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Summary 

The field of active/adaptive structures has been the subject of intense interest over the 
past couple of decades. The progress in this research field strongly depends on the availability 
of adequate and reliable modelling tools. Regarding structural analysis in general, the finite 
element method (FEM) has imposed itself as the method of choice for modelling and 
simulation. Piezoelectric active structures are characterized by strong enough coupling 
between the mechanical field and the electric field, which is further used for the realization of 
active structural behaviour. The descriptions of the mechanical and electrical field as well as 
their coupling significantly affect the convergence of the FEM results with mesh refinement, 
which may proceed in a trend different to what is commonly expected when FEM is applied 
to purely mechanical problems. The paper considers this aspect by using two quadratic shell 
type finite elements developed for modelling piezoelectric composite laminates. Both full and 
uniformly reduced integration techniques are taken into consideration in a set of examples 
involving composite laminates with active piezoelectric layers.   
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1. Introduction 

Significant attention has been given to active/adaptive structures over the past two 
decades. It is their intrinsic property to mimic the behaviour of natural systems that serves as 
an impetus for researchers to steadily broaden the area of application of adaptive systems. The 
general idea consists of the use of advanced multifunctional materials in order to design and 
integrate active elements, i.e. sensors and actuators, into structures and thus provide the means 
for their active behaviour. Many researchers have focused their work on possible applications, 
whereas the others have turned their attention to the need for reliable modelling and 
simulation of active structures’ behaviour.   

The finite element method (FEM) has established itself as the method of choice for the 
problems in the field of structural analysis. The application of the FEM in the field of 
mechanical problems has been thoroughly studied in the past 50 years. This involves techniques 
for obtaining reliable, high quality solutions. The FEM is also widely used in the field of 
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coupled-field problems, such as electro-mechanical problems characteristic of active structures 
with piezoelectric active elements. Since a reliable simulation is supposed to provide an easier, 
faster and less expensive development of adaptive structures, this paper looks at the aspect of 
FEM results convergence when thin-walled piezoelectric structures are considered. The aspect 
is important as a different trend in the development of FEM results with mesh refinement can 
occur in many coupled-field cases compared to purely mechanical problems. This paper 
focused on thin-walled structures notoriously famous for locking effects, such as shear or 
membrane locking, that significantly affect the convergence of the mechanical field [1]. A 
number of authors have offered various techniques to improve the convergence of FEM results 
in such cases. Among the solutions are the addition of bubble/incompatible modes [2], discrete 
shear gap and assumed natural strain approach [3], selectively [4] and uniformly [5] reduced 
integration, mixed interpolation of tensorial components [6], etc. Some authors have pointed out 
that the solutions relying on hybrid formulations are less sensitive to mesh distortion [7, 8]. Liu 
et al [9] have combined the displacement-based FEM formulation with a strain smoothing 
technique of mesh-free methods to produce the smoothed finite element method, whereby the 
smoothing technique is developed based on the Hu–Washizu three-field variational principle. 
The amount of efforts invested in resolving the problem demonstrates the interest of the 
research community to improve this aspect of the FEM modelling of adaptive structures.  

This paper points out the difference between the FEM models involving purely 
mechanical field and those related to coupled electro-mechanical field with piezoelectric 
actuation. It further discusses how this difference affects the convergence of FEM results with 
mesh refinement. The purely mechanical examples from [10] have been modified to include 
the piezoelectric (electro-mechanical) coupling in order to be considered in this paper. For the 
FEM modelling, two different shell type finite elements, developed for thin-walled active 
structures, have been used.  

2. Material architecture, mechanical and electrical field and their coupling 

Thin-walled active structures with piezoelectric patches as active elements imply the use of 
composite material architecture. Considering the material architecture across the thickness of the 
structure, one may notice that it consists of multiple types of layers involving passive and active 
(piezoelectric) layers. Passive layers are load-carrying layers, whereas piezoelectric layers serve 
as active elements, i.e. sensors and actuators, through the electro-mechanical coupling. Even the 
passive material alone is quite often a fibre-reinforced composite laminate. This means that 
several layers of fibre-reinforced composite material are bonded together to form a laminate of 
desired thickness, sequence of layers (orientation of fibres), choice of constituent materials (fibres 
and matrix), etc. The active piezoelectric patches are either embedded into such a laminate or 
bonded onto the outer surfaces, thus providing the means for active behaviour of the structure. 
Finally, sensors and actuators are coupled to each other by means of a controller, which 
implements the strategy of structural behaviour, and the structure becomes adaptive (Fig. 1).   

 

Fig. 1  Composite material architecture of an adaptive car-roof   
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For better understanding of the aspects arising in the FEM modelling of coupled electro-
mechanical problems, it would be worthwhile to give the basic equations that describe the 
mechanical field (strains, stresses), electrical field (electric field, potential) and their coupling. 

Efficient modelling of thin-walled structures is driven by the recognition that the nature 
of the global behaviour of such structures allows condensation of the complex 3D-field to the 
essential ingredients of the structural response described by a 2D approach. A general shape 
assumes arbitrarily curved structures and, regardless of the applied loads, both membrane and 
flexural strains are induced in such a structure. Furthermore, thin-walled structures made of 
composite laminates require 2D-theories with transverse shear strains and stresses included 
for adequate modelling. The simplest and most frequently used theory is the First-order Shear 
Deformation Theory (FSDT), which is based on the Mindlin-Reissner kinematical 
assumptions that imply constant transverse shear strains and stresses across the thickness of 
the structure [11].  

Within the framework of the FEM, the strain field of a shell element based on the 
aforementioned kinematical assumptions is given in the following general form:  
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where {mf} and {s} are the membrane-flexural (in-plane) and transverse shear strains, 
respectively, [Bmf] and [Bs] are corresponding strain-displacement matrices and can be 
summarized into the element strain-displacement matrix [Bu], and, finally, {de} are the 
element nodal displacements. For more details on the definition of the strain field, an 
interested reader is referred to [11]. 

Regarding the electric field within the active layers, it is assumed that the piezolayers 
are polarized in the thickness direction, with a constant value of electric potential over the 
electrodes bonded onto the outer surfaces of the piezolayer. The actual distribution of the 
electric field and electric potential across the thickness of the piezolayer can be deduced from 
Gauss’s law for dielectrics and it depends on the kinematics of deformation [11]. One may 
demonstrate that a first-order 2D theory (linear function for the in-plane displacements across 
the thickness) results in the quadratic distribution of electric potential and linear distribution 
of electric field. However, the conducted analyses [12, 13] have also demonstrated that a 
constant approximation for the electric field, typically used by a great number of researchers 
in this field, is quite satisfying for the current class of piezoelectric materials and rather thin 
piezopatches. It results in a very simple equation for the electric field:  

k

k
k h

E

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where k is the difference of electric potentials between the electrodes of the kth piezolayer in 
the laminate (i.e. this is the kth electrical degree of freedom of the element) and hk is the 
thickness of the piezolayer.  

The coupling between the mechanical and electrical field is described by means of the 
piezoelectric material constitutive equation. The form of this equation depends on the choice 
of independent variables [14] and, in the framework of the displacement-based FEM, those 
are the mechanical displacements and the electric voltages. The corresponding piezoelectric 
material constitutive equation reads:  
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where {} is the mechanical stress in vector (Voigt) notation, {D} is the electric displacement 
vector, CE is the material Hook’s matrix at constant electric field E, d is the dielectric 
permittivity matrix at constant , and e is the piezoelectric coupling matrix. It should be 
emphasized that the considered active elements operate using the piezoelectric “e31-effect”, 
thus coupling the in-plane strains to the perpendicularly applied electric field.  

3. Locking phenomena and influence on FEM results convergence 

The considered type of problem involves both the mechanical and electrical field with 
the two-way coupling between them, as given by Eq. (3). The description of the electrical 
field is rather straightforward (Eq. (2)) and it does not produce any numerical difficulties 
when convergence check is performed by means of FE mesh refinement. However, it is 
coupled to the mechanical field which is, on the other hand, notorious for problems denoted as 
locking phenomena.  

Locking phenomena represent an intrinsic problem of the finite elements which, in their 
application, encounter constrained field problems. Considering thin-walled structures with 
high slenderness, they are known to deform in such a manner that transverse shear strains are 
not involved in the deformational behaviour. Hence, in this type of deformation, the 
transverse shear strain and stress fields are constrained. Similarly, pure bending occurs 
without membrane strains. However, typical isoparametric shell formulations, based on the 
Mindlin-Reissner kinematical assumptions, result in elements that are incapable of correctly 
representing such deformational states. The consequence is the presence of parasitic strains 
and stresses in the FEM results, whereas they are not a part of the considered actual physical 
regimes, and the model predicts stiffer behaviour compared to the real structural behaviour. 
The above mentioned issues are denoted as shear and membrane locking, respectively.  

According to Prathap [1], a variationally correct solution for the aforementioned issues 
requires the introduction of the paradigms of field-consistency and variational correctness. He 
could successfully demonstrate those postulates and adequate solutions for simpler types of 
finite elements, such as beams or plates. But Prathap has also concluded that the class of 
degenerate shell elements exhibits high level of complexity originating from multiple 
mappings between coordinate systems, which prohibit tracking of inconsistent constrained 
fields and their reconstitution in a variationally correct manner. Hence, at this stage of 
development, simpler techniques, but which offer no guarantee of variational correctness 
(actually, they were deemed as “variational crime” by Prathap), are to be applied. Some of 
those have been mentioned in the introduction to the paper. Prathap points out the uniformly 
reduced integration as one of the simplest and most effective techniques for this purpose, 
when arbitrarily shaped biquadratic degenerate shell element is used.   

Hence, in the considered coupled-field problem, the FEM description of the mechanical 
field is accompanied by the aforementioned issues that affect the quality of the result 
convergence, whereas the electrical field model is relatively simple and not essentially 
influenced by the FEM mesh refinement. However, the two fields are coupled to each other, 
which is the basic ingredient of the active behaviour of piezoelectric structures. In the 
following, a set of examples will be considered in order to investigate the convergence of the 
FEM results with mesh refinement for the coupled electro-mechanical field. Both full and 
uniformly reduced integration techniques will be considered. 
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4. Analysis of FEM results convergence presented on examples 

The examples involving purely mechanical cases considered in [10] are modified here 
to include active layers in order to investigate how the FEM results convergence proceeds 
when the coupled-field problems are handled. The structures considered in the examples are 
of shell type and are made of composite laminates composed of two types of layers – fibre 
reinforced composite (T300/976 graphite/epoxy) and piezoceramic (PZT G1195) layers. The 
elastic properties of the composite layers are considered to be transversely isotropic. They are 
given with respect to the material principles directions as: the Young moduli Y11=150 GPa 
and Y22 =9 GPa, the shear modulus G12=7.1 GPa and the Poisson coefficients 12=0.3 and 
23=0.3. The piezoelectric layers are considered to have isotropic elastic properties with Y=63 
GPa and =0.3, while the piezoelectric constant is given as e31=2.286·10-5 C/mm2. Not 
specified piezoelectric constants are assumed to be equal to zero. In the examples, the 
dielectric constants are not required, as the electro-mechanical coupling is achieved through 
the inverse piezoelectric effect (actuator function) and only the mechanical quantities are of 
interest. This implies that the deformation of the considered structures is caused by the 
actuation of the piezolayers. In such a case, the static FEM equations of the coupled electro-
mechanical field [11] reduce to the following equation: 

       uuu KdK - , (4) 

where [Kuu] is the mechanical stiffness matrix, [Ku] the piezoelectric coupling matrix, {d} 
are the mechanical degrees of freedom and {} are the predefined electric voltages of the 
FEM model. The right-hand side of Eq. (4) defines piezoelectrically induced loads. In the 
considered examples, two oppositely polarized piezolayers are exposed to the same electric 
voltage. The position of piezolayers in the laminates is symmetric with respect to the 
laminate’s reference plane. Hence, the actuation induces bending moments uniformly 
distributed along the edges of the piezolayers [11]. The sequence of layers will be specified in 
the following for each of the considered cases.  

The analyses have been performed by means of the already developed [11] and verified 
[15, 16] full biquadratic ACShell9 element (active composite shell with nine nodes) as well as 
the  quadratic 8-node Semi-Loof shell element, originally developed by Irons [17] and 
extended by Gabbert et al. [18] to a piezoelectric laminate element. The ACShell9 element is 
of Mindlin type and it is susceptible to both shear and membrane locking. The Semi-Loof 
element is based on the discrete Kirchhoff theory, which means that the transverse shear is not 
accounted for. Thus, only the membrane locking may act with the Semi-Loof element.  

4.1 Clamped cylindrical shallow piezolaminated shell  

In the first example, a cylindrical composite shell with the in-plane dimensions ab = 
254254 mm and radius R=10a is considered (Fig. 3, left). The sequence of layers is defined 
with respect to the global x-axis (structure’s reference direction). It is symmetric with the 
structure’s mid-surface and reads [PZT/302/0]s. This means that, across the thickness of the 
laminate, the orientation of unidirectional fibres with respect to the global x-axis is: PZT (no 
fibres), 30°, again 30° and 0° up to the mid-surface (Fig. 2) and further symmetric, i.e. 0°, 
30°, 30°, PZT, so that altogether 8 layers render the laminate. The piezolayers are outer layers 
so that the maximal effect of their actuation (electric voltage 100 V) is achieved. The 
thickness of each composite layer is 0.138 mm and of each piezolayer 0.254 mm. 
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Fig. 2  Laminate setup for the sequence of layers [PZT/302/0]s 

As for the boundary conditions, one of the structure’s curved edges is clamped (Fig. 3, 
left). The structure has been discretized with four different meshes (Fig. 3, right) in order to 
investigate the FEM results convergence in this case of rather thin structure with the 
slenderness of approximately 190. The ACShell9 element is used with both full (Gauss 33 
integration rule) and uniformly reduced integration (Gauss 22 integration rule), while the 
Semi-Loof element is coded so that the full integration (33) is available only. 

 

Fig. 3  Cylindrical active composite shell modelled by 4 FE meshes   

Though symmetric, the stacking sequence of the laminate is ‘unbalanced’ due to 30° 
layers, which results in coupling in the structural behaviour not observed when isotropic 
materials are applied. Under the influence of the bending moments induced by the 
piezoelectric actuation, the shell structure bends and twists. To characterize such a 
deformation properly, the transverse deflection is observed at three points of the shell’s free 
edge. Those are the two end-points of the edge (points 1 and 3 in Fig. 3) and the mid-point 
(point 2 in Fig. 3). The obtained results are summarized in Table 1, where wi/b, i=1÷3, stands 
for the normalized transverse deflection of the three points, while ACS9 and SL are 
abbreviations denoting ACShell9 and Semi-Loof shell elements, respectively.  

Table 1  Results at 3 characteristic points for 4 different FE meshes 

 
(w3/b)x10-3 (w2/b)x10-3 (w1/b)x10-3 

ACS9 ACS9 SL ACS9 ACS9 SL ACS9 ACS9 SL 

Mesh 3x3 2x2 3x3 3x3 2x2 3x3 3x3 2x2 3x3 

1x2 -6.394 -6.299 -5.682 -4.241 -2.775 -3.380 -8.464 -10.385 -7.287 

2x4 -6.840 -6.431 -6.163 -3.675 -3.359 -3.180 -10.439 -10.741 -10.193

4x4 -6.507 -6.423 -6.181 -3.603 -3.354 -3.343 -10.514 -10.762 -10.394

8x8 -6.450 -6.397 -6.347 -3.420 -3.367 -3.354 -10.732 -10.730 -10.686
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A better overview of the obtained results can be provided in the form of diagrams. Figs. 
4 and 5 offer such an overview. They give the normalized transverse deflection of the shell’s 
free edge across the width. The coupling between bending and twisting of the shell is obvious 
from the results given in the diagrams. Fig. 4 gives the results obtained with the fully 
integrated ACShell9 element. For the purpose of comparison, this diagram also includes the 
result for the finest (88) mesh with the reduced integrated element (denoted as 
(88)Mesh_RI). Fig. 5 gives the results yielded by the under-integrated ACShell9 element. 

It can be noticed that the values obtained by means of ACShell9 element converge to the 
same result when the element is used with both full and reduced integration and those results 
are also in a quite good agreement with the results from the Semi-Loof shell element. In 
comparison to the convergence of the ACShell9 element for the similar, only purely 
mechanical case reported in [10], a very interesting remark can be given. Namely, in the 
passive case, the convergence is monotone and it proceeds from below (full integration) or 
from above (reduced integration). This is actually the expected property of static FEM 
computations for the purely mechanical field. However, the results in Table 1 and Figs. 4 and  

 

Fig. 4  Free edge transverse deflection – fully integrated ACShell9 element  

 

Fig. 5  Free edge transverse deflection – under-integrated ACShell9 element  
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5 reveal that, in the coupled electro-mechanical case, the convergence proceeds in a non-
monotone manner. This is the consequence of the fact that, with the mesh refinement, both 
sides of Eq. (4) are affected and they both converge to certain values, but not necessarily at 
the same rate. Another important remark is that the convergence rate of the reduced integrated 
ACShell9 element is significantly higher, which is obvious from comparison of Figs. 4 and 5. 
The results obtained by the reduced integrated element for meshes (24), (44) and (88) are 
seen in Fig. 5 as almost congruent.  

4.2 Simply supported piezolaminated arch  

In the second example, a simply supported cylindrical arch with radius R=100 mm and 
width b=62.8 mm is considered (Fig. 6).  The stacking sequence is symmetric [PZT/45/-45/0]s 
and balanced, thus resulting in orthotropic material properties overall. The thickness of each 
composite layer is 0.12 mm and of each piezoceramic layer 0.24 mm. The structure is excited 
in exactly the same manner as in the first considered case – the electric voltage of 100 V 
supplied to the oppositely polarized piezolayers, which results in bending moments and 
structural deformation. 

 

Fig. 6  Piezolaminated arch with boundary conditions 

For the purpose of convergence analysis, the structure has been discretized with 3 FE 
meshes, each having four elements across the width, while the number of elements in the 
circumferential direction goes from 10, over 20, to 40, because the radial deflection of the 
width mid-line (w) along the circumference of the arch is the result of interest in this case. 
The results are given in the form of diagrams. Fig. 7 depicts the results for the Semi-Loof 
element, while Figs. 8 and 9 give the same for the ACShell9 element with the full and reduced 
integration applied, respectively. It can be noticed that all three diagrams yield the same 
converged solution. Actually, further mesh refinement has been performed, but it has yielded 
a negligible difference in results (compared with the result for the mesh with 40 elements 
along the circumference) with both elements and those results are omitted here for the sake of 
brevity. The roughness of the result yielded by the Semi-Loof element for the mesh with 10 
elements in circumferential direction is particularly remarkable. This is the consequence of 
the fact that it is an 8-node element (no full biquadratic shape functions applied), as opposed 
to the 9-node ACShell9 element. The reduced integrated ACShell9 element yields satisfactory 
results already with the roughest mesh considered. The results obtained for all three meshes 
with the under-integrated ACShell9 element are close enough in Fig. 9 to make it difficult to 
differentiate the lines from each other. The lines obtained with the fully integrated ACShell9 
element using the meshes with 10 and 20 elements along the circumferential direction (Fig. 8) 
demonstrate a suboptimal convergence of the fully integrated element as a consequence of 
locking effects. 
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Fig. 7  Radial deflection of the cylindrical arch – results by the Semi-Loof element 

 

Fig. 8  Radial deflection of the cylindrical arch – results by the fully integrated  ACShell9 element 

 

Fig. 9  Radial deflection of the cylindrical arch – results by the reduced integrated  ACShell9 element 
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5. Conclusions 

Structural analysis requires reliable and accurate numerical tools. This is particularly 
emphasized with active structures characterized by two-way coupled-field problems. 
Numerical problems present in the solution for one of the fields are reflected in the solution 
for the other field as well, thus rendering the problem more complex and costly. In the 
framework of the FEM, the convergence of the obtained results with mesh refinement is a 
very important tool that assures the reliability of the results. The important conclusion of this 
paper is that a non-monotone convergence is a possibility in the FEM analysis of coupled-
field problems. In the considered static analysis of piezoelectric active structures, it occurs as 
a consequence of the fact that both sides of the FEM equation are affected by mesh 
refinement, whereby they exhibit a different rate of convergence.  

Another important conclusion is related to the rather fast rate of convergence of the 
under-integrated ACShell9 element. It is a known fact that the reduced integration offers a 
remedy for locking effects for many different elements, but this technique is not a derivative 
of the variational approach (variational correctness not guaranteed), i.e. it is a kind of an ad-
hoc method. One of the explanations for the success of the approach lies in the fact that the 
points of reduced integration are at the same time the Barlow points, i.e. the points that give 
the best estimates of strains/stresses for an element [1]. Hence, it is reasonable to expect that 
the parasitic strain and stress terms (which are the cause of locking effects) have the least 
influence on the accuracy of the obtained results when evaluated at those points. 

Further work is supposed to provide an analysis of influence of mesh refinement onto the 
FE results convergence when sensor application of active elements is considered. 
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