
Nanxing Chen, César Viho, Anthony Baire, Xiaohong Huang, Jiexi Zha

Ensuring Interoperability for the Internet of Things: Experience
with CoAP Protocol Testing

DOI
UDK
IFAC

10.7305/automatika.54-4.418
004.451.642
4.0.5; 2.8.2

Original scientific paper

Constrained Application Protocol (CoAP) is a specialized web transfer protocol, designed for realizing inter-
operation with constrained networks and nodes for machine to machine applications like smart energy, building
automation, etc. As an important ubiquitous application protocol for the future Internet of Things, CoAP will be
potentially implemented by a wide range of smart devices to achieve cooperative services. Therefore, a high level
of interoperability of CoAP implementations is crucial. In this context, CoAP Plugtest – the first formal CoAP in-
teroperability testing event was held in Paris, March 2012 to motivate vendors to verify the interoperability of their
equipments. The event turned to be successful due to our contribution, including the test method and tool. This
paper presents the testing method and procedure for the CoAP Plugtest event. To carry out the tests, a set of test
objectives concerning the most important properties of CoAP have been selected and used to measure the interoper-
ability of CoAP implementations. The process of verification has been automated by implementing a test validation
tool based on the technique of passive testing. By using the test tool, a number of devices were successfully tested.

Key words: CoAP, Interoperability testing, IoT, Passive testing

Osiguravanje med̄uoperabilnosti za Internet stvari: iskustvo s testiranjem CoAP protokola. Constrained
Application Protocol (CoAP) je specijalizirani prijenosni protokol, dizajniran za realizaciju med̄uoperabilnosti uz
ograničene mrežame i čvorove za primjene poput pametne energije, automatizacije u zgradarstvu itd. Kao važan i
sveprisutan protokol za Internet stvari CoAP bi mogao biti implementiran kod velikog broja pametnih ured̄aja kako
bi se ostvarile kooperativne usluge. Zbog toga je od velike važnosti postići visoku razinu med̄uoperabilnosti CoAP
implementacija. U tom kontekstu, CoAP Pluqtest - prvo formalno testiranje CoAP med̄uoperabilnosti je održano
u Parizu u ožujku 2012. kako bi se motivirali prodavači da provjere med̄uoperabilnost svoje opreme. Testiranje je
bilo uspješno zahvaljujući našem doprinosu koji uključuje metodu i alate za testiranje. U ovom radu prikazana je
metoda i procedura testiranja za CoAP Pluqtest. Kako bi se proveli testovi odabran je skup ciljeva koji se odnose na
najvažnija svojstva CoAP protokola i oni su korišteni za mjerenje med̄uoperabilnosti CoAP implementacija. Proces
verifikacije je automatiziran implementacijom alata za provjeru testa koji se temelji na tehnici pasivnog testiranja.
Korištenjem alata za testiranje uspješno su testirani brojni ured̄aji.

Ključne riječi: CoAP, testiranje med̄uoperabilnosti, Internet stvari, pasivno testiranje

1 INTRODUCTION

The Internet of Things (IoT) is a paradigm that is
rapidly gaining ground in the field of modern wireless
telecommunications. It is a vision towards future Inter-
net, where smart objects such as sensors, Radio-Frequency
IDentification (RFID) tags, mobile phones, etc. – are able
to interact with each other and cooperate to reach com-
mon goals [3]. Promoted by Internet of Things, web ser-
vices are nowadays ubiquitous. Devices behind these ap-
plications are typically battery powered and equipped with
slow micro-controllers and small RAMs and ROMs. The
data transfer is performed over wireless links with low

bandwidth and high packet error rates. Unlike the Inter-
net, there are high scalability requirements with trillions of
nodes and the communication is often machine-to-machine
(M2M) without human intervention.

To deal with these various challenging issues of IoT,
the Constrained Application Protocol (CoAP) has been
designed by Constrained RESTful Environments (CoRE)
working group1 to make it possible to provide resource
constrained devices with low overhead and low power con-
sumption web service functionalities and consequently to
integrate smart objects with the web.

1http://datatracker.ietf.org/wg/core/charter/

Online ISSN 1848-3380, Print ISSN 0005-1144
ATKAFF 54(4), 448–458(2013)

448 AUTOMATIKA 54(2013) 4, 448–458

Ensuring Interoperability for the Internet of Things: Experience with CoAP Protocol Testing N. Chen, C. Viho, A. Baire, X. Huang, J. Zha

As the number of smart objects using CoAP is expected
to grow substantially, the heterogeneous nature of CoAP
implementations requires interoperability. Although CoAP
drafts [1, 4, 6, 7] have emerged as common specifications,
they are not enough to guarantee the interoperability. It is
a known fact that, even if following the same standard, two
different devices might not be interoperable. Nevertheless,
in the context of the IoT, interoperability is particularly im-
portant to guarantee the successful collaboration of smart
objects.

In order that the CoAP interoperability issues be solved
before the deployment of the implementations, ETSI2 (the
European Telecommunication Standard Institute), together
with Probe-IT3 (the European project in the context of In-
ternet of things) organized the first formal CoAP plugtest
in Paris, France, March 20124. The objective of this pa-
per is to present our testing procedure and experience for
the CoAP Plugtest, which turned to be a successful event
due to our testing method and tool. The paper is organized
as follows: In section 2, the general overview CoAP pro-
tocol is presented. Section 3 introduces briefly the CoAP
Plugtest event. Section 4 presents the CoAP interoperabil-
ity testing, including the testing method and an associated
automatic analysis test validation tool based on the tech-
nique of passive testing [9,10]. The application of the test-
ing approach and the experimental results are exhibited in
section 5. Finally, section 6 gives the conclusions and the
perspectives.

2 COAP PROTOCOL OVERVIEW

Most Internet applications today depend on the Web ar-
chitecture, using HTTP (Hypertext Transfer Protocol) [8]
to access information and perform updates. HTTP is based
on Representational State Transfer (REST) [14], an archi-
tectural style that makes information available as resources
are identified by URIs (Uniform Resource Identifier): ap-
plications communicate by exchanging representations of
these resources by using a limited set of methods. This
paradigm is quickly becoming popular, even spreading to
Internet of Things applications, aiming at extending the
Web to constrained nodes and networks. In this context,
the IETF Constrained Application Protocol (CoAP) has
been designed, which is an application-layer protocol on
keeping in mind the various issues of constrained environ-
ment to realize interoperations with constrained networks
and nodes. CoAP adopts some HTTP patterns such as re-
source abstraction, URIs, RESTful interaction and extensi-
ble header options, but with a lower cost in terms of band-
width and implementation complexity.

2www.etsi.org/
3http://www.probe-it.eu/
4http://www.etsi.org/plugtests/coap/coap.htm

The interaction model of CoAP is similar to the
client/server model of HTTP. A CoAP request is sent by
a client to request an action on a resource identified by a
URI (Uniform Resource Identifier) on a server. The server
then sends a response, which may include a resource repre-
sentation. While HTTP targets for traditional IP networks,
CoAP targets for resource constrained networks such as
wireless sensor networks.

The architecture of CoAP is illustrated in Fig.1. Un-
like HTTP over TCP, CoAP operates over UDP in order to
lower the header overhead and parsing complexity as re-
quired by resource constrained devices. Within UDP pack-
ets, CoAP uses a short 4 bytes compact binary header fol-
lowed by a sequence of options. Besides, the use of UDP
also enables best-effort multicast.

CoAP uses a two-layer approach to support asyn-
chronous transaction: (i) CoAP transaction layer is used to
deal with UDP and the asynchronous nature of the interac-
tions. Within UDP packets, CoAP uses a four-byte binary
header, followed by a sequence of options. Four types of
messages are defined, which provide CoAP with a reliabil-
ity mechanism: Confirmable (CON, messages require ac-
knowledgment), Non-Confirmable (NON, messages do not
require acknowledgment), Acknowledgment (ACK, an ac-
knowledgment to a CON message), and Reset (RST, mes-
sages indicate that a Confirmable message was received,
but some context is missing to properly process it. eg. the
node has rebooted).

(ii) On top of CoAP’s transaction layer, CoAP Re-
quest/Response layer is responsible for the transmission of
requests and responses for resource manipulation and in-
teroperation. The familiar HTTP request methods are sup-
ported: GET retrieves the resource identified by the request
URI. POST requests the server to update/create a new re-
source under the requested URI. PUT requests that the re-
source identified by the request URI to be updated with
the enclosed message body. DELETE requests that the re-
source identified by the request URI to be deleted.

Slika 1. Protocol stack of HTTP and CoAP

CoAP supports built-in resource discovery, which al-
lows discovering and advertising the resources offered by
a device. A subscription option is provided for client to
request a notification whenever a resource changes.

AUTOMATIKA 54(2013) 4, 448–458 449

Ensuring Interoperability for the Internet of Things: Experience with CoAP Protocol Testing N. Chen, C. Viho, A. Baire, X. Huang, J. Zha

CoAP supports block wise transfer. Basic CoAP mes-
sages work well for the small payloads such as data from
temperature sensors, light switches, etc. Occasionally, ap-
plications need to transfer larger payloads – for instance,
for firmware updates. Instead of relying on IP fragmenta-
tion, CoAP is equipped with Block options to support the
transmission of large data by splitting the data into blocks.

Besides, CoAP also have other features like cacheabil-
ity, HTTP mapping, etc. These characteristics of CoAP
provide a flexible and versatile application framework. Al-
though CoAP is still a work in progress, many famous em-
bedded operating systems, e.g. Tiny OS5 and Contiki6,
have already released their CoAP implementations. It is
slated to become one of the most important ubiquitous ap-
plication protocols for the future Internet of Things.

3 COAP PLUGTEST

To ensure that protocol implementations work properly
and satisfy customer expectations, several testing meth-
ods such as conformance testing and interoperability test-
ing [15](iop for short in the sequel) have been deployed to
validate communication protocols before commercializa-
tion. Conformance testing [11] verifies whether a network
component conforms to its specification. It allows devel-
opers to focus on the fundamental problems of their pro-
tocol implementations. However, although conformance
testing increases the probability of interoperability, it can-
not guarantee interoperability. Conforming products may
not interoperate due to several reasons: poorly specified
protocol options, incompleteness of conformance testing,
etc. Nevertheless, with the rapid widespread commercial
adoption of complex and diverse IoT technologies, inter-
operability is essential for M2M applications to provide
cooperative services. Moreover, the large variety of proto-
cols, carrying different features, need different interoper-
ability testing events to verify their interoperability. To ef-
ficiently address these problems, the standards bodies and
industry forums arrange regular workshops and interoper-
ability testing events (e.g. IPSO Interoperability events7,
Tahi IPv6 Interoperability event8, etc.), where vendors may
test the interoperability of their equipments with other fel-
low industry participants.

As one of the most important protocol for the future
Internet of Things, the application of CoAP is wide, es-
pecially concerning energy, building automation and other
M2M applications that deal with manipulation of various
resources on constrained networks. For that CoAP applica-
tions be widely adopted by the industry, hardware and soft-

5http://www.tinyos.net/
6http://www.sics.se/contiki/
7http://www.ipso-alliance.org/category/events
8http://www.tahi.org/inop/6thinterop.html

ware implementations from different vendors need to in-
teroperate and perform well together. In this context, ETSI
and the European project Probe-IT, together with IPSO Al-
liance organized the first formal CoAP plugtest in Paris,
France in March 2012. The objectives of this events are to
get-together industry people to share their experiences, test
their equipments in order to make their products successful
in multi-vendor environment by achieving interoperability.

The work presented in this paper involves our main
contribution to the plugtest event, including testing method
and tool, which were successfully put into operation dur-
ing the CoAP plugtest. To the best of our knowledge, there
does not exist research works concerning CoAP interop-
erability testing. Moreover, The originality of the work
consists in:

• Contrary to the active testing method used in conven-
tional interoperability testing events, which is done
by actively stimulating the implementations and ver-
ifying the outputs, we apply the method of passive
testing. Passive testing is a testing technique based
only on observation. Its non-intrusive nature makes it
appropriate for interoperability testing in the context
of IoT.

• As IoT implies providing services in lossy networks,
we take into account interoperability testing of CoAP
implementations in lossy context.

• Contrary to manual verification used in conventional
interoperability testing events, the verification proce-
dure has been automated by a test validation tool,
which increases considerably the efficiency.

4 COAP INTEROPERABILITY TESTING –
METHOD AND TOOL

4.1 Testing method overview

In order to carry out CoAP interoperability testing, we
have defined a methodology (c.f. Fig.2): Regarding the
specifications of CoAP ([1,4,6,7]), a set of interoperability
test purposes have been selected. Each test purpose repre-
sents a critical property of CoAP that needs to be verified.
Once the test purposes are defined, a test case is derived for
each test purpose, which describes in detail the expected
behavior of the CoAP implementations to be observed.

Our testing method is based on passive testing for the
following arguments: First, passive testing does not dis-
turb the normal operation of the protocol implementations,
thus is suitable for interoperability testing in operational
environment. Also, passive testing does not introduce ex-
tra overhead into the networks, hence is appropriate in the

450 AUTOMATIKA 54(2013) 4, 448–458

Ensuring Interoperability for the Internet of Things: Experience with CoAP Protocol Testing N. Chen, C. Viho, A. Baire, X. Huang, J. Zha

resource-limited context of IoT. During the test, packets
exchanged between CoAP implementations (CoAP client
and CoAP server) are captured by a packet sniffer. Cap-
tured traces are analyzed against the test cases by using
a passive testing tool to evaluate the behavior of the im-
plementations w.r.t the given test purpose. And a verdict
Pass, Fail, or Inconclusive is issued. Respectively, verdict
Pass means the test purpose is verified without any fault
detected, Fail means at least one fault is detected, while
Inconclusive means the behavior of implementations is not
forbidden in the specifications, however does not corre-
spond to the test purpose.

Slika 2. CoAP interoperability testing procedure

4.2 Testing architectures

Two test configurations are defined and adopted in the
IoT CoAP Plugtest for different purposes. The basic test
architecture is illustrated in Fig.3-(a). It involves a Test
System (TS) and a system under test (SUT) composed of 2
CoAP implementations under test (IUT), namely a CoAP
client and a CoAP server. Since we apply the technique
of passive testing, a packet sniffer is used to capture the
packets (traces) exchanged between the IUTs.

Moreover, as CoAP is designed for constrained net-
works, which imply possible packet loss, we also need to
consider testing the interoperability of CoAP applications
in lossy environment. The corresponding architecture is
shown in Fig.3-(b): A UDP gateway is used in-between
the client and server to emulate a lossy medium.

4.3 CoAP interoperability test purposes

The first step to perform CoAP interoperability testing
is to define a set of CoAP interoperability test purposes
(ITP). An ITP is in general a statement, representing a crit-
ical property to be tested [5]. It allows focuing on the most
important properties of a protocol, especially the specifica-
tions of CoAP are still under work with continuous exten-
sion. To ensure that the ITPs are correct w.r.t the specifica-

Slika 3. CoAP interoperability testing architectures

tion, the ITPs were chosen and cross-validated by the ex-
perts from ETSI9, IRISA10 and Beijing University of Post
and Telecommunication11, and reviewed by IPSO alliance
to guarantee the correctness.

Regarding the specifications of CoAP protocol, the fol-
lowing aspects are considered, which cover the most im-
portant properties of CoAP:

• The basic CoAP protocol methods [1].

• CoRE Link Format for resource discovery [7].

• CoAP Block Transfer for transferring large resources
[6].

• CoAP Observation for pushing resource representa-
tions from servers to interested clients [4].

Concerning these aspects, a set of 27 test purposes were
defined. For each test purpose, a test scenario (test case) is
derived, describing in detail the behavior of the IUTs to be
verified.

4.3.1 Basic CoAP methods

This group of tests contains 16 test purposes that aim at
testing the basic transaction of the CoAP request/response
model in both reliable and lossy environment.

The fundamental CoAP methods interoperability tests
involve verifying that both client and server interact cor-
rectly according to [1] by using any of the methods GET,
POST, PUT, and DELETE. Specifically, it requires to ver-
ify that each request sent by the client contains the correct
method code and message type code (CON or NON). Upon
the reception of a request, the server sends piggybacked re-
ply accordingly: (i) if the request is confirmable, the server
must send an acknowledgment ACK. (ii) If the request is
non-confirmable, the server also sends a non-confirmable
reply.

9http://www.etsi.org/WebSite/homepage.aspx
10http://www.irisa.fr/
11http://www.bupt.edu.cn/

AUTOMATIKA 54(2013) 4, 448–458 451

Ensuring Interoperability for the Internet of Things: Experience with CoAP Protocol Testing N. Chen, C. Viho, A. Baire, X. Huang, J. Zha

Sometimes however, a server cannot obtain immedi-
ately the resource requested by the client. In this case, the
server will first send an acknowledgment with empty pay-
load, which effectively is a promise that the request will be
acted. When the server finally has obtained the resource
representation, it sends the response in a confirmable mode
to ensure that this message not be lost (cf. Fig.4-(b)).

Based on basic transactions, we have also chosen
three important options: (i) Token option: is used for re-
quest/response matching in asynchronous communication.
Specifically, every request that has a client-generated to-
ken must be echoed in any response. (ii) CoAP uses URI
schemes for identifying CoAP resources and locating re-
sources. In this work we choose to test that: for a client’s
request containing URI-Path or URI-Query options, the
server must be able to send a response message with the
correct message type and code in corresponding to the pre-
vious request, as well as the requested resource.

4.3.2 Link format

Link format is standardized in [7] for CoAP applica-
tions to realize resource discovery. The path prefix for
resource discovery is defined as /.well-known/core, which
can be accessed with a GET request on that URI. This
property involves 2 tests, aiming at verifying that: when
the client requests /.well-known/core resource, the server
sends a response containing the payload indicating all the
available links. Also, if the client is interested in specific
resources, it can filter the request using a query string. For
example GET /.well-known/core?rt=Temperature12 would
request only resources with the name Temperature.

4.3.3 Block-wise transfer

CoAP is based on datagram transports, which limits
the maximum size of resource representations (64 KB) that
can be transferred. In order to handle large payloads, [6]
defines a mechanism Block-wise transfer. It supports the
transmission of large data by splitting the data into blocks
for sending and manages the reassembly on the application
layer upon receipt.

This group of test purposes contains 4 tests that check
the main functionalities of CoAP block-wise transfer: (i) If
the client knows the large resource that it requires, it sends
a GET request containing Block option, indicating block
number and desired block size. In return, the server sends a
response containing the requested block number and size.
The transaction repeats until the client obtains the whole
resource. (ii) If a response generated by a resource handler

12rt: Resource type attribute. It is a noun describing the resource.

exceeds the client’s requested block size, the server au-
tomatically divides the response and transfer it in several
blocks. (iii) Similarly, block options also make it possible
for the client to update or create a large size resource on
the server, by using PUT and POST request respectively.
(cf. an example in Fig.4-(c))

4.3.4 CoAP Observe

As the representation of a resource on a server may
change from time to time, [4] defines a mechanism CoAP
Observe, an asynchronous approach to push information
from servers to interested clients over a period of time. The
interoperability testing of this property contains 5 tests to
check the main functionalities of resource observation: If a
client is interested in the current state of specific resource,
it can register its interest by issuing a GET request with an
Observe option to the resource. The server then keeps track
of the client and sends a notification whenever the observed
resource changes. If the client rejects a notification with a
RST message or when it performs a GET request without
an Observe option for a currently observed resource, the
server will remove the client from the list of observers for
this resource. And the client will no longer receive any up-
dated information about the resource. If a client wants to
receive notifications later, it needs to register again. An ex-
ample of observation registration and cancellation can be
found in Fig.4-(d).

4.3.5 Examples

The following figure demonstrates some typical ex-
amples of CoAP transactions. Fig.4-(a) illustrates a con-
firmable request sent by the client, asking for the resource
of humidity. Upon the reception of the request, the server
acknowledges the message, transferring the payload while
echoing the Message ID generated by the client. Fig.4-(b)
is an example of a separate response: When a CoAP server
receives a request which it is not able to handle immedi-
ately, it first acknowledges the reception of the message by
an acknowledgment with empty payload, and later sends
back a confirmable response in a separate manner. Fig.4-
(c) illustrate a block-wise transfer of a large payload (hu-
midity) requested by the client. Upon the reception, the
server divides the resource into 4 blocks and transfer them
separately to the client. Fig.4-(d) illustrates an example
of resource observation, including registration and cancel-
lation. At first, the client register its interest in humidity
resource by indicating Observe option. After a while, it
cancels its intention by sending another GET request on
the resource without Observe option.

452 AUTOMATIKA 54(2013) 4, 448–458

Ensuring Interoperability for the Internet of Things: Experience with CoAP Protocol Testing N. Chen, C. Viho, A. Baire, X. Huang, J. Zha

Slika 4. CoAP transaction examples

4.3.6 CoAP interoperability testing in lossy context

As CoAP protocol is designed for constrained networks
and nodes for M2M applications, where devices are gen-
erally low power, in consequence many packet losses will
occur. Therefore, an important aspect is to show that CoAP
application should still interoperate correctly even in lossy
context.

In CoAP Plugtest, we have chosen to test basic CoAP
confirmable GET method in lossy context: If a client sends
a request for a resource on a server, the server sends a pig-
gybacked response, or a separate response if it needs more
time to obtain the resource. As it involves lossy medium,
both request and response may lost. The client and server
must correctly retransmit the request and response if they
are lost.

4.4 CoAP interoperability test cases derivation

For each test purpose, a test case is derived. In our
work, each test case specifies the events that can lead to dif-
ferent verdicts: (i) the expected events to be observed that
allow satisfying the test purpose and consequently lead to
Pass verdict. (ii) Unexpected events that lead to Fail ver-
dict. (iii) Other behavior allowed by the specifications but
cannot satisfy the test purpose, thus leads to Inconclusive
verdict. The assignment of different verdicts is done by
studying carefully the specifications, and cross validated
by ETSI, IRISA, BUPT and IPSO Alliance. The test pur-
poses and test cases are described in natural language. An

example is given in Fig.5. Notice that due to space limita-
tion, in the description of test case we only list the expected
events that lead to Pass verdict. But behavior that leads to
all kinds of verdicts Pass, Fail and Inconclusive are im-
plemented (c.f. the buttom of Fig.5) for the sake of trace
verification, which will be described in the next section.

Slika 5. Test case example

4.5 Interoperability test execution: trace verification

In order to carry out CoAP interoperability testing, we
have proposed a testing method based on the technique of
passive testing. The packets exchanged (traces) between
the CoAP client and server are captured by a packet snif-
fer and stored in a file. They are key to conclude whether
CoAP devices interoperate.

In passive testing, one issue is that the test system has
no knowledge of the state where the system under test can
be in w.r.t a test case at the beginning of the trace due to
the uncontrollable nature of passive testing.

In order to handle this problem while realizing the trace
analysis, we propose a solution. In fact, each CoAP test
case contains the requests and responses made between
CoAP client and server, and always starts with a request
from the client. Therefore, a strategy is to filter the trace,
keeping only the request-response conversations made be-
tween CoAP applications under test. Then, the next step is
try to map the test cases into the conversations to identify
whether they occur in the trace. If it is the case, an ap-
propriate verdict will be emitted by comparing the events
specified in the test case and those in its corresponding
conversation(s) produced during the test. In detail, it in-
volves checking each event taken in order from the filtered
trace according to the following rules until the end of the
trace.

AUTOMATIKA 54(2013) 4, 448–458 453

Ensuring Interoperability for the Internet of Things: Experience with CoAP Protocol Testing N. Chen, C. Viho, A. Baire, X. Huang, J. Zha

Slika 6. CoAP Plugtest test bed

1. If the currently checked message is a CoAP request,
we check whether it corresponds to the first message
of (at least one of) the test cases in the test suite. If
it is the case, we call these test cases candidate test
cases and keep track of them. Moreover, the currently
checked state in each candidate test case is kept in
memory (noted Currently_checked_state).

2. If the currently checked message is a CoAP response,
we check if this response corresponds to an event of
each candidate test case at its currently checked state
(stored in Currently_checked_state). If it is the case,
we further check if this response leads to a verdict
Pass, Fail or Inconclusive specified in the test case. If
it is the case, the corresponding verdict is emitted to
the related test case. Otherwise we move to the next
state of the currently checked state in the correspond-
ing candidate test case, which can be reached by the
currently checked message in the trace. On the con-
trary, if the response does not correspond to any event
at the currently checked state in a candidate test case,
we remove this test case from the set of the candidate
test cases.

In order to emit an appropriate verdict for each test
case, during the trace examination procedure described
above, verdict assignment management is also performed
and described below:

1. Each test case is associated with a counter. This is
because in passive testing, a test case can be met sev-
eral times during the interactions between the client
and the server due to the non-controllable nature of
passive testing. The counter for each test case is ini-
tially set to zero. Each time a verdict is emitted for
a test case, the counter increments by 1. Also, a ver-
dict emitted for a test case each time when it is met
is recorded. All these obtained sub-verdicts will help
further assign a global verdict for this test case.

2. The global verdict for a test case is emitted by taking
into account all its sub-verdicts. A global verdict is
Pass if all its sub-verdicts are Pass. Inconclusive if
at least one sub-verdict is Inconclusive, but no sub-
verdict is Fail. Fail, if at least one sub-verdict is Fail.

The objective of this algorithm is to map each test case with
its corresponding conversation(s) made between CoAP ap-
plications. And, if the occurrence of a test case is verified,
a verdict is emitted, helping determining interoperability.

To realize trace verification, we have developed a pas-
sive testing tool, which aims to automate the process of
trace verification. A description of this tool is given in
Fig.6.

The tool is implemented in language Python313 mainly
13http://www.python.org/getit/releases/3.0/

454 AUTOMATIKA 54(2013) 4, 448–458

Ensuring Interoperability for the Internet of Things: Experience with CoAP Protocol Testing N. Chen, C. Viho, A. Baire, X. Huang, J. Zha

Slika 7. Passive testing trace verification tool

for its advantages: easy to understand, rapid prototyping
and extensive library. The tool is influenced by the widely
used testing tool TTCN-3 [16]. It implements basic TTCN-
3 snapshots, behavior trees, ports, timers, messages types,
templates, etc. However it provides several improvements,
for example object-oriented message types definitions, au-
tomatic computation of message values, interfaces for sup-
porting multiple input and presentation format, implement-
ing generic codecs to support a wide range of protocols,
etc. These features makes the tool flexible, allowing to re-
alize passive testing.

As illustrated in Fig.6, a web interface (HTTP frontend)
was developed. Traces produced by client and server im-
plementations of a protocol, captured by the packet sniffer
are submitted via the interface. Specifically in our work,
the traces should be submitted in pcap format14. Each time
a trace is submitted, it is then dealt by a preprossesor to
filter only the messages relevant to the CoAP protocol, i.e.,
to keep only the conversations made between the client and
server.

The next step is trace verification, which takes into two
files as input: the set of test cases and the filtered trace.
The trace is analyzed according to the trace analysis algo-
rithm, where test cases are verified on the trace to check
their occurrence and validity. Finally, unrelated test cases
are filtered out, while other test cases are associated with
a verdict Pass, Fail or Inconclusive. The results are then
reported from the HTTP frontend: Not only the verdict is
reported, also the reasons in case of Fail or Inconclusive
verdicts are explicitly given, so that users can understand
the blocking issues of interoperability.

5 EXPERIMENTATION IN COAP PLUGTEST

The interoperability approach proposed for CoAP pro-
tocol was applied in the CoAP Plugtest event held in Paris.
It was the first formal 2 day event held for CoAP protocol
in the scope of IoT, co-organized by ETSI, with technical
testing support of our team IRISA and BUPT on behalf of

14http://www.tcpdump.org/

the European project Probe-IT15, together with IPSO Al-
liance. The objective of the CoAP Plugtest is to enable
CoAP implementation developers to test end to end inter-
operability with each other. Also, it is an opportunity for
standards development organization to revise the ambigui-
ties in the protocol specifications. 15 developers and ven-
dors of CoAP implementations, such as Sensinode16, Wat-
teco17, Actility18, etc. participated in the event. Test ses-
sions are scheduled by ETSI so that each participant can
test their products with all the other partners.

During the test event, CoAP implementations from dif-
ferent vendors are interconnected in pair-wise combina-
tions. Figure 7 shows the test bed architecture provided
by ETSI for this event. Each company was given with a
hub to connect their implementations in the test bed. Com-
munication were routed using layer 2 and layer 3 switches
as shown in the figure 7.

A total of 27 test cases, concerning the basic CoAP
methods, Link format, Observation and Blockwise trans-
fer of CoAP protocol were served as test reference. In-
teroperability testing in lossy context was also realized by
implementing the UDP gateway (by BUPT) as shown in
Fig. 3-(b). In this configuration, a UDP gateway is used
in-between client and server to emulate a lossy medium.
The gateway does not implement the CoAP protocol itself
(It is not a CoAP proxy), but works at the transport layer.
The gateway plays the following roles:

• It performs NAT-style UDP port redirection towards
the server (thus the client contacts the gateway and is
transparently redirected towards the server).

• It randomly drops packets that are forwarded between
the client and the server. In Plugtest, the gateway
drops the packet randomly between client and server
which goes more than 50 % packet loss, correspond-
ing to the high loss rate in IoT environment.

5.1 Passive trace verification

During the test, the tool Wireshark19 was used to cap-
ture the packets changed by the CoAP applications. It pro-
duces pcaps file which contain the traces. Participants then
submit the traces to the trace validation tool. Once a pcap
file is submitted, a CoAP filtering is made using source IP
address and destination IP address to filter only the con-
versations made between the client and the server. When
the conversations are isolated, then trace verification is ex-
ecuted. A use case of the tool is as follows:

15http://www.probe-it.eu/
16http://www.sensinode.com/
17http://www.watteco.com/
18http://www.actility.com/
19http://www.wireshark.org/

AUTOMATIKA 54(2013) 4, 448–458 455

Ensuring Interoperability for the Internet of Things: Experience with CoAP Protocol Testing N. Chen, C. Viho, A. Baire, X. Huang, J. Zha

Slika 8. Passive testing trace verification tool

Figure.8 shows the web interface where pcap files
should be uploaded, as well as the test results found af-
ter uploading the pcap files and information on the results
obtained. The results for each test case are shown at the top
right corner in the summary table. In this table, the num-
ber of occurrence of each test case in the trace is counted,
as well as a verdict Pass, Fail or Inconc(lusive) is given
(or a test case which does not appear in the trace, it is
marked as “none” and will not be verified on the trace). In
this example, test case TD_COAP_CORE_1 (GET method
in CON mode) is met 7 times in the trace. The verdict
is Inconclusive, as explained by the tool: CoAP.code Val-
ueMismatch (cf. the bottom of Fig.8). In fact, according
to the test case, after that the client sends a request (with
Type value 0 and Code value 1 for a confirmable GET mes-
sage), the server should send a response containing Code
value 69(2.05 Content). However in the obtained trace, the
server’s response contains Code value 80(2.16), indicating
that the request is successfully received without further in-
formation. This response is allowed in the specification,
however does not satisfy the test case. In fact, the same sit-
uation exists in all the other conversations that correspond
to this test case. The global verdict is Inconclusive.

5.2 Results

The CoAP plugtest was a success with regards to the
number of executed tests (3143) and the test results (shown
in the sequel), as announced by ETSI. A total of 3081 tests
were executed during this two days event within 234 test
sessions. The feedback from participants on the testing
method and passive validation tool is positive, due to the
following results:

• To our knowledge, it is the first time that an interop-
erability event is conducted by passive testing. Con-
ventional interoperability events rely on active test-
ing, which is done by actively stimulating the imple-
mentations and verifying the corresponding outputs.

However, most of stimulation of these IUTs is man-
ual, which need the intervention of experts for instal-
lation, synchronization, etc., Besides, according to
our experience, active testing cause many false neg-
ative verdicts: most of Fail verdicts are in fact due
to the inappropriate network configuration, synchro-
nization and inappropriate IUTs configuration. Also,
the non-intrusive property of passive testing allows
discover interoperability issues in operational envi-
ronment, where the normal operations of the IUTs are
not disturbed.

• The automation of trace verification increases the ef-
ficiency. According to ETSI, most of the time (about
60%) of interoperability testing is spent on trace val-
idation, including verifying the results and looking at
the problems of unsuccessful tests with the help of
experts. Passive automated trace analysis allows to
considerably reduce the time. In consequence, within
the same time interval, the number of executed tests
are drastically increased. During the CoAP plugtest,
3081 tests were executed within two days. Compared
with past conventional plugtest event, e.g. IMS In-
terOp Plugtest20, 900 tests in 3 days, the number of
test execution and validation benefited a drastic in-
crease. The re-usability of the test cases implemented
by the tool also, will contribute to increasing effi-
ciency for future CoAP interoperability tests.

• The passive testing tool is easy to use. In fact, the
participants only need to submit their traces via a web
interface. Complicated test configuration is avoided.
The test reports provided by the validation tool makes
the reason of non-interoperable behavior be clear. Be-
sides, another advantage of the validation tool is that
it can be used outside of an interoperability event. (It
is hosted at http://senslab2.irisa.fr/coap/). In fact, the
participants started trying the tool one week before
the event by submitting more than 200 traces via In-
ternet. This allows the participants to prepare in ad-
vance the test event and to revise, if necessary, their
implementations.

• Moreover, the passive testing tool shows its capabil-
ity of non-interoperability detection (cf. the follow-
ing table): 5.9% show non-interoperability detected
w.r.t basic RESTful methods; 7.8% for Link Format,
13.4% for Block transfer and 4.3% for Observe. The
results help the vendors in uncovering the blocking
issues and achieving higher quality.

At present, we have used this tool to analyze traces
against the fondamental requirements of CoAP protocol.

20http://www.etsi.org/plugtests/ims2/About_IMS2.htm

456 AUTOMATIKA 54(2013) 4, 448–458

Ensuring Interoperability for the Internet of Things: Experience with CoAP Protocol Testing N. Chen, C. Viho, A. Baire, X. Huang, J. Zha

Executed Tests Non-interoperable
CoAP Methods 2798 166 (5.9%)

Link Format 77 6 (7.8%)
Block transfer 112 15 (13.4%)

Observe 94 4 (4.3%)
Total 3081 191 (6.2%)

Tablica 1. CoAP Plugtest Results

Works that deal with other test objectives are on progress
with the modification of CoAP standard. Future work will
also consider improve the test tool. e.g. online trace veri-
fication to monitor the network for a long time and report
abnormalities at any time. And graphical test case presen-
tation instead of imperative code will be considered.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced an approach for
the interoperability testing of CoAP protocol, including
the methodology, test architecture, tool implementation as
well as experimental results. The most important proper-
ties of CoAP protocols were defined as test purposes, and
verified by using the technique of passive testing. Trace
verification was automated by implementing a trace valida-
tion tool. The method and tool were put into operation dur-
ing the ETSI CoAP Plugtest event of March 2012 in Paris,
where an amount of tests were successfully performed.

Future work will consider how to improve the test
method in two main directions: (i) Due to the uncontrol-
lable nature of passive testing, Inconclusive verdicts are
emitted leading to rerunning the test or a post-analysis. So-
lutions to reduce Inconclusive verdicts are to be studied.
(ii) In this work, we have chosen to use offline trace verifi-
cation, i.e., traces are at first recorded and then processed.
Future work will consider online trace verification.

Literatura

[1] Z. Shelby, K. Hartke and B. Frank. Constrained application
protocol (CoAP), draft-ietf-core-coap-08, 2011.

[2] W. Colitti, K. Steenhaut, and N. De Caro. Integrating Wire-
less Sensor Networks with the Web, in Extending the In-
ternet to Low power and Lossy Networks (IP+SN 2011),
2011.

[3] L. Atzori, A. Iera, and G. Morabito. The Internet of Things:
A survey, Comput. Netw., vol. 54, pp. 2787–2805, 2010.

[4] K. Hartke. Observing Resources in CoAP, draft-ietf-core-
observe-04, 2012.

[5] S.Schulz, A.Wiles, and S.Randall. TPLan-A notation for
expressing test purposes. ETSI, TestCom/FATES, LNCS
4581, pp.292-304, 2007.

[6] C. Bormann and Z. Shelby. Blockwise transfers in CoAP.
draft-ietfcore- block-05, 2012.

[7] Z. Shelby. CoRE Link Format. draft-ietf-core-linkformat-
09, 2011.

[8] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach and T. Berners-Lee. Hypertext Transfer Protocol –
HTTP/1.1, 1999.

[9] F.Zaidi, A.Cavalli, and E.Bayse. Network Protocol Interop-
erability Testing based on Contextual Signatures. The 24th
Annual ACM Symposium on Applied Computing SAC’09,
Hawaii, USA, 2009.

[10] D.Lee, A.N.Netravali, K.K.Sabnani, B.Sugla, and A.John.
Passive testing and applications to network management. In
International Conference on Network Protocols, ICNP’97,
pages 113-122. IEEE Computer Society Press, 1997.

[11] ISO. Information Technology - Open System Interconnec-
tion Conformance Testing -Methodology and Framework,
Parts 1-7. International Standard ISO/IEC 9646/1-7,1994.

[12] A.Sabiguero, A.Baire, A.Boutet and C.Viho. Virtualized In-
teroperability Testing: Application to IPv6 Network Mobil-
ity. 18th IFIP/IEEE International Workshop on Distributed
Systems: Operations and Management, DSOM 2007, Pro-
ceedings; 01/2007, 2007.

[13] R.M.Fuhrer. Sequential Optimization of Asynchronous and
Synchronous Finite-State Machines, Ph.D. thesis, Depart-
ment of Computer Science, Columbia University, 1999.

[14] R.T.Fielding. Architectural Styles and the Design of
Network-based Software Architectures, Doctoral disserta-
tion, University of California, Irvine, 2000.

[15] A.Desmoulin, C.Viho. Automatic Interoperability Test
Case Generation Based on Formal Definitions. Lecture
Notes in Computer Science, vol 4916, pp. 234-250, 2008.

[16] A.Baire, C.Viho, and N.Chen. Long-term challenges in
TTCN-3 a prototype to explore new features and concepts,
ETSI TTCN-3 User Conference and Model Based Testing
Workshop Conference, 2012.

Nanxing Chen is currently a PHD student in the
research center IRISA, Rennes, France. Her re-
search interests focus on protocol interoperability
testing, especially passive testing.

AUTOMATIKA 54(2013) 4, 448–458 457

Ensuring Interoperability for the Internet of Things: Experience with CoAP Protocol Testing N. Chen, C. Viho, A. Baire, X. Huang, J. Zha

César Viho received his PhD diploma in com-
puter sciences from University of Bordeaux
(France) in 1991. Since 1992, he joined the
computer sciences department ISTIC of Univer-
sity of Rennes 1 (France), where he obtained his
HdR (Habilitation à diriger les Recherches) and
a Professor position in 2006. His research ac-
tivity is done in IRISA laboratory. Currently, he
is head of the Network, Telecommunication and
Services research department. His interests in-
clude interoperability testing, resource manage-

ment in wireless networks and real-time multimedia delivery over IP-
based networks. He participated in several European and international
projects and he published several papers on those topics.

Anthony Baire is a R&D engineer in the IRISA
research laboratory at the University of Rennes
since 2004. He has been involved in the devel-
opment of testing tools and in the organisation of
interoperability events.

Xiaohong Huang received her B.E. degree from
Beijing University of Posts and Telecommunica-
tions, Beijing, China, in 2000 and Ph.D. degree
from the school of Electrical and Electronic Engi-
neering (EEE), Nanyang Technological Univer-
sity, Singapore in 2005. Since 2005, Prof. Huang
has joined Network and Information Center at
Beijing University of Posts and Telecommuni-
cations. She is now an active research staff in
Network and Information Center in Beijing Uni-
versity of Posts and Telecommunications. She

has involved in several research projects, including National 973 project,
NSFC, Eu FP6-GO4IT, CNGI-CERNET2, CNGI-Access Grid, and so
on. Her current research interests are Future Internet architecture, Net-
work Traffic Identification, Network Measurement, Protocol testing and
so on.

Jiexi Zha is currently the master student at Bei-
jing University of Posts and Telecommunica-
tions, China. His research interests include pro-
tocol engineering, conformance testing and inter-
operability testing.

AUTHORS’ ADDRESSES
Nanxing Chen,
Prof. César Viho, Ph.D.
Anthony Baire,
IRISA (Institute for research in computer science and
random systems),
University of Rennes,
Campus de Beaulieu - 263 avenue du Général Leclerc, 35042
Rennes cedex
email: Cesar.Viho@irisa.fr
Xiaohong Huang, Ph.D.
Jiexi Zha,
Network and Information Center,
Beijing University of Posts and Telecommunications,
No 10, Xitucheng Road, Haidian District, Beijing, PRC,
100876

Received: 2012-11-10
Accepted: 2013-03-22

458 AUTOMATIKA 54(2013) 4, 448–458

