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This paper addresses adjustments, implementation and performance comparison of the Moving Average with
Local Difference (MALD) method for ceramic tile surface defects detection. Ceramic tile production process is
completely autonomous, except the final stage where human eye is required for defects detection. Recent computa-
tional platform development and advances in machine vision provides us with several options for MALD algorithm
implementation. In order to exploit the shortest execution time for ceramic tile production process, the MALD
method is implemented on three different platforms: CPU, GPU and FPGA, and it is implemented on each plat-
form in at least two ways. Implementations are done in MATLAB’s MEX/C++, C++, CUDA/C++, VHDL and
Assembly programming languages. Execution times are measured and compared for different algorithms and their
implementations on different computational platforms.
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CPU, GPU i FPGA implementacija MALD algoritma za otkrivanje nepravilnosti na površini keramičkih
pločica. U ovom radu razmatra se prilagodba, implementacija i usporedba performansi metode pomičnog usredn-
javanja s lokalnom diferencijom (MALD) s primjenom u otkrivanju površinskih nedostataka na keramičkim ploči-
cama. Proizvodna linija keramičkih pločica je autonomna sve do zadnje faze u kojoj je potreban ljudski vid kako
bi se otkrili eventualni nedostaci na keramičkim pločicama. Nedavnim razvojem računalnih platformi i razvojem
metoda računalnog vida omogućena je implementacija MALD metode na nekoliko načina. U nastojanju skraćenja
vremena potrebnog za proizvodnju keramičkih pločica, MALD metoda je implementirana u trima različitim plat-
formama: CPU (central processing unit), GPU (graphic processing unit) i FPGA (field programmable gate array),
te s barem dva različita algoritma. Implementacija je izvršena sa MATLAB MEX/C++, C++, CUDA/C++, VHDL
te Asembler programskim jezicima. Izmjerena vremena obrade su me�usobno uspore�ena za različite algoritme i
njihove implementacije na različitim računalnim platformama.

Ključne riječi: CUDA, FPGA, GPU, integralna slika, MALD, keramičke pločice

1 INTRODUCTION
Driven by the ceramic tile industry demand for faster

production almost all of the production stages in the pro-
cess are automated. The last but not the least important
stage for quality control and classification is the bottleneck
in the ceramic tile production process concerning automa-
tion [1]. Automation of this stage leads to machine vi-
sion systems with one or more digital cameras and one or
more image processing algorithms [2], [3], [4]. We use a
real-time ceramic tile production line equipped with ma-
chine vision for testing purposes, c.f. Fig. 1. Different
algorithms are implemented depending on ceramic tile fea-
tures. Algorithms can inspect chromatic abnormality, edge
and corner defects, dot and blob shape defects, cracks,
scratches, printed texture anomaly and glazing defects. Be-

fore applying above stated algorithms, most of the machine
vision systems require some kind of image preprocessing.
This can include a number of different algorithms for im-
age alignment, rotation, segmentation and pixel brightness
equalization. With human eye, the total ceramic tile failure
detection time delay goes from 0.5 to 1 s [5]. From the eco-
nomical point of view, shorter failure detection time leads
to greater production and income. Capturing ceramic tile
image with digital camera can be considered as a constant
time delay process. Subsequently, total execution time can
be reduced only by shortening the execution times of re-
quired machine vision algorithms. Better algorithm perfor-
mance can be achieved by optimizing the algorithm code,
by implementing a different method or by changing the
computational platform used for the implementation and
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Camera Light source

Ceramic tile Production line

Motor

Ceramic tile sensor

On/Off 
switch

Fig. 1. Real-time ceramic tile production line equipped
with machine vision system that is used for testing pur-
poses in our laboratory.

execution. For this paper, three MALD algorithm imple-
mentations are considered, with and without integral image
approach. They are implemented on different computa-
tional platforms: CPU, GPU and FPGA, with a code writ-
ten in MATLAB’s MEX/C++, C++, CUDA/C++, VHDL
and Assembly programming languages.

Rest of the paper is organized as follows. Section II ex-
plains the MALD algorithm, integral images and MALD
algorithm modifications. Sections III gives detailed expla-
nation on three specific implementations of the MALD al-
gorithm and how it is mapped to three different compu-
tational platforms. Experimental results are discussed in
Section IV with conclusion in Section V.

2 MALD METHOD WITH INTEGRAL IMAGE
APPROACH

Moving average with local difference method finds dot
shaped defects on ceramic tile surface image [6], [7], [8].
MALD considers a symmetric 1D kernel, c.f. Fig. 2a, that
can determine if ceramic tile image line is on the edge or
not, and if the kernel center pixel can be considered as a
defected pixel or not. The method takes 8-bit grey scale
image I, with width X and height Y, c.f. Fig. 2b. Method
also takes 4 input parameters: 1D kernel window width w,
distance d as a number of pixels between the kernel win-
dow and the kernel center pixel I(x,y), threshold pixel in-
tensities t1 and t2 that define a ceramic tile edge condition
(t1) and defected pixel intensity (t2). As an output, MALD
returns a binary image B, with same size as I, where binary
1 corresponds to a defected pixel and binary 0 correspond
to a non-defect pixel intensity. In Fig. 2a parameter d =
2 and parameter w = 3 are used just for illustration, while
different values are used for implementation. Let e(x,y) be
the absolute mean value difference of the left and the right
kernel side (1), and let h(x,y) be the difference of the mean
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Fig. 2. Symmetric MALD kernel with d = 2 and w = 3 (a)
with line y from; Original image (b).

values of both kernel sides and the pixel I(x,y) (2).
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MALD test for the edge condition compares e(x,y) with
t1. If e(x,y) < t1, the pixel I(x,y) is considered located far
from the edge and inside an image. Therefore it is ana-
lyzed further on. Otherwise, pixel I(x,y) is considered as a
pixel close to the edge and is skipped from further analysis,
while the output B(x,y) = 0. The above condition avoids the
edges and the environmental background outside a ceramic
tile image.

Next stage of the MALD method determines if a pixel
I(x,y) intensity correspond to a defect by comparing h(x,y)
with t2. If h(x,y)≥ t2, pixel I(x,y) is considered as defected
pixel and the output binary image B(x,y) is 1, otherwise 0.
Finally, output binary image B gives the dot defect loca-
tions.

Input parameters for MALD method are different for
different type of ceramic tile (one color, lightly colored,
lightly textured). The best way to determine parameter
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values is to execute the MALD algorithm on ceramic tiles
without defects. Segmentation, rotation and alignment are
not required since MALD method avoids the edges and the
surrounding ceramic tile image background. If ceramic tile
image is taken in uniform lightning conditions there is no
need for pixel brightness equalization. When there is no
need for the mentioned preprocessing algorithms, the total
execution time can be decreased.

2.1 1D and 2D Integral Images

Integral image is an intermediate image representation
that enables efficient calculation (in constant time) of sum
of pixels that are inside a rectangular region [9] and is in a
close relation to summed area tables in graphics [10]. Inte-
gral image II1D at location II1D(x,y) is calculated from the
original image I as the sum of all pixels to the left of I(x,y).
Analogously, integral image II2D at location II1D(x,y) is
calculated from the original image I as the sum of all pix-
els to the left and to the top of I(x,y)
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Fig. 3. Constant time sum of pixels in a rectangular region
R by using integral image approach.

II1D(x, y) =
∑

u≤x I(u, v)

II2D(x, y) =
∑

u≤x, v≤y I(u, v)
(3)

Once calculated, the integral image (3) enables calculation
of a sum of pixels in constant time. With II1D, the sum sL
of pixels inside a line region L is (4), c.f. Fig. 3a. With
II2D, the sum sR of pixels inside a rectangular region R is
(5).

sL = II1D(g)− II1D(f) (4)

sR = II2D(d)− II2D(c)− II2D(b) + II2D(a) (5)

where a, b, c, d, f and g are 2D indices (x,y), c.f. Fig.
3. With 1D integral image, values at indices f and g have
assigned a cumulative row sum (3) of all pixels from in-
dex (0,y) to (xf ,y), and from index (0,y) to (xg,y), respec-
tively. Therefore, the sum sL (4) is a difference of cumu-
lative summations II1D(g) and II1D(f). Analogously, with
2D integral image II2D (3), the sum sR (5) is the sum of
pixels from regions {R, R1, R2, R3} with subtracted sum-
mations from regions {R1, R3} and {R1, R2}. Since the
summation from the region R1 is subtracted twice, it has
to be added once, c.f. Fig. 3b. Finally, the benefit from
summing image pixels with integral image comes from re-
duced number of memory accesses and less ALU opera-
tions used. Summation sL has only 2 memory accesses
and 1 addition operation, while sR has 4 memory accesses
and 3 ALU operations. Integral image can be calculated
with zero-based indexing as with Alg. 1.

Algorithm 1 Integral image calculation from original im-
age

Cumulative row sum for calculation of II1D is done
with Alg. 1 (lines 2-4). After Alg. 1 (lines 5-7), II2D
is created as a cumulative column sum of II1D. Integral
image II1D has one more column than the original image,
while 2D integral image has one row more than 1D integral
image.

2.2 MALD with 1D Integral Image Approach
MALD method uses 1D kernel, c.f. Fig. 2a, and most

of MALD’s execution time is spent on the mean value cal-
culation, for each line independently, eq. (1) and (2). 1D
integral image approach is involved in order to calculate
the mean value faster, c.f. Alg. 1. In order to get the mean
value directly from the summations contained in II1D, Alg.
1 (line 4) can be replaced with (6), where summations are
divided with the number of pixels for the mean value cal-
culation.

II ′(x, y) = II ′1D(x− 1, y) + I(x, y)/w (6)

To decrease the amount of time needed for mean value cal-
culation, (1) and (2) can be calculated faster by using nor-
malized 1D integral image II’ (6). MALD kernel modifica-
tions are done in conjunction with II’. As depicted in Fig.
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Fig. 4. MALD kernel modified in conjunction with (7) with
only 4 indices required.

4, modified kernel has only 4 pixel indices for (1) and (2)
calculation reformulated with II’ in (7) and (8).

e(x, y) = II ′(q)− II ′(p)− II ′(m)− II ′(n) (7)

h(x, y) = (II ′(q)− II ′(p) + II ′(n)− II ′(m)) /2

− I(x, y) (8)

3 IMPLEMENTATIONS

Three different implementation types of MALD are
considered in this paper, c.f. Tab. 1, for ceramic tile image
with size [X,Y] and the kernel parameters w and d. To-
tal number of required ALU operations for calculating (1)
and (2), per line y = 1, ..., Y, is presented in Tab. 2. First
type MALD1 is a straightforward approach which sums
all pixels at each of Nx=X–2(w+d) kernel locations (x,y).
MALD1 has the highest number of ALU operations since
it is starting with the sum equal to zero every time. Calcu-
lation of (1) uses 2w ’+’ and 1 ’–’ operation for Nx kernel
locations. Second type MALD2 uses current kernel pixel
sum, at location (x,y), in order to calculate the sum of pix-
els at the next kernel location (x+1,y), as it is implemented
in [6]. MALD2 uses moderate number of ALU operations,
c.f. Tab. 2. Next kernel sum is calculated from current ker-
nel sum value by subtracting the first pixel intensity value
in the current kernel window and by adding the last pixel
intensity value in the next kernel window. Initially, it uses
2w+1 ALU operations. As kernel moves by single pixel,
next kernel location sum (1) is calculated by single pixel
intensity subtraction and addition for both kernel sides, re-
spectively. Therefore, it uses 5 ALU operations for Nx–
1 kernel locations. Third type MALD3 uses integral im-
age approach, and has the least number of calculations, c.f.
Tab. 2. Integral image is calculated initially with X num-
ber of ALU operations per line. Further on, the modified
MALD kernel (7) is applied, using 3 ALU operations per
line. Finally, proposed MALD implementations are done
for CPU, GPU and FPGA platforms, as it is illustrated in
Tab. 3. Three MALD implementation types are compared
with generic input parameters and are presented in Tab. 2.
Division operations per image line for calculating (1) with
MALD1 and MALD2 are equal to the number of kernel
locations Nx. Number of divisions per image line with
MALD3 equals to image width X since normalized integral

Table 1. MALD implementation platforms.

Table 2. Number of ALU operations per image line that
are executed when calculating (1).

image is required to calculate for the whole line. Compar-
ison between MALD implementations with practical input
parameter values, c.f. Tab. 3.

As depicted with Tab. 3, the algorithm MALD1 has
the highest number of ALU operations and it is considered
as a worst-case scenario for sequential CPU implementa-
tion. Algorithm MALD2 is not implemented in GPU, c.f.
Tab. 1. It calculates the kernel sum recursively, where
the next sum value depends on the previous kernel sum
value. Therefore, MALD2 is considered as inconvenient
for GPU parallel implementation. On the other side, algo-
rithm MALD3 requires the whole image storage in mem-
ory, denoting more RAM resources, and calculation of (6),
denoting more time and power to calculate. With FPGAs,
integral image for MALD algorithm losses its purpose, as
proposed in Section II. Due to high level of parallelism and
efficient pipeline, FPGAs can calculate MALD1 output in
a pixel per clock cycle, with no need for integral image
approach with MALD3, c.f. Tab. 1.

3.1 CPU Implementation

In this paper is considered a sequential CPU imple-
mentation in Visual C++ and MATLAB’s MEX/C++ pro-
gramming environment. Implementation is done on a PC
with Intel Core2 QUAD 6600 (one core used) with 6GB
RAM and Windows 7 x64 OS. The algorithms are devel-
oped with Visual Studio 2010. MATLAB was used for
MALD algorithm development and MEX/C++ and C++
for the implementation of all three MALD types, c.f. Tab.
1. Development of C++ code with MATLAB engine is
presented in [11]. It provides with flexible implementation
environment by using debugging functions which shortens
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Table 3. MALD ’+’ and ’-’ operations/line for typical pa-
rameters (d = 5).

functional verification time. All three MALD types are im-
plemented in C++ and MEX C++. MALD MEX function
enables usage of MALD method in MATLAB with better
performances, i.e. shorter execution time [11]. MEX func-
tions are written in lower programming language, with ap-
proximately 125 times shorter execution time.
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Fig. 5. Execution times of MALD MEX functions for vary-
ing kernel window size w.

As expected, sequential implementations have their ex-
ecution times in accordance with the number of required
operations, c.f. Tab. 2. Within a C++ program, the
MALD1 method has the largest, the MALD2 has moder-
ate, and the MALD3 has the lowest execution time. How-
ever, MEX/C++ implementation of the MALD2 method
has shorter execution times than the MALD3 only in cases
when the kernel window length w is power of 2, as it is
illustrated with the example in Fig. 5. Execution time
slightly decreases with the increasing of the parameter w
due to the less memory accesses to image data, since with
the MALD kernel 2(w + d) pixels per line (left and right
side edge pixels) are not considers. MALD1 is not illus-
trated since its execution time is approximately 3 times
greater than the two displayed in Fig. 5.

In order to achieve better performances, regarding exe-
cution times, VS 2010 C++ Compiler options are:

• Optimization→ Full Optimization / Favor Fast Code
/ Whole Program Optimization,

• Code Generation→ Floating Point Model→ Fast.

Improvement of the execution time can also be
achieved by setting the in the release mode and code com-
piling with a specific processor affinity and a real-time pro-
cess in the Task Manager of the Windows operating sys-
tem.

3.2 FPGA Implementation

Field Programmable Gate Array (FPGA) technology
enables parallel algorithm implementation using Hardware
Description Language (HDL). Regarding performances,
FPGA’s belong between a Central Processing Unit (CPU)
and an Applicative Specific Integrated Circuits (ASIC).
Generally, CPU solutions are known as flexible solutions,
i.e. one processor can solve more than one real-world
problem, while ASIC solutions are known as a solution
with the best performances for solving a single real-world
problem. Two types of CPU cores can be used on FPGA:
a soft-core CPU that is made of FPGA’s logic cells, and a
hard-core CPU that uses part of integrated circuitry. For
instance, FPGA soft-core RISC processor is an 8-bit Pi-
coBlaze CPU with proprietary license limited to Xilinx de-
vices only.

Real-time FPGA ceramic tile processing solution can
be found in [12], where a machine vision system is
equipped with a line-scan camera that records ceramic tile
images in a line-per-line manner and a Finite State Ma-
chine (FSM) is used for image processing. However, in
this paper we considered an FPGA-based approach with
pipelined parallel MALD1 and sequential MALD2 imple-
mentations, proposed in Section II. Presented FPGA im-
plementation uses DATA2MEM tool for downloading im-
age lines to the Xilinx’s Spartan3 XC3S200 development
board. Pipelined parallel FPGA implementation is done
in concurrent VHDL without an FSM, while sequential
implementation is done in Assembly language for the Pi-
coBlaze softcore CPU.

In order to parallelize the MALD1 algorithm, in this
work a 16-bit pipelined array adder is used that adds two
values each time, c.f. Fig. 1. In the first stage array adder
adds 1st with 2nd value, 3rd with 4th value, etc. In the
next stage it adds the sum of 1st and 2nd with the sum of
3rd and 4th value, etc, c.f. Fig. 6. In order to calculate
the sum of w inputs, for a single kernel side, the number
of inputs is zero-padded up to the number of 2dlog2 we 8-bit
input values. Since MALD requires subtraction of mean
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values of two kernel sides in (1), one subtraction is used
for calculation of (1) and one addition is used for the cal-
culation of (2). Left and the right kernel side sums are
stored in a memory, from where (1) is calculated by sub-
traction, while (2) is calculated with addition. Array adder
uses Ns (9) 16-bit unsigned integer full adders, where d.e
denotes ceil operation.

I(1)

.	 .	 .

.	
.	
.

∑

∑ ∑

∑

∑

I(2) I(3) I(4) I(n-1) I(n)

∑

Fig. 6. Pipelined array adder stores a result of two element
summations in a register which is used for next addition in
next clock cycle.

Bottleneck to the parallel solution is a RAM access that
enables single memory value read per clock cycle. In order
to access required pixels instantaneously, a shift register
with 2w + 2d + 1 (kernel size) 8-bit elements is used as an
input array. Shift register is initially filled with first kernel
size number of pixels. As kernel moves through a line, first
pixel is removed from the input array with single pixel shift
operation (shift register) and the last pixel is inserted to the
input array. In this work we used shift right operation to
divide the sum with w for mean value calculation. There-
fore w = 32 is chosen as the power of two and is a fixed
number. It is also possible to use the Xilinx’s CoreGen IP
Core for division that is also done in one cycle. However,
proposed pipelined parallel MALD implementation has no
limitations to an FPGA manufacturer. Finally, pipelined
parallel FPGA MALD outputs a 16-bit value of (1) and (2)
which are calculated in a single clock cycle for each kernel
location. Calculation is initially delayed for: kernel size
memory read cycles; 5 cycles for propagating the first out-
put value; 1 cycle for (1) subtraction or addition (2) of left
and right kernel side mean values; 1 cycle for a division
operation.

Ns =

dlog2 we−1∑

k=0

2k (9)

Sequential FPGA MALD2 implementation is done
with a softcore 8-bit PicoBlaze CPU. It is a simple 16-bit
summation of 8-bit input data. The 16-bit summation was
done with 8-bit commands for addition (ADD) of lower

bytes and addition with carry (ADCCY) for addition of
higher bytes. Subtraction is done analogously with SUB
and SUBCY commands. Since RAM addresses are 16-bit,
two 8-bit output registers are used for memory access, i.e.
for reading pixel intensity values.

Used FPGA resources for the sequential and pipelined
parallel implementations are illustrated in Fig. 7. Parallel
implementation is faster than the sequential one, what is
compensated with used more FPGA resources. About 6
times more FPGA slices and Flip Flops and about 2.5 times
more LUT’s are used. Block RAMs are used twice more
for the sequential implementation since one BRAM is for
the image storage, while the other is for the PicoBlaze’s
instruction RAM.

Slices Flipq
Flops

4-input
LUTs

Inputs/
Outputs

BRAM

PipelinedqParallelqMALD1SequentialqPicoBlazeqMALD2

Fig. 7. Used FPGA resources for the sequential and the
pipelined parallel MALD1 implementation.

Execution time of both pipelined parallel and sequen-
tial implementation does not depend on pixel intensities.
With change of kernel size, the number of elements in the
array adder (9) changes proportionally, while the execution
time remains the same for arbitrary kernel window size,
c.f. Tab 4. However, the FPGA solutions are adjusted for
the line-scan camera [9] and the results for the whole im-
age are calculated approximately as if the whole image is
written in FPGA RAM.

Total FPGA power consumption is the sum of design
dependent dynamic power and constant hardware related
quiescent power, as it is illustrated in Tab 4. Quiescent
power is the sum of the device static power and the de-
sign static power, and it varies with temperature [13]. Dy-
namic power increases with frequency and operating tem-
perature, and it varies by technology and architecture. Dy-
namic power consumption is related to implemented de-
sign and comes into the game when logic cells are switch-
ing. It mostly comes from glitches, caused by different
gate delays, which results in multiple signal change during
single clock cycle [13]. Dynamic power consumption at
certain operating frequency is illustrated in Fig. 8, for two
different MALD implementations. On one hand, sequen-
tial PicoBlaze implementation of MALD2 has slightly de-
creasing dynamic power with newer FPGA family. On the
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other hand, pipelined parallel MALD implementation has
varying dynamic power. For the case of Spartan 3 fam-
ily, one can conclude that the pipelining reduces the num-
ber of spurious glitches which, in turn, reduces dynamic
power [14], [15]. However, with increasing frequency and
varying FPGA technology, pipelined design consume more
dynamic power in comparison with smaller sequential Pi-
coBlaze design.

Fig. 8. FPGA’s dynamic power consumption for two dif-
ferent MALD implementations.

3.3 GPU Implementation

Since recent CPUs are limited with the operating fre-
quency, typically 3 GHz, parallel computing enables ac-
celerated computation. Another available parallel comput-
ing platform is the graphic processing unit (GPU). At the
present time, two major GPU vendors enabled the use of
GPU for general purpose computing (GPGPU): NVIDIA
and AMD [16]. GPGPU has a variety of applications in
computationally demanding areas that require parallel pro-
cessing of large data sets.

Compute Unified Device Architecture (CUDA) is a
parallel computing platform and programming model de-
veloped by NVIDIA. It uses a GPU for general-purpose
programming. GPU is a highly parallel machine with
hundreds of processors that execute thousands of threads.
CUDA is built around a scalable array of multithreaded
Streaming Multiprocessors (SMs). Each multiprocessor
consists of eight Scalar Processor (SP) cores, with two
special function units for transcending a multithreaded in-
struction unit and an on-chip shared memory (NVIDIA’s
8-series GPUs). CUDA extends C with functions called
GPU kernels which can be executed on demand with N
times in parallel by N different CUDA threads.

CUDA structures GPU kernels into parallel thread
blocks. Programmers specify the number of thread blocks
and threads per block, and the hardware and drivers map
thread blocks to SMs on the GPU. Threads within a block
can cooperate among themselves by sharing data through

shared memory and synchronizing their execution to co-
ordinate memory accesses [17]. Beside shared memory
GPU also has read-write global memory, read only con-
stant memory and read only texture memory accessible to
all threads. These memory spaces are optimized for dif-
ferent memory usages. Texture memory is cached and the
cache is optimized for 2D spatial locality, i.e. threads that
read texture addresses that are close together will achieve
better results [18].

Recently, CUDA technology has been used for image
segmentation and classification [19, 20, 21, 22], 3D simu-
lations [20, 21], different mathematical computations [25,
26], etc. Most of the GPGPU-based research is about the
algorithm speed up and their real-time application. Au-
thors in [19] achieved 10-50 times speedup for the GPU
version of the Quick shift algorithm. Speedup factor of 360
was achieved in [20] for co-occurrence matrix calculation
and Haralick texture features extraction. In [22] a real-time
non-parametric color image segmentation method has been
implemented on the GPU platform.
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Output array

Step
7

Step 6

Step 5

Step 4

Fig. 9. Parallel prescan operation with tree representation
of two phases.

According to Tab. 1, MALD1 and MALD3 meth-
ods are implemented in GPU with CUDA technology.
CUDA implementation of the MALD3 algorithm consists
of two parts: parallelization of 1D integral image with the
all-prefix-sum operation, and the GPU parallelization of
MALD algorithm with II1D approach (MALD3). On the
other hand, CUDA implementation of MALD1 algorithm
consists of only GPU parallelization of MALD algorithm.

CUDA utilizes the all-prefix-sum operation to calculate
1D integral image. The all-prefix-sums operation takes a
binary associative operator ⊕ and an ordered set of n ele-
ments [a0, a1, ..., an-1], and returns an ordered set [a0, a0
⊕ a1, ..., a0 ⊕ a1 ⊕ ···⊕ an−1 ].

In [21] the all-prefix-sum operation is used on a data
segment. Similarly for this paper, the all-prefix-sum op-
eration is executed on a single line (data segment) of the
ceramic tile image where ⊕ is the addition operator. Out-
put of the operation is an equally sized array in which each
element value is the sum of all preceding elements, which
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Table 4. Power consumption, maximum operating frequency and execution times for sequential and pipelined parallel
MALD implementations on three FPGA families and ceramic tile image with 1024 pixels per line.

is the so-called scan operation. Beside the scan operation
the all-prefix-sum can result in an array that contains the
sum of all previous elements but without the final element,
the so-called prescan operation. Prescan operation returns
the ordered set [0, a0, a0 ⊕ a1, ..., a0 ⊕ a1 ⊕ ··· ⊕ an−2
]. Prescan result can be generated from the scan result by
right shift operation and zero padding from the left. Anal-
ogously, scan can be generated from the prescan result, re-
spectively.

Although the all-prefix-sum is inherently sequential al-
gorithm, there is an efficient parallel solution that consists
of two parts: the up-sweep and the down-sweep. As il-
lustrated in the example, c.f. Fig. 9, input requires an ar-
ray length n to be a power of two. Each tree level in the
up-sweep can be executed in parallel where the number of
used processors is reduced with every step by two. Step 0
uses n/2 processors, since every processor adds only two
values. Step 1 uses n/4 processors etc. Result of the up-
sweep is the total sum of the array and the partial sums
(step 1 and step 2). Partial sums are used in the second
down-sweep phase, i.e. in the prescan. The down-sweep
starts at the root of the up-sweep tree, with the root value
replaced with zero. Each step of the down-sweep, the ver-
tex value from the previous step is added to the left child
and copied to the right child, while the left child value is set
to the vertex value. Finally at step 7 resulting output array
is the so-called prescan of the input array [27]. Develop-
ment of the prescan algorithm is explained in [28] and im-
plemented in the CUDA’s data parallel primitives library
(CUDPP). For 2D array it can perform prescan and scan
operations on each row independently, without zero col-
umn padding. In this work, zero padding is implemented
by checking if index value is –1.

CUDPP algorithms are executed using the algorithm
interface functions and the plan interface functions. Plan
Interface functions are used for creating CUDPP plan ob-
jects that contain configuration details and intermediate

storage space. Algorithm interface functions execute spe-
cific algorithm based on configuration details in the plan
object [29].

MALD algorithm is implemented using Alg. 2 with
CUDA capable NVIDIA’s 8-series GPU 9800 GT with 112
CUDA cores and compute capability 1.1 [30]. Input image
I and the integral image II1D are global read-only texture
references which can be accessed inside the kernel using
CUDA texture fetch functions. CUDPP plan is created in
order to calculate integral image II1D with the scan algo-
rithm. After initialization, Alg. 2 (lines 5-10) executes a
loop in which an input image is copied from CPU to GPU.
The output array B is initialized to zero values and inte-
gral image is calculated by executing the scan operation
plan. CUDA kernel, defined with Fig. 10, is executed and
the output B is copied from a GPU to CPU. Finally, the
CUDPP plan is destroyed and the global and the local GPU
memories are freed.

Algorithm 2 Parallel MALD method on a CUDA GPU.

MALD3 kernel is illustrated in Fig. 10 b. MALD3 ker-
nel sum is calculated Nx=X–2(w+d) times per line. CUDA
kernel executes Nx·Y number of threads in parallel, for im-
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age size [X, Y ]. Since the number of required threads ex-
ceeds the limit of 512 threads per block, a grid of blocks
G3 is organized as

G3 =

(
(Nx +Ntx − 1)

Ntx
,
(Y +Nty − 1)

Nty

)
(10)

Where Ntx = 8 represents the number of threads in
the x dimension of the block and Nty = 8 represents the
number of threads in the y block dimension. By knowing
the number of blocks and the maximum number of threads
per block (10) one can guarantee that the total number of
threads is always equal or greater than the required Nx·Y
number of threads. Maximum number of threads per block
depends on the GPU series [18].

MALD1 GPU implementation uses Alg. 2 without
(lines 2*, 4, 8 and 13). In comparison with MALD3,
MALD1 doesn’t use integral image and CUDPP plan.
MALD1 kernel window sum is also calculated Nx times
per line and the GPU kernel executes Nx·Y number of
blocks (11).

G1 = (Nx, Y ) (11)

Each block has 2dlog2 we threads, grouped as
(Ntx, Nty) = (2dlog2 we, 0). In each block, w threads are
used for parallel data copying from a GPU global memory
to a GPU shared memory, while the rest of the threads are
used for setting the unused shared memory values to zero.
Thread synchronization ensures that all data is copied in a
shared memory before continuing with the next step, c.f.
Fig. 9a. Parallel summation of data in shared memory is
done with the reduction algorithm, c.f. Fig. 6. CUDA
reduction algorithm [31] uses 2dlog2 we threads for the both
kernel window sums separately, c.f. Fig. 2a. Again, thread
synchronization is used to ensure that the summations are
finished and stored in the 0th element of the block shared
memory buffers. In this way, separate summations of the
left and the right side of the MALD1 kernel window, c.f.
Fig. 2a, are stored in a GPU shared memory. In order
to avoid non-necessary memory accesses, the rest of the
GPU kernel is executed by only one thread, c.f. Fig. 10a.

4 EXPERIMENTAL RESULTS

Experimental results are obtained with three computa-
tional platforms, as it is proposed in Section III. CPU and
GPU implementations are considered with the following
constraints. Ceramic tile images are considered with sizes
[X,Y] ∈ {(1024, 1024), (1536, 1024), (2048, 1024), (2048,
2048)} Typical ceramic tile image is illustrated in Fig. 11a.
Three kernel window sizes are used w∈{16, 32, 64}, c.f.
Fig. 5, while other kernel
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Fig. 10. GPU kernel of: MALD1 (a); MALD3 (b).

window parameters are fixed: d = 5, t1 = 5 and t2 = 30.
Average execution times are calculated with 50 iterations.
On the other hand, the FPGA implementations, presented
in Tab. 1, have fixed execution times that are related to the
maximum operating frequency of the MALD’s hardware
design and the properties of the target FPGA. Spartan-3,
Virtex-4 and Virtex-5 are considered in this paper. Virtex-
5 FPGA implementation of MALD1 has the smallest ex-
ecution time value of 1.8 µs per line with 1024 pixels.
Therefore, the whole image with the fixed parameter w =
32 and height Y∈(1024, 1536, 2048), can be processed on
the FPGA in (1.843, 2.765, 3.686) ms.

Execution times of MALD implementations, c.f. Tab.
1, for CPU, GPU and FPGA platforms are illustrated in
Fig. 12. Ceramic tile image with the size of (1024, 1024)
pixels is taken with the BASLER A102FC camera which
is mounted on the ceramic tile production line, c.f. Fig.
1. MALD execution times, c.f. Fig. 12, are in accordance
with the number of operations calculated in Tab. 3, with
only one exception. MEX MALD2 has better calculation
times than MEX MALD3 only in cases when the kernel
window parameter w is the power of two, c.f. Fig. 5.

FPGA results are calculated from the execution time
required to process a single line. Beside the shortest exe-
cution time, FPGAs have additional advantage due to the
fact that the execution time has exact length. On the other
hand, CPU and GPU are OS (Windows in this case) driven
systems which can affect timings by calculating something
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a)

b)

Fig. 11. Ceramic tile input image I with size (1024,1024)
with defects (a) and the output binary image B with de-
tected defects (b).

in the background, i.e. multitasking. Overall, GPU outper-
formed CPU in both, MALD1 and MALD3 implementa-
tions. However, GPU has better performances as image
becomes larger, c.f. Fig. 13. MALD implementations
are executed on variable image sizes, in order to illus-
trate that with larger input data, the parallel computation
capability becomes more effective. Subsequently, for se-
quential algorithms, as it is the case with the 1D integral
image algorithm, Alg. 1, CPU outperforms GPU, as de-
picted in Fig. 14. Since integral image creation is a se-
quential process, best performances are obtained with the

CPU sequential implementation. Parallel GPU implemen-
tation with the all-prefix-sum is not as fast as it is compli-
cated to implement. MATLAB’s MEX/C++ functions ex-
ecute the same calculation about 5 times faster than MAT-
LAB’s m-functions, which is why it wasn’t shown in Fig.
13. When compared to C++, MEX/C++ files are generally
slower due to requirement for conversion to special data
types and transposed input and output arrays [11].
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Fig. 12. Execution times of MALD methods implemented
on different computational platforms, c.f. Tab. 1. Mea-
surement is done on a ceramic tile image with the size of
(1024, 1024) pixels and the kernel window size w = 32.
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5 CONCLUSION
This paper proposes MALD method implementations

on CPU, GPU and FPGA computational platforms. It is
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Fig. 14. MALD3 integral image calculation time with vary-
ing image size.

shown that the best method, concerning ALU operation,
is the proposed MALD3 method, which uses integral im-
age approach. Integral images enable mean value calcula-
tion in constant time and thus decrease the execution time
of the MALD method mean value calculation. MALD3

method has the least number of calculations and therefore
has the slowest execution times on CPU and GPU plat-
forms. GPU platform has better performance when com-
pared to the CPU platform and the difference in execution
time increases between the platforms in favor of the GPU
as the image size becomes larger. FPGA platform is inde-
pendent on the kernel window size and is only limited with
the FPGA hardware resources. It gives the best result of all
three platforms, but is the least flexible solution concern-
ing further analysis. FPGA solution is adjusted for a 1D
line-scan camera, while CPU and GPU are used with a 2D
camera. In general, MALD method processes 1D image
lines independently, what enables comparison of all three
platforms. Finally, the results of this paper show how a
specific algorithm works in a combination with a specific
computational platform. By comparing proposed imple-
mentations, one can achieve significantly shorter execution
times. With shorter image processing execution time, a ce-
ramic tile production speed can improve.
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anje keramičkih pločica, Sveučilište J.J. Strossmay-
era u Osijeku, Elektrotehnički fakultet Osijek, 2009.
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