the level of risk 
of shipping for humans and the environment. An on-
going vessel represents high level of risk because it 
is constantly exposed to the unpredictable states of 
weather and sea, other conditions on the route (num-
ber of vessels and other floating objects in the vicinity, 
the state of waterways, pathways, etc.), the state of 
the vessel itself and the knowledge, skills, and health 
status of the navigator [12]. High levels of risk affect 
different people in different ways but often enough 
cause stress and consequently loss of control over the 
conduct of the vessel.

During the voyage the navigator controls the op-
eration of navigational equipment, the steering and 
propulsion systems, and at the same time monitors 
the vessel’s surroundings. Again, regarding collision 
avoidance the COLREG rules apply. COLREG includes 
38 rules that are directly and indirectly related to the 
management of the vessel in relation to other vessels 
at sea, e.g. technical requirements for lights and day 
marks, acoustic signals, additional lights for fishing 
vessels and others. Interpretation of the rules and 
their use is explained by Cockcroft [13].

In addition to these rules the navigator must make 
proper use of navigation devices and the interpreta-
tion of data provided by them. For collision avoidance 

ARPA (Automatic Radar Plotting Aid) radar is one reli-
able piece of equipment useful for assessing the safe-
ty of navigation. Risk assessment and avoidance de-
cisions are established depending on the information 
relayed by ARPA. However, studies have shown that 
more than 60% of accidents are caused by collision, 
of which 56% were due to failure to comply with COL-
REG rules [14]. In order to reduce the impact of human 
error, this paper proposes a decision support system 
based on fuzzy logic integrated into the ARPA radar col-
lision avoidance system. With data calculated by the 
ARPA unit and knowledge of rules, the system would 
provide suggestions to navigators regarding the proper 
course deviation necessary to avoid an approaching 
target vessel.

2.1	 ARPA system

The ARPA unit is today the structural part of naviga-
tional radar that processes the received radar signals. 
Unlike regular radar, the navigator obtains the dynam-
ic data of an observed vessel:

–– distance (range) to target vessel (DTTV),
–– bearing to target vessel,
–– target vessel’s course,
–– target vessel’s speed (true/ relative),
–– closest point of approach (CPA),
–– time to closest point of approach (TCPA).

With further connection to the Automatic Identifi-
cation System (AIS) the navigator receives additional 
information such as the name of the vessel, Call Sign, 
MMSI (Maritime Mobile Service Identity) number, etc. 
All data are of great assistance to navigator, even if we 
consider the standard limitations and errors inherent 
to radar.
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Figure 1 - Manual radar plotting
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ARPA radar provides a function called “Trial Maneu-
ver”, which simulates a postponed navigational situ-
ation within a time interval [15]. With the input data 
(change of speed and course within the time delay) the 
navigator receives a picture of the target vessel’s tra-
jectory. This feature has replaced the manual graphic 
radar plotting (Figure 1) which was the navigator’s job 
before the development of the ARPA unit. Using this 
method the navigator determined any alteration of 
his/her own vessel’s course to avoid the target vessel.

2.2	 Vessel domain

The vessel domain is an area around the vessel 
which must remain free from other vessels and fixed 
obstacles [16, 17]. In practice, this area is determined 
by the navigator, by the shipping company or other des-
ignated person/institution. If there is a risk of threat to 
the vessel domain by another vessel or an object, it is 
necessary to make an appropriate manoeuvre to avoid 
collision, and this manoeuvre must comply with COL-
REG rules. In everyday navigation the CPA is the most 
used indication of whether there is danger that the 
target vessel will enter one’s own vessel domain. But 
the radar CPA does not take into consideration both 
vessels dimensions as well as manoeuvring specifi-
cations; consequently, this information is inadequate 
and probably the cause of many accidents. These ac-
cidents could be reduced by the implementation of a 
model of safe vessel domain.

Over the last 30 years objective determination of 
a vessel domain has become serious science and 
several authors have dealt with it, among the first be-
ing Goodwin, who suggests that the vessel domain is 
confined within three sectors that are similar to the 
horizontal angles of the side lights and stern light. The 
model was developed on the basis of statistical analy-
sis of data from a wide range of registers and simula-
tions [18, 17]. Most of the early developments of the 
vessel domain were created on the basis of statistical 
and analytical methods, but today’s methods include 

the use of artificial intelligence: Pietrzykowski and Uri-
asz [19] with a fuzzy vessel domain (in combination 
with a self-learning neural network) as the safety cri-
teria for navigation at high seas; a similar method is 
used by Wang [18], who said that for the navigator 
fuzzy domain limits are more practical than precise 
boundaries for the assessment of navigation safety. 
The use of artificial neural networks for subjective de-
termination of the safe vessel domain has also been 
proposed [20].

3.	DECISION SUPPORT SYSTEM BASED ON 
FUZZY REASONING

To reduce human error in collision avoidance opera-
tions, subjective decisions should be limited and sup-
ported by computerized systems. One of the solutions 
is the decision support system (DSS) which could stand 
alone or be integrated into existent navigational equip-
ment. The DSS proposed in this paper is based on fuzzy 
logic and composed of the following units (Figure 2):

–– Input data – parameters received by ARPA unit. Ex-
perienced navigator makes decision based on the 
following information: CPA, relative bearing to tar-
get vessel (RB) and DTTV.

–– Fuzzy inference system – system controlled by 
fuzzy logic.

–– Output data – suggestion of appropriate course de-
viation of own vessel to prevent collision (change of 
speed is reserved for future research).

3.1	 Fuzzy inference system

Fuzzy logic belongs in the area of artificial intelli-
gence, which was first introduced by Zadeh [21], who 
wrote that human decisions are based on imprecise 
information. The advantage of fuzzy logic is in its pro-
cessing of inaccurate data to create precise solutions. 
As an example (Figure 3), let us take the watch keeping 
navigator, who visually observes the surrounding area 
of the vessel. He/she uses linguistic terms to describe 
the distance to other vessels, such as: the vessel is far 
away, the vessel is at medium distance or the vessel 
is at a short distance. At the same time the navigator 
assesses the risk of collision. In short, the navigator 
describes the situations inaccurately (instead of 10.5 
nautical miles they say that the vessel is far away and 
the risk of collision is minor or does not exist), and so 
develop the so-called fuzzy sets, which do not have 
clear boundaries. We say the statement belongs to a 
set of statements with a certain grade of membership. 
Statements about the distance of the vessel can be 
illustrated graphically, with a fuzzy membership func-
tion, where “N” means that the observed vessel is 
near, “M” means middle distance and “F” means far 
away (Figure 3).
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The horizontal axis of a two-dimensional Cartesian 
coordinate system presents the distance in nautical 
miles (NM); the vertical axis shows the grade of mem-
bership of elements to a fuzzy set. The theory of classi-
cal logic assumes only the correct and incorrect state-
ments, so that the statement belongs to a set (true or 
1), or does not belongs to a set (false or 0). In the case 
of fuzzy logic, however, the element belongs to a set 
with a certain grade of membership depending on the 
truth of the statement. For example, if the distance to 
a target vessel is 3.5d NM= , it means that it belongs 
to both sets N and M, but with varying grades of mem-
bership: .d 0 15Nn =^ h  and .d 0 4Mn =^ h  (Figure 3). The 
shape of a fuzzy set can also be defined mathemati-
cally. As an example, let us look at the definition of 
fuzzy set M:
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Limits of the fuzzy set M (3, 6, and 9) in an example 
were chosen randomly. The form of the set is deter-
mined by an expert, thus we know the sets in the form 
of a triangle (the most commonly used form of the sets 
in the literature), a trapezoid, a Gaussian curve, etc. 
The procedure by which a certain number or parameter 
(input) is appointed to an appropriate set and by which 
a grade of membership is determined (a subjective de-
termination by an expert), is called fuzzification. The 
fuzzy inference system (FIS), also known as the fuzzy 
rule-based system, is the process of formulating the 
mapping from a given input to an output, using fuzzy 
logic. It is one of the main elements of the fuzzy logic 
system. The fuzzy rules are drawn by an expert, taking 
into account all relevant COLREG rules. The FIS type in 
this paper is “Mamdani”, which is the most commonly 
used fuzzy methodology. The use of the IF-THEN rules 
(Figure 4) is organized with the “AND (min)” and “OR 
(max)” operators. Defuzzification is the last step in FIS 
and it is a conversion of fuzzy output quantities into a 
crisp output quantity (Figure 4).

Membership function of output D takes the form:
, , ,max minx ai aj akD

n
An Bn Cnn n n n=^ ^ ^ ^h h h h6 @" ,

    1,2,3n Nf= 	 (2)

4.	SIMULATION

Simulations were performed with the Matlab Fuzzy 
Logic Toolbox Graphical User Interface. Input data are 
RB (Figure 5a), DTTV (Figure 5b) and CPA (Figure 5c). 
Output data (decision) is course deviation (Figure 5d). 
Altogether, 84 rules govern fuzzy reasoning based on 
parameters the navigator receives from the ARPA ra-
dar. Fuzzy sets and rules were modelled regarding the 
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analysis of 144 results obtained by the manual radar 
plotting method:

–– Input variable “RB” - 7 fuzzy sets with correspond-
ing membership functions (Figure 5 (a)):
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–– Input variable “DTTV” - 4 fuzzy sets with corre-
sponding membership functions (Figure 5 (b)):
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	 where:
VN	 means	 “Very near” distance to target vessel
N	 means	 “Near” distance to target vessel
M	 means	 “Middle” distance to target vessel
F	 means	 “Far” distance to target vessel

–– Input variable “CPA”- 3 fuzzy sets with correspond-
ing membership functions (Figure 5 (c)):
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where:
P	 means	 CPA in the area “Port Out”
C	 means	 CPA in the area “Center”
S	 means	 CPA in the area “Stbd Out”

–– Output variable “Course - deviation” - 13 fuzzy sets 
(Figure 5 (d)):
10 = (0, 0, 10)	 20 = (0, 10, 20)
30 = (10, 20, 30)	 40 = (20, 30, 40)
50 = (30, 40, 50)	 60 = (40, 50, 60)
70 = (50, 60, 70)	 80 = (60, 70, 80)
90 = (70, 80, 90)	 100 = (80, 90, 100)
110 = (90, 100, 110)	120 = (100, 110, 120)
130 = (110, 120, 130, 130)

In the process of fuzzification, input data are as-
signed to an appropriate fuzzy set via membership 
functions. Determination of fuzzy membership func-
tion for each parameter (RB, DTTV and CPA) could 
be made subjectively or, as proposed in this paper, 
based on the verified 144 results obtained by the 
graphical manual radar plotting method. Through 
this method a database of relevant solutions (course 
deviations) was first drawn using different values 
of parameters: distance to target vessel (2 NM, 4 
NM, 6 NM, 8 NM), relative bearing (0° ~ 110°, for 
each 10°) and CPA (0 NM, + 0.5 NM, – 0.5 NM). In 
the latter case (+) means the observed vessel ap-
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proached the starboard side or the stern of the own 
vessel, the negative (–) means she approached the 
port side or the bow. The vessels dimensions were 
neglected, velocity of own vessel was 20 knots (NM 
per hour) and the relative approximation velocity was 
also 20 knots. Own vessel’s safety domain was de-
termined subjectively by the authors and was 1 NM. 
The simulation and radar plotting highlighted a cross-
ing situation between two power-driven vessels that 
meet on the open sea. The give-way vessel (in this 
paper the own vessel) is obliged to avoid (by turn-
ing the own vessel’s course to the starboard side) a 
vessel that comes from her right side (the right RB 
from 0° to 112.5°), referring to the COLREG rule  
15 [13].

Comparison of the results obtained by graphical 
plotting and Matlab fuzzy simulation displayed the 
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Radar plotting results

Matlab simulation results

similarity between the methods as seen in Graphs 1, 
3, 5 and 7:
a)	 Simulation (1):

Change of course obtained by Matlab simulation, 
for situations when the target vessel is “very near” 
and with CPA being “Center” (which means the risk of 
collision is high), shows minor deviation from manual 
radar plotting results. There is a bit greater difference 
when the target vessel is in the area of relative bearing 
90° - 110°. Acceptable error is - 10°, where (-) means 
the Matlab simulation shows lesser change of course. 
If the error is positive (+), fuzzy simulation results are 
estimated as very good. The average error for scenari-
os “Very near” is - 4.4°.
b)	 Simulation (2):

Fuzzy simulation displayed in Graph 3 shows higher 
course deviation. The results are estimated as very 
good and are in compliance with basic demand – the 
safety vessel domain. The average error for scenarios 
“Near” is +7.5°.
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c)	 Simulation (3):
In situations when a target vessel is at the “Middle” 

distance from the own vessel, the Matlab simulation 
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results show lesser deviation from the desired course 
change, but the error in the RB area 0° - 50° is negli-
gible. In the case of RB 110°, the error is greater than 

10° and therefore unacceptable. The average error is 
-4.3°, with an extreme error (RB 110°) of -23.7°.
d)	 Simulation (4):

Graph 7 shows the comparison between two meth-
ods for situations when the target vessel is far away 
(approx. 8 NM). The average error of the Matlab sim-
ulation results is -1.4°. The negative error is at RB 
110°. Thus the Matlab simulation satisfies the COL-
REG requirements.

5.	CONCLUSION

The fuzzy inference system, which would provide 
solutions or decisions similar to those obtained by 
the graphic plotting method, has proven to be promis-
ing. The authors have estimated that the simulation 
responds worse at higher relative bearings, except in 
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cases when the own vessel avoids a target vessel at 
the distance “Near”, when the simulation in fuzzy logic 
offers a higher value of course deviation and satisfies 
the vessel safety domain requirements (1 NM). In cas-
es when error exceeds -10°, a circle (360°) turn is pro-
posed as an acceptable manoeuvre. And although the 
change of course in the area of relative bearing 90° 
- 110° mostly does not satisfy the minimum require-
ments for safety vessel domain, it is in accordance 
with COLREG Rule 15 and Rule 8, which stresses that 
the navigator on a “Give-way” vessel should perform a 
change of course noticeable to other vessels in the vi-
cinity. In his interpretation of the rules, Cockcroft [13] 
suggests that alterations of course and speed should 
be substantial so that they may be readily apparent to 
another vessel observing by radar.

Time to the closest point of approach (TCPA) is very 
important when deciding about avoidance manoeu-
vres. Future research will be based on consideration of 
the time, resulting in a consideration of the true speed 
of the observed vessel. It is also necessary to solve 
the problem of avoidance in terms of multi-vessel situ-
ations in a restricted environment.
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POVZETEK 
 
MEHKO SKLEPANJE KOT OSNOVA NAVIGACIJSKEGA 
ODLOČITVENEGA SISTEMA ZA POMOČ 
PRI IZOGIBANJU PLOVIL NA MORJU

Kljub visoki kvalifikaciji pomorščakov se na področju 
pomorskega prometa še vedno dogajajo nesreče, kat-
erim v veliki meri botruje človeški faktor. Tako imenovana 
človeška napaka je prisotna pri nasedanju, trčenju, požaru 
ali onesnaženju z ladje, zato je že več desetletij preučevanje 
človeškega vpliva na izvajanje nalog samostojna znanst-
vena disciplina. Da bi to napako kar se da omejili oziroma 
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jo izničili, je razvoj usmerjen predvsem v avtomatizacijo ali 
bolje rečeno, avtonomnost plovil, tako da bi človeka nado-
mestil računalniški sistem, pri čemer se v zadnjih dveh deka-
dah močno razvijajo sistemi, ki delujejo na osnovi umetne 
inteligence. Ker pa popolna avtonomnost trenutno še ni 
smiselna, je smotrno razmišljati o sistemih za pomoč pri 
odločitvah, ki bi delovali na podlagi umetne inteligence in 
svetovali navigatorjem ter VTS operaterjem, kako postopati 
v kriznih ali pa čisto vsakdanjih nalogah in s tem zmanjšali 
nivo tveganja, ki je v pomorstvu še kako prisoten.

Ta članek predstavlja sistem za pomoč pri odločanju, 
ki temelji na uporabi mehke logike, integrirane v obstoječi 
ladijski sistem za izogibanje plovil na morju. Cilj raziskovanja 
je določitev ustrezne spremembe gibanja lastnega plovila, v 
funkciji izogibanja, z uporabo mehkega sklepanja.

KLJUČNE BESEDE

pomorske nesreče, izogibanje trčenju na morju, radarsko 
vrisovanje, mehka logika, sistem za pomoč pri odločanju
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