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Summary 

An outline of the Timoshenko beam theory is presented. Two differential equations of 
motion in terms of deflection and cross-section rotation are comprised in one equation and 
analytical expressions for displacements and sectional forces are given. Two different 
displacement fields are recognized, i.e. flexural and axial shear, and a modified beam theory 
with extension is worked out. Flexural and axial shear locking-free beam finite elements are 
developed. Reliability of the finite elements is demonstrated with numerical examples for a 
simply supported, clamped and free beam by comparing the obtained results with analytical 
solutions. 

Key words: Timoshenko beam theory, modified beam theory, flexural vibrations,  
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1. Introduction 

Beam is used as a structural element in many engineering structures like frames and 
grillages. Also, the whole structure can be modelled as a beam to some extent, e.g. ship hulls, 
floating airports, etc. The Euler-Bernoulli theory is widely used for the simulation of slender 
beam behaviour. The theory for thick beam was extended by Timoshenko [1] in order to take 
the effect of shear into account. The shear effect is extremely strong in higher vibration modes 
due to the reduced mode half wave length. 

The Timoshenko beam theory deals with two differential equations of motion in terms 
of deflection and cross-section rotation. Most papers use this theory, while a possibility to use 
only one equation in terms of deflection has been recognized recently [2,3]. 

The Timoshenko beam theory has come into focus with the development of the finite 
element method and its application in practice. A large number of finite elements have been 
worked out in the last decades [4-13]. They differ in the choice of interpolation functions for a 
mathematical description of deflection and rotation. The application of equal order 
polynomials leads to the so-called shear locking since the bending strain energy for a thin 
beam vanishes before the shear strain energy [6,11]. Various approaches have been developed 
in order to overcome this problem, but a unique solution has not been found yet [11]. The 
problem is partially solved by some approaches such as the Reduced Integration Element 
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(RIE), the Consistent Interpolation Element (CIE), and the Interdependent Interpolation 
Element (IIE), which are described in [12,13,14]. 

The above short description of the state of the art has motivated further investigation 
into this challenging problem. First, a physical aspect of the Timoshenko beam theory is 
analysed. It is found that actually two different displacement fields are hidden in the beam 
deflection and rotation, i.e. pure bending with transverse shear on one hand, and axial shear 
on the other. The latter is analogous to the bar stretching on an axial elastic support. The 
cross-section rotation and the axial shear slope are treated in the Timoshenko beam theory as 
one variable since they have the same stiffness in the analytical formulation. Understanding of 
the beam dynamic behaviour makes the development of modified beam theory possible, 
which would be as exact as the Timoshenko beam theory. 

Based on the modified Timoshenko theory, a two-node beam finite element is 
developed by taking a static solution for interpolation functions. Also, a beam element is 
derived for axial shear vibrations. Both elements are shear locking-free. Illustrative examples 
are given and the obtained results are compared with those obtained in an analytical way. 

2. Timoshenko beam theory 

2.1 Basic equations 

The Timoshenko beam theory deals with the beam deflection and angle of rotation of 
cross-section, w  and  , respectively [1]. The sectional forces, i.e. bending moment and shear 
force, read 

,
w

M D Q S
x x

        
     , (1) 

where D=EI is the flexural rigidity and S=kGA is the shear rigidity, A is the cross-section area 
and I is its moment of inertia, k is the shear coefficient, and E is Young's modulus and 

  / 2 1G E    is the shear modulus. The value of shear coefficient depends on the beam 

cross-section profile, [15] and [16]. Stiffness properties for a complex thin-walled girder are 
determined by the strip element method [17]. 

The beam is loaded with transverse inertia load per unit length, and the distributed 
bending moment is expressed as 

2 2

2 2
,x x

w
q m m J

t t

 
  

 
     , (2) 

where m A  is the specific mass per unit length and J I  is its moment of inertia. 

The equilibrium of moments and forces 

,x x

M Q
Q m q

x x

 
   

 
      (3) 

leads to two differential equations 

2 2

2 2
0

w
D S J

x x t

           
 (4) 

2 2

2 2
0

w w
S m

x x t

   
      

. (5) 
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From equation (5) one obtains 

2 2

2 2

w m w

x x S t

  
  

  
 (6) 

and by substituting (6) into (4) differentiated by x, one obtains the beam differential equation 
of motion 

4 4 2 2

4 2 2 2 2
0

w J m w m J w
w

x D S x t D t S t

                   
. (7) 

Once (7) is solved, the angle of rotation is obtained from (6) as 

 
2

2
d

w m w
x f t

x S t
  
   

  , (8) 

where  f t  is the rigid body motion. 

If w is extracted from (4) and substituted into (5), the same type of differential equation 
as (7) is obtained for  , and as (8) for w. 

2.2 General solution to natural vibrations 

In natural vibrations sinw W t  and sinΨ t  , and Eqs. (7) and (8) are reduced to 
the vibration amplitudes 

4 2
2 2 2

4 2

d d
1 0

d d

W J m W m J
W

x D S x D S
            

   
 (9) 

2d
d

d

W m
Ψ W x C

x S
    . (10) 

A solution to (9) can be assumed in the form xW Ae  that leads to a biquadratic equation 

4 2 0a b    , (11) 

where  

2 2 2, 1
J m m J

a b
D S D S

           
   

     . (12) 

Roots of (11) read 

, , ,i i       , (13) 

where 1i    and 

2

2

4

2

m J m m J

S D D S D




          
   

 (14) 

2

2

4

2

m J m m J

S D D S D




          
   

. (15) 
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Deflection function with its derivatives and the first integral can be presented in the matrix 
form 

1

2 2 2 2
2

3 3 3 3
3

4

sin cos

cos sin

sin cos

cos sin

1 1 1 1
cos sind

sh x ch x x xW
Ach x sh x x xW
Ash x ch x x xW
Ach x sh x x xW
A

ch x sh x x xW x

   
       
       
       

   
   

                            
            

. (16) 

According to the solution to equations (9), (10) and (1), beam displacements and forces read 

1 2 3 4sin cosW A sh x A ch x A x A x        (17) 
2 2

1 22 2

2 2

3 42 2

1 1

1 cos 1 sin

m m
Ψ A ch x A sh x

S S

m m
A x A x

S S

    
 

    
 

   
       

   
   

       
    

   

 (18) 

   2 2 2 2
1 2 3 4sin cos

m m
M D A sh x A ch x A x A x

S S
                         

 (19) 

 
2

1 2 3 4cos sin
m

Q A ch x A sh x A x A x
        


     . (20) 

Relative values of constants ,iA  1,2,3,4,i   are determined by satisfying four boundary 

conditions. Since there is no additional condition constant, C in (10) is ignored. 

Coefficient  , Eq. (14), can be zero, in which case 0 /S J   and 

   0 / /S D m J   . Deflection function according to (17) takes the form 

1 2 3 0 4 0sin cosW A x A A x A x     , (21) 

where the first two terms describe the rigid body motion. If 0  , then i   , where 

2

2

4

2

m J m J m

S D S D D




          
   

  (22) 

and the deflection function reads 

1 2 3 4sin cos sin cosW A x A x A x A x        . (23) 

Expressions for displacements and forces, Eqs (17-20), have to be transformed accordingly. 
Hence, cosch x x   , sinsh x i x    (an imaginary unit is included in constant 1A ), 

2 2    , instead of a single factor   it is necessary to write  , and finally all functions 
associated with 1A  and 2A  must have the same sign as those associated with 3A  and 4A . 

4 TRANSACTIONS OF FAMENA XXXVII-4 (2013)



A Shear Locking-Free Beam Finite Element  I. Senjanović, N. Vladimir, D.S. Cho 
Based on the Modified Timoshenko Beam Theory 

The above analysis shows that the beam has a lower and higher frequency spectral 
response, and a transition one. Frequency spectra are shifted for the threshold frequency 0 . 

This problem is also investigated in [2,18]. The basic differential equations (4) and (5) are 
solved in [19] by assuming a solution in the form xw Ae  and xBe  , and the same 
expressions for displacements (17) and (18) are obtained. 

3. Modified beam theory 

3.1 Differential equations of motion 

Beam deflection w and the angle of rotation   are split into their constitutive parts, Fig. 1, 

, , ,b
b s

w
w w w

x
    

     


           (24) 

 

 

Fig. 1  Thick beam displacements: a – total deflection and rotation w, ψ, b – pure bending deflection and  
rotation wb, φ, c – transverse shear deflection ws, d – axial shear angle ϑ 

where bw  and sw  are the beam deflections due to pure bending and transverse shear, 

respectively, and   is the angle of cross-section rotation due to bending, while   is the cross-
section slope due to axial shear. Equilibrium equations (4) and (5) can be presented in the 
form with separated variables bw  and sw , and   

3 2 2 2

3 2 2 2
b b sw w w

D J S D S J
x t x x x t

                  
 (25) 

 
2 2

2 2
s

b s

w
S m w w S

x t x

  
   

  
. (26) 

Since only two equations are available for three variables, one can assume that flexural and 
axial shear displacement fields are not coupled. In that case, by setting both the left and the 
right hand side of (25) to zero, it follows that  
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2 2

2 2
b b

s

D w J w
w

S x S t

 
  

 
. (27) 

By substituting (27) into (26) differential equation for flexural vibrations is obtained, which is 
expressed by a pure bending deflection 

4 4 2 2

4 2 2 2 2
b b b

b

w J m w m J w S
w

x D S x t D t S t D x

                     
. (28) 

Disturbing function on the right hand side in (28) can be ignored due to the assumed 
uncoupling. Once bw  is determined, the total beam deflection, according to (24), reads 

2 2

2 2
b b

b

D w J w
w w

S x S t

 
  

 
. (29) 

The right hand side of (25) represents a differential equation of axial shear vibrations 

2 2

2 2
0

S J

x D D t

  
  

 
. (30) 

3.2 General solution to flexural natural vibrations 

Natural vibrations are harmonic, i.e. sinb bw W t  and sinΘ t  , so that equations 

of motion (28) and (30) are related to the vibration amplitudes 

4 2
2 2 2

4 2

d d
1 0

d d
b b

b

W J m W m J
W

x D S x D S
            

   
 (31) 

2
2

2

d
1 0

d

Θ S J
Θ

x D S
    
 

. (32) 

The amplitude of total deflection, according to (29), reads 

2
2

2

d
1

d
b

b

J D W
W W

S S x
    

 
. (33) 

Eq. (31) is known in literature as an approximate alternative of Timoshenko’s 
differential equations, [3,20]. 

By comparing (31) with (9), it is obvious that the differential equation of flexural 
vibrations of the modified beam theory is of the same structure as that of the Timoshenko 
beam theory, but they are related to different variables, i.e. to W  and bW  deflection, 

respectively. Therefore, the general solution for W  presented in Section 2.2 is valid for bW  

with all derivatives. In that case, flexural displacements and sectional forces read 

2 2 2 2
1 2

2 2 2 2
3 4

1 1

1 sin 1 cos

J D J D
W B sh x B ch x

S S S S

J D J D
B x B x

S S S S

     

     

           
   
           
   

   

 (34) 

 1 2 3 4

d
cos sin

d
bW

Φ B ch x B sh x B x B x
x

               (35) 
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 
2

2 2 2 2
1 2 3 42

d
sin cos

d
bW

M D D B sh x B ch x B x B x
x

               (36) 

3
2 2 2 2 2

1 23

2 2 2 2
3 4

d d

d d

cos sin .

b bW W J J
Q D J D B ch x B sh x

x x D D

J J
B x B x

D D

        

       

                   
              

   

 (37) 

Parameters   and   are specified in Section 2.2, Eqs (14) and (15), respectively. 

In this case, parameter   can also be zero, which gives 0 /S J   and 

   0 / /S D m J   . By taking this fact into account, the bending deflection bW  is of the 

form (21), while the total deflection according to (43), reads 

 2
1 2 0 3 0 4 0sin cos

D
W B x B B x B x

S
       , (38) 

where 1B  and 2B  are the new integration constants instead of B1 and B2, which are infinite 

due to zero coefficients. 

Concerning the higher order frequency spectrum, the governing expressions for 
displacements and forces, Eqs. (34-37), have to be transformed in the same manner as 
explained in Section 2.2. 

3.3 General solution to axial shear natural vibrations 

Differential equation (32) for natural axial shear vibrations of beam reads 

2
2

2

d
0

d

Θ J S
Θ

x D D
    
 

. (39) 

It is similar to the equation for rod stretching vibrations 

2
2

2

d
0

d R

u m
u

x EA
  . (40) 

The difference is in the additional moment SΘ  which is associated to the inertia moment 
2JΘ  and represents the reaction of an imaginary rotational elastic foundation with stiffness 

equal to the shear stiffness S, as shown in Fig. 2. 

 

Fig. 2  Analogy between an axial shear model and a stretching model 
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Solution to (40) and a corresponding axial force 
d

d

u
N EA

x
  read 

1 2sin cosu C x C x    (41) 

 1 2cos sinN EA C x C x     , (42) 

where  /R m EA  . Based on the analogy between (39) and (40), for the shear slope 

angle and moment one can write 

1 2sin cosΘ C x C x    (43) 

 1 2cos sinM D C x C x     , (44) 

where 

2 J S

D D
   . (45) 

Between the natural frequencies of axial shear beam vibrations and stretching vibrations 

there is a relation 2 2 2
0 R    , where 0 /S J   belongs to the axial shear mode obtained 

from (39), 0 1Θ A A x  , (which reminds us of a sheared set of playing cards). It is interesting 

that 0  is at the same time the threshold frequency of flexural vibrations, as explained in 

Section 2.2. 

4. Comparison between the Timoshenko beam theory and the new theory 

4.1 Dynamic response 

As elaborated in Section 2.1, the Timoshenko beam theory deals with two differential 
equations of motion with two basic variables, i.e. deflection and the angle of rotation. That 
system is reduced to a single equation in terms of deflection and all physical quantities 
depend on its solution. On the other hand, in the modified beam theory, Section 3.1, the total 
deflection is divided into the pure bending deflection and the shear deflection, while the total 
angle of rotation consists of pure bending rotation and axial shear angle. The governing 
equations are condensed into a single one for flexural vibrations with the bending deflection 
as the main variable and another variable for axial shear vibrations. Differential equations for 
flexural vibrations in both theories are of the same structure, Eqs. (9) and (31), resulting in the 
same hyperbolic and trigonometric functions in the solution for W and Wb. However, 
expressions for displacements and forces are different due to different coefficients associated 
to the integration constants. 

In order to obtain the same expressions for displacements and forces in both theories, the 
following relations between the constants, based on identical deflections, Eqs. (17) and (34), 
should exist 

2 21 , 1,2i i

J D
A B i

S S
      

 
      (46) 

2 21 , 3,4i i

J D
A B i

S S
      

 
     . (47) 

Indeed, if relations (46) and (47) are substituted into Eqs. (18), (19) and (20), and if 
expressions (14) and (15) for   and   are taken into account, expressions (18), (19), and 
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(20) become identical to (35), (36), and (37). For illustration, let us check the identity of the 
first terms in expressions for shear forces, Eqs. (20) and (37) 

2
2 2

1 1

m J
A D B

D

   


   
 

. (48) 

By taking (46) into account, (48) can be presented in the form 

2 2 2 2 2 21
J D J

m
S S D

              
   

. (49) 

If (14) is substituted for  , relation (49) is satisfied. 

Based on the above fact, flexural vibrations determined by the Timoshenko beam theory 
and its modification are identical. Therefore, axial shear vibrations, extracted from the 
Timoshenko beam theory, are not coupled with flexural vibrations, as assumed in Section 3.1. 

4.2 Static response 

One expects that expressions for static displacements can be obtained straightforwardly 
by deducting dynamic expressions. In the case of the Timoshenko beam theory, the static term 

of Eq. (9) leads to 2 3
0 1 2 3W A A x A x A x    , and Eq. (10) gives  3

1 2 32 3Ψ A A x A x    . 

That results in the zero shear force Q, Eq. (1), which is also obvious from (20) if 0   is 
taken into account. Therefore, in order to overcome this problem, it is necessary to return 

back to Eqs (4) and (5) with static terms. By substituting (5) into (4), 3 3d / d 0D Ψ x  , i.e. 

 3
1 2 32 3Ψ A A x A x    is obtained. Based on the known Ψ , one obtains from (4) 

 2 3
0 0 1 2 3 2 3

d 2
d 3

d

D Ψ D
W Ψ x A A A x A x A x A A x

S x S
         . (50) 

On the other hand, the static part of Eq. (31) of the modified beam theory gives 
2 3

0 1 2 3bW B B x B x B x    , and from (33) it follows that  

 
2

2 3
0 1 2 3 2 3

d 2
3

d
b

b

D W D
W W B B x B x B x B B x

S x S
        , (51) 

which is an expression identical to (50). The angle of rotation is = d / dbΦ W x   

 2
1 2 32 3B B x B x   , which is the same as the above Ψ  in the Timoshenko beam theory. 

5. Beam finite element based on the modified beam theory 

The Timoshenko beam theory deals with two variables of flexural vibrations, W  and 
Ψ , which are of the same importance. Therefore, in the development of the beam finite 
element, one takes into account the independent shape functions for W  and Ψ  of the same 
order. That leads to the shear locking problem, which is remedied by an additional degree of 
freedom. That problem can be avoided if the static solution for W  and Ψ  from Section 4.2, 
which includes relation (10), is used for the shape functions [13]. In that case, one obtains the 
same beam finite element properties as for the modified beam theory. Derivation of the finite 
element by the latter theory is simpler and more transparent and that is why it is used here. 
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A relatively simple two-node beam finite element can be derived in an ordinary way if 
the static solution is used for deflection interpolation functions, Section 4.2 

2 3

0 1 2 3b

x x x
W a a a a

l l l
         
   

 (52) 

2 32 3s

x
W a a

l
     
 

 (53) 

2 3

0 1 2 3 2 32 3
x x x x

W a a a a a a
l l l l

               
     

 (54) 

2

1 2 3

d 1
2 3

d
bW x x

Φ a a a
x l l l

         
   

, (55) 

where  2/D Sl   and l is the element length. By satisfying alternatively the unit value for 

one of the nodal displacements and the zero value for the remaining displacements, one can write 

    C A  , (56) 

where 

   

01

11

22

32

,

aW

aΦ
A

aW

aΦ



  
         

   
      

     , (57) 

 

1 0 2 0

1
0 0 0

.
1 1 1 2 1 6

1 2 3
0

lC

l l l



 

 
 
 
    
 
 
  

 (58) 

Inversion of (56) is 

     1
A C  , (59) 

where 

 

   
 
   

1

1 6 4 1 3 6 2 1 6

0 1 12 0 01

1 12 3 2 1 3 3 1 6

2 2

l l

l
C

l l

l l

     


  


     
  
      
  

. (60) 

Bending deflection (52), by employing (59), yields 

   b b b
W P A f   , (61) 
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where    2 3
1 / / /

b
P x l x l x l     and 

  1

b b
f P C

  (62) 

is the vector of bending shape functions. Referring to the finite element method [21,22], the 
bending stiffness matrix is defined as 

     
2 2

1

2 2 4
0 0

0

0
d d 4

d 0 0 1 3 d1
d d

3

l l
Tb b

b

f f D x
K D x C x C

x x l l
x

l

 

 
 
        

   
 
  

     , (63) 

where symbolically     1 TT
C C

  . After integration and multiplication one obtains  

 
 

   

 

2 2

2 2

2

6 3 6 3

2 1 6 1 6 3 1 12 1 62

6 31 12

. 2 1 6 1 6

b

l l

l l lD
K

ll

Sym l

   


 

 
                
     

. (64) 

In a similar way, shear deflection (53) can be presented in the form 

   s s s
W P A f   , (65) 

where 2 0 0 1 3 /
s

P x l      and 

  1

s s
f P C

  (66) 

is the vector of shear shape functions. The shear stiffness matrix reads [22] 

     
2

1

0 0

0

0d d 6
d 0 0 0 1 d

0d d

1

l l
Ts s

s

f f
K S x S C x C

x x l

  

 
          

     
  

     . (67) 

That leads to 

 
 

2 22

2

2

4 2 4 2

236

4 21 12
.

s

l l

l l lS
K

ll
Sym l




 
  

 
 
 

. (68) 

Bending and shear stiffness matrices can be summed and the total stiffness matrix reads 
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 
 

   

 

2 2

2

2

6 3 6 3

2 1 3 3 1 62
6 31 12

. 2 1 3

l l

l l lD
K

ll
Sym l

 




 
    

 
  

. (69) 

Mass matrix, according to definition [20] is 

   
0

d
l

w wm
M m f f x  , (70) 

where 

  1

w w
f P C

 , (71) 

is the shape function of total deflection, and 

   2 2
1 / / 2 / 6 /

w
P x l x l x l x l               . By substituting (71) into (70) and after 

integration, one obtains  

 
 

   
     

 
 

2

2 2 2 2

2 2 2 2 2

2 2

2 2

420 1 12

156 3528 20160 22 462 2520 54 1512 10080 13 378 2520

4 84 504 13 378 2520 3 84 504

156 3528 20160 22 462 2520

. 4 84 504

m

ml
M

l l

l l l

l

Sym l



       

     

   

 

 


         
 
       
 
     
 
   

. (72) 

In a similar way, according to definition [20], one finds the mass moment of inertia matrix 

 

 

   
     

 
 

0

2 2 2 2

2

2 2

d d
d

d d

36 3 180 36 3 180

4 60 1440 3 180 1 60 720

36 3 18030 1 12

. 4 60 1440

l
b b

J

f f
M J x

x x

l l

l l lJ

ll

Sym l

 

    


 

   
 

   
 

       
     

   



         

. (73) 

Beam axial shear vibrations are analogous to stretching vibrations, Section 3.3, and the vector 
of shape functions is 1 / /

a
f x l x l    . The following stiffness and mass matrices are 

obtained 

  1 1 2 1

1 1 1 26a

D Sl
K

l

   
       

, (74) 

  2 1

1 26a

l
M J

 
  

 
. (75) 
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6. Numerical examples 

In order to evaluate the developed finite element, flexural vibrations of a simply 
supported, clamped and free beam are analysed and compared with analytical solutions [23] 
and 2D FEM results obtained by NASTRAN [24]. The beam length is 10L   m and height 

2H   m. The 1D FEM model includes 50 beam elements and the 2D model 50x6=300 
membrane elements. 

 

Fig. 3  The first four natural modes of a simply supported beam 

Table 1 presents the obtained values of the frequency parameter 0/    for the 

simply supported beam, where 0 /S J   is the threshold frequency obtained from the last 

term in differential equation (31). It is well known that the simply supported beam exhibits a 
double frequency spectrum for the same mode shapes shown in Fig. 3 [2,18]. 1D FEM results 
follow very well the analytical solutions for the first spectrum up to the threshold frequency. 
2D FEM results agree very well with the first spectrum of analytical solution. However, 1D 
and 2D FEM analyses cannot capture the second frequency spectrum.  

Table 1  Frequency parameter 0/    for a simply supported beam, / 0.2, 5 / 6h l k    

n 
Analytical FEM 

1st spectrum, 1f
n  2nd spectrum, 2f

n  1D,  1
n  2D,  2

n  

0  1.000*   

1 0.055 1.064 0.052 0.055 

2 0.189 1.227 0.183 0.191 

3 0.362 1.445 0.351 0.366 

4 0.549 1.693 0.535 0.558 

5 0.741 1.959 0.724 0.755 

6 0.935 2.237 0.916 0.953 

6.335* 1.000*    

7 1.128 2.524 1.064 1.151 

8 1.321 2.816 1.108 1.346 

9 1.512 3.113 1.223 1.538 

10 1.702 3.414 1.301 1.727 
*Threshold 
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Values of frequency parameter for the clamped and the free beam are compared in 

Table 2 and 3, respectively. Very good agreement between the 1D and 2D FEM results on the 

one hand and the analytical solutions on the other are shown. 

Table 2  Frequency parameter 0/    for a clamped beam, / 0.2, 5 / 6h l k    

Mode no. 
j 

Analytical, j  
FEM 

1D,  1
j  2D,  2

j  

1 0.106 0.102 0.107 
2 0.242 0.236 0.247 
3 0.404 0.394 0.412 
4 0.577 0.564 0.590 
5 0.758 0.742 0.775 
6 0.941 0.923 0.960 
* 1.000*   
7 1.066 1.065 1.047 
8 1.123 1.105 1.139 
9 1.235 1.229 1.211 

10 1.314 1.295 1.331 
*Threshold 

Table 3  Frequency parameter 0/    for a free beam, / 0.2, 5 / 6h l k    

Mode no. 
j 

Analytical, j  
FEM 

1D,  1
j  2D,  2

j  

1 0.117 0.112 0.116 
2 0.272 0.264 0.273 
3 0.453 0.441 0.455 
4 0.638 0.623 0.642 
5 0.819 0.803 0.825 
6 0.967 0.956 0.967 
* 1.000*   
7 1.070 1.075 1.071 
8 1.097 1.087 1.094 
9 1.272 1.260 1.263 

10 1.279 1.265 1.269 
*Threshold 

Table 4 shows the frequency parameter of axial shear vibrations. The finite element 
developed in Section 5, Eqs. (74) and (75), gives very reliable results. 
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Table 4  Frequency parameter 0/    for axial shear vibrations, / 0.2, 5 / 6h l k    

n Analytical, S
n  1D FEM, 1S

n  

0 1.000*  
1 1.050 1.050 
2 1.188 1.188 
3 1.387 1.388 
4 1.625 1.628 
5 1.888 1.894 
6 2.167 2.177 
7 2.455 2.472 
8 2.751 2.776 
9 3.052 3.088 

10 3.356 3.407 
*Threshold 

7. Conclusion 

The Timoshenko beam theory deals with the total deflection and the cross-section 
rotation as two basic variables. The modified beam theory is an extension of the former from 
flexural to axial shear vibrations. The main variables are the pure bending deflection and the 
axial shear slope angle. The modified flexural beam theory is known in literature as an 
approximate variant of the Timoshenko theory. By a linear transformation of expressions for 
displacements and sectional forces it is shown that the modified theory is exact as the 
Timoshenko theory. 

The developed sophisticated beam finite element based on the modified and extended 
Timoshenko beam theory gives very good results, the same as the 2D FEM analysis, when 
compared to the analytical solutions. 
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