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In the extension of our previous work (Ref. 1), the average values of the Z-indices have been

computed for the simple and general graphs of the same size. Three results have been obtained:

(i) General graphs have always higher average values of the Z-indices than the corresponding

simple graphs, (ii) Replacement of the non-cut-edge of the graph with a loop increases the va-

lue of the Z-index, and (iii) The value of the Z-index of a path with a loop attached to its sec-

ond vertex is higher than or equal to the value of the Z-index of the cycle of the same size.
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INTRODUCTION

We noticed in our previous report1 that the loops and

multiple edges contribute to the value of the Hosoya Z-

-index.2 In that paper, the loops and multiple edges were

added to simple graphs and they were thus transformed

into general graphs. Simple (molecular) graphs are graphs

without loops and multiple edges.3 In general graphs,

loops and multiple edges are allowed.4 Note that a loop

is an edge joining a vertex to itself and a multiple edge

represents a connection between two vertices with more

than one edge. All the graphs that we consider are con-

nected.5 It should also be noted that in the case of graphs

with an even number of vertices, the last contribution to

the Z-index equals the number of spanning trees.6

The above transformation from simple to general

graphs resulted in an increase of the number of edges.

This increase in the value of the Z-index was evidently

the result of the size effect in terms of loops and multi-

ple edges. In this note, we investigate the behavior of the

Z-index when the size effect is avoided, that is, when

simple graphs and general graphs of the same size are

compared. Simple and general graphs of the same size

have the same number of vertices and edges.

NOTATIONS5,7

Let G be any graph. We denote by V(G) the set of verti-

ces of G and by E(G) the set of edges of G. Matching in

G is any set of independent edges in G.

Let ��V(G). Let G-� denote a subgraph of G obta-

ined by deletion of a vertex � and all its adjacent edges.

In addition, let dG(�) and NG(�) denote, respectively, the

degree and the set of neighbors of vertex � in G.

Let e�E(G). Let G-e denote a subgraph of G obtain-

ed by deletion of an edge e. Then the edge e is a cut-

-edge if G is connected and if G-e is not. Let CE(G) de-

note the set of cut-edges of G.
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Let e'�G. Let G+e' denote a graph obtained by adi-

tion of an edge e' to G and let Pn denote a path with n

vertices and by Cn the cycle with n vertices. Let also Pn,k

denote a path with n vertices with a single loop attached

to the k-th vertex of the path.

RESULTS AND DISCUSSION

The First Result

We first report a comparison of the Hosoya Z-indices for

simple graphs and several classes of general graphs of

the same size with 7 and 8 vertices and with the maxi-

mal vertex-degree 4. The considered classes of general

graphs are: (i) general graphs with a single loop, (ii) ge-

neral graphs with a single double edge, and (iii) general

graphs with a single loop and a single double edge. Illus-

trative examples of these classes of general graphs and

the corresponding simple graphs are given in Figure 1.

Table I gives the numbers of the considered graphs

with 7 vertices and Table II the graphs with 8 vertices.

These numbers have been obtained by the computer pro-

gram given in the Appendix.

In the following two tables, we compare the values

of average Z-indices for the graphs with the same number

of vertices and edges. In Table III, we consider graphs

with 7 vertices and in Table IV graphs with 8 vertices.

Average values of the Z-indices have been also obtained

by the computer program given in the Appendix.

From Tables III and IV, it is readily seen that the ex-

istence of loops and double bonds increases the value of

the Z-index following the transformation from simple

graphs into general graphs of the same size. Thus, the

statement expressed in Ref. 1 has a much stronger sig-

nificance.
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Figure 1. Examples of a simple graph (A) and of a general graph
with a single loop (B), with a single double edge (C) and with a
single loop and a single double edge (D) with 7 vertices and 8
edges and the maximal vertex-degree 4.

TABLE I. Numbers of graphs with 7 vertices, the maximal vertex-degree 4 and the prescribed number of edges

Number

of edges

Number of

simple graphs

Number of general graphs

with a single loop

Number of general graphs

with a single double edge

Number of general graphs with a

single loop and a single double edge

6 9 0 0 0

7 29 52 28 0

8 56 151 109 135

9 79 242 214 455

10 79 261 263 719

11 59 183 209 643

12 31 87 101 324

13 9 24 28 78

14 2 2 3 6

TABLE II. Numbers of graphs with 8 vertices, the maximal vertex-degree 4 and the prescribed number of edges

Number

of edges

Number of

simple graphs

Number of general graphs

with a single loop

Number of general graphs

with a single double edge

Number of general graphs with a

single loop and a single double edge

7 18 0 0 0

8 73 116 67 0

9 182 427 324 373

10 326 910 817 1580

11 430 1320 1344 3326

12 427 1332 1520 4267

13 298 943 1153 3466

14 134 420 542 1661

15 35 97 128 383

16 6 7 10 23



The Second Result

In this section, we prove that the value of the Z-index of

a path with a single loop is higher or equal to the value

of the Z-index of a cycle of the same size.

Note that Z(P1)=1, Z(P2)=2 and that Z(Pn+2) = Z(Pn+1)+

Z(Pn). Solving the recurrent relation, we obtain:

Proposition 1. –

Z(Pn) =
5 3 5
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Substituting pi = Z(Pi) and p0 = 1, and noting that pi+2 =

pi+1 + pi for each i � 2, we prove the following theorem.

Theorem 2. – Z(Cn) � Z(Pn,k) for each n � 3, k 
 n and k

� 2, n – 1. For k = 2, n – 1, we have Z(Cn) = Z(Pn,k).

Proof. Note that Pn,k � Pn,n+1–k. Hence, Z(Pn,k) =

Z (Pn,n+1–k). Therefore, we may assume that k 
 n/2. Dis-

tinguish three cases:

CASE 1: n = 1

Z(Pn,1) = 2pn–1 + pn–2 � pn–1 + 2pn–2 = Z(Cn).

CASE 2: n = 2

Z(Pn,2) = 3pn–2 + pn–3 = 2pn–2 + (pn–2 + pn–3) = 2pn–2 +

pn–1 = Z(Cn).

CASE 3: n � 3

Z(Pn,k) = 2pk–1 pn–k + pk–1 pn–k–1 + pk–2 pn–k = 2pk–1(pn–k–1+

pn–k–2) + pk–1 pn–k–1 + pk–2(pn–k–1+pn–k–2) = pk–1 pn–k–1 +

pk–2 pn–k–1 + pk–2 pn–k–2 + 2pk–1 pn–k–2 + 2pk–1 pn–k–1 =

pk–1 pn–k–1 + pk–2 pn–k–1 + pk–2 pn–k–2 + 2pk–1 pn–k–2 + 2pk–1

(pn–k–2 + pn–k–3) = pk–1 pn–k–1 + pk–2 pn–k–1 + pk–2 pn–k–2 +

3pk–1 pn–k–2 + 2pk–1 pn–k–3 + pk–1 pn–k–2 = pk–1 pn–k–1 +

pk–2 pn–k–1 + pk–2 pn–k–2 + 3pk–1 pn–k–2 + 2pk–1 pn–k–3 + (pk–2+

pk–3) pn–k–2 = (pk–1 pn–k–1 + pk–2 pn–k–1 + pk–1 pn–k–2) +

2(pk–1 pn–k–2 + pk–1 pn–k–3 + pk–2 pn–2–k) + pk–3 pn–k–2 = pn–1+

2pn–2 + pk–3 pn–k–2 = Z(Cn) + pk–3 pn–k–2 � Z(Cn)

This proves the theorem. �
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TABLE III. Average values of the Z-indices of graphs with 7 vertices, the maximal vertex-degree 4 and the prescribed number of edges

Number

of edges

Average values

of the Z-indices

for simple graphs

Average values of the

Z-indices for the general

graphs with a single loop

Average values of the Z-indices

for the general graphs with a

single double edge

Average values of the Z-indices for

the general graphs with a single

loop and a single double edge

6 17.0000 not defined not defined not defined

7 22.6897 27.1346 22.7143 not defined

8 29.1786 35.6358 29.6697 36.2667

9 36.6962 45.4298 37.8131 46.5846

10 45.7215 56.8544 47.2471 58.7330

11 56.2881 70.3333 58.4737 72.8694

12 68.8710 85.9310 71.6436 89.3426

13 83.5556 103.7500 86.5714 108.2051

14 99.5000 124.0000 103.3333 129.0000

TABLE IV. Average values of the Z-indices of graphs with 8 vertices, the maximal vertex-degree 4 and the prescribed number of edges

Number

of edges

Average values

of the Z-indices

for simple graphs

Average values of the

Z-indices for the general

graphs with a single loop

Average values of the Z-indices

for the general graphs with a

single double edge

Average values of the Z-indices for

the general graphs with a single

loop and a single double edge

7 26.2222 not defined not defined not defined

8 35.1233 41.9138 35.4328 not defined

9 45.3022 55.2998 46.1728 56.3941

10 57.2607 70.7681 58.9070 72.6165

11 71.7093 88.9818 74.0573 91.8545

12 89.0211 110.7793 92.2296 114.6703

13 109.5503 136.5143 113.8725 141.8009

14 134.0000 166.7119 139.1771 173.5707

15 162.4000 201.7423 168.2344 209.7311

16 195.8333 241.7143 199.8000 249.3043



The Third Result

In this section, we prove that replacing the non-cut-edge

of a graph with a loop increases the value of the Z-index.

We start our proof with an auxiliary lemma:

Lemma 3. – Let G be a graph and let ��V(G) such that

dG(�) � 1. Then, Z(G) � Z(G–�)

Proof. Denote by u an arbitrary neighboring vertex of �.

Note that each matching of G–� is matching in G, but

each matching in G that contains edge u� is not match-

ing in G–� (it is not even a subgraph of G–�). �

Theorem 4. – Let G be a connected graph and let u� �
E(G) \ CE(G). Then, Z(G – u� + ��) � Z(G).

Proof. Denote NG(�) = �u,u2,u3…,u
dG ( )n

�. We need to

prove that Z(G – u� + ��) – Z(G) � 0. We have:
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. (1)

Note that (G – u� + ��) – ui – � = G – ui – � for each i =

2,…dG(�) and that (G – u� + ��) – � = G – �. Hence, the

relation (1) reduces to

Z(G – u� + ��) – Z(G) = Z((G – u� + ��) – �) –

Z(G – u – �) = Z(G – �) – Z(G – u – �) �
�from the previous Lemma� � 0.

This proves the theorem.�

CONCLUDING REMARKS

We found again that general graphs, that is, graphs with

loops and multiple edges have a higher value of the Z-

index. This indicates that the statement expressed in Ref.

1 has a much stronger significance and is not just a con-

sequence of the increase in the number of edges. As the

first result, we demonstrated this on the families of con-

nected graphs with 7 and 8 vertices and with the maxi-

mal vertex-degree 4, and with the prescribed number of

edges. As the second result, we proved that the value of

Z-index of a path with a single loop is higher or equal to

the value of Z-index of the cycle with the same number

of vertices and, as the third result, we proved that replac-

ing the non-cut-edge of graph with a loop increases the

value of Z-index. We have also shown that this equality

holds only if the loop is attached to the second vertex

(counting from any end-vertex of the path).

Acknowledgement. – We thank the Ministry of Science,
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APPENDIX

Description of the Computer Program

The number of vertices n is the input data while the out-

put data are:

(i) The average value of the Z-index of the simple

connected graph with n vertices with the maximal de-

gree at most 4, and with the prescribed number of edges

�
�

�
�

�

�
	

NumMatchesSimpleGraphs

NumSimpleGraphs
.

(ii) The average value of Z-index of the connected

graph with n vertices and with the maximal vertex-de-

gree at most 4, and with a single loop and without dou-

ble edges, and with the prescribed number of edges

�
�

�
�

�

�
	

NumMatchesLoopGraphs

NumLoopGraphs
.

(iii) The average value of the Z-index of the connected

graph with n vertices and with the maximal vertex-de-

gree at most 4, with a single double edge and without

loops, and with the prescribed number of edges

�
�

�
�

�

�
	

NumMatchesDBGraphs

NumDBGraphs
.

(iv) The average value of the Z-index of the connect-

ed graph with n vertices and with the maximal vertex-

-degree at most 4, with a single double edge and a single

loop, and with the prescribed number of edges

�
�

�
�

�

�
	

NumMatchesLoopDBGraphs

NumLoopDBGraphs
.

For each matrix M, the Z-index of the graph that corre-

sponds to matrix M is denoted by ZM (M)

At the start of the program, we set the values of

NumMatchesSimpleGraphs, NumSimpleGraphs, NumMa-

tchesLoopGraphs, NumLoopGraphs, NumMatchesDBG-

Graphs, NumDBGGraphs, NumMatchesLoopDBGGraphs

and NumLoopDBGGraphs to zero. These eight values

are calculated in three iterations. The first iteration is

concerned with graphs whose simple underlying graph

has the maximal vertex-degree MaxDeg = 2, the second

iteration is concerned with graphs whose simple under-

lying graph has the maximal vertex-degree, MaxDeg = 3

and the third iteration is concerned with graphs whose

simple underlying graph has the maximal vertex-degree

MaxDeg = 4.

At start, we consider the set M1 of matrices A = �aij�
of type n  n such that a1i = ai1 = 1, for each i = 2,…,

MaxDeg + 1 and such that a
ij

i

n

�
�

1


 MaxDeg for each j =
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1,…,n and a
ji

i

n

�
�

1


 MaxDeg for each i, j = 1,…,n. Note

that in set M1 there are duplicates, i.e., there are matrices

that correspond to isomorphic graphs. By eliminating

these duplicates, we reach the set M2. Since we are only

interested in the connected graphs that represent mole-

cules, in the next step we eliminate all matrices that cor-

respond to disconnected graphs. In such a way, we get

the set of matrices M3. Now, for each matrix M in M3

we perform the following calculations:

1) Find Aut (M) the set of all automorphisms of a

graph that correspond to matrix M.

2) Increase NumSimpleGraphs by 1 and NumMatch-

esSimpleGraphs by ZM (M).

3) Let L1 (M) be the set of all graphs obtained by

adding one loop to a single vertex in such a way that the

maximal vertex-degree of the corresponding graph does

not exceed 4. Using Aut (M), we eliminate all duplicates

from L1 (M). In this way, we obtain L2 (M). For each

matrix M' � L2 (M), NumLoopGraphs increases by 1

and NumMatchesLoopGraphs by ZM (M').

4) Let D1 (M) be the set of all graphs obtained by re-

placing one edge by a double bond in such a way that

the maximal vertex-degree in the corresponding graph does

not exceed 4. Using Aut (M), we eliminate all duplicates

from D1 (M). In this way, we obtain D2 (M). For each

matrix M' � D2 (M), NumDBGGraphs increases by 1

and NumMatchesDBGGraphs by ZM (M').

5) Let LD1 (M) be the set of all graphs obtained by

replacing one edge by a double edge and adding a single

loop in such a way that the maximal vertex-degree in the

corresponding graph does not exceed 4. Using Aut (M),

we eliminate all duplicates from LD1 (M). In this way,

we obtain LD2 (M). For each matrix M' � LD2 (M), Num-

LoopDBGGraphs increases by 1 and NumMatchesLoop-

DBGGraphs by ZM (M').

Finally, at the end of the program, the values

�
�

�
�

�

�
	

NumMatchesSimpleGraphs

NumSimpleGraphs
,

�
�

�
�

�

�
	

NumMatchesLoopGraphs

NumLoopGraphs
,

�
�

�
�

�

�
	

NumMatchesDBGraphs

NumDBGraphs
, and

�
�

�
�

�

�
	

NumMatchesLoopDBGraphs

NumLoopDBGraphs
are outputted.
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SA@ETAK

Usporedba Hosoyina Z-indeksa za jednostavne i op}e grafove iste veli~ine

Damir Vuki~evi} i Nenad Trinajsti}

Ovaj se ~lanak nadovezuje na ~lanak (vidi referenciju 1) u kojem su prosje~ne vrijednosti Z-indeksa bile

izra~unane za jednostavne i op}e grafove razli~ite veli~ine. U ovom su ~lanku prosje~ne vrijednosti Z-indeksa

izra~unane za jednostavne i op}e grafove iste veli~ine. Tri su rezultata dobivena: (i) op}i grafovi imaju ve}e

vrijednosti Z-indeksa od odgovaraju}ih jednostavnih grafova, (ii) zamjena brida s petljom pove}ava vrijednost

Z-indeksa i (iii) vrijednost Z-indeksa staze s petljom na drugom ~voru ve}a je ili jednaka vrijednosti Z-indeksa

ciklusa iste veli~ine.
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