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In this paper the Wheeled Acrobot (WAcrobot), a novel mechanical system consisting of an underactuated
double inverted pendulum robot (Acrobot) equipped with actuated wheels, is described. This underactuated and
highly nonlinear system has potential applications in mobile manipulators and leg-wheeled robots. It is also a test-
bed for researchers studying advanced methodologies in nonlinear control. The control system for swing-up of the
WAcrobot based on collocated or non-collocated feedback linearisation to linearise the active or passive Degree Of
Freedom (DOF) followed by Linear Quadratic Regulator (LQR) to stabilise the robot is discussed. The effectiveness
of the proposed scheme is validated with numerical simulation. The numerical results are visualised by graphical
simulation to demonstrate the correlation between the numerical results and the WAcrobot physical response.

Key words: Double Inverted Pendulum, Wheeled Robot, Underactuated Robot, Partial Feedback Linearisation,
Linear Quadratic Regulator (LQR), Stabilisation

Njihanje i upravljanje stabilnošću koturajućeg Acrobota. U članku je opisan koturajući Acrobot (WAc-
robot), novi mehanički sustav koji se sastoji od podupravljanog robota u obliku dvostrukog inverznog njihala (Ac-
robot) opremljenog s aktuiranim kotačem. Ovaj podupravljani i izrazito nelinearni sustav ima potencijalnu primjenu
u mobilnim manipulatorima i robotima na kotačima. Tako�er služi kao testni model za istraživače koji proučavaju
napredne metode nelinearnog upravljanja. U radu je opisan sustav upravljanja za podizanje WAcrobot-a u ispravan
položaj baziran na metodama kolocirane i nekolocirane eksterne linearizacije za linearizaciju aktivnog ili pasivnog
stupnja slobode, i linearnom kvadratičnom regulatoru za stabilizaciju robota. Učinkovitost predvi�ene metode je
validirana simulacijskim rezultatima. Rezultati su prikazani u obliku animacije kako bi se demonstrirala korelacija
izme�u simulacijskih odziva i fizičkog odziva WAcrobota-a.

Ključne riječi: dvostruko inverzno njihalo; robot na kotačima; podupravljani robot; parcijalna eksterna lin-
earizacija; linearni kvadratični regulator; stabilizacija

1 INTRODUCTION

The inverted pendulum system is a perfect test-bed for
the design of a wide range of classical and contempo-
rary control techniques. Its applications range widely from
robotics to space rocket guidance systems, but originally,
these systems were used to illustrate ideas in control the-
ory. Due to their inherent nonlinear nature, they have re-
mained useful and they are now used to illustrate various
ideas emerging in the field of modern nonlinear control.

There are different types of the inverted pendulum sys-
tems offering a variety of interesting control challenges.
The common types are the single inverted pendulum on a
cart [1,2], the double inverted pendulum on a cart [3,4], the
double inverted pendulum with an actuator at the first joint
only (Pendubot) [5], the double inverted pendulum with
an actuator at the second joint only (Acrobot) [6, 7], the
rotational single-arm pendulum [8–11], and the rotational

two-arm pendulum [12]. The control techniques involved
in inverted pendulum systems are also numerous, ranging
from simple conventional controllers to advanced control
techniques based on modern nonlinear control theory. A
vast range of contributions exists for the stabilisation of
different types of inverted pendulums [1, 8, 13, 14]. Be-
sides the stabilisation aspect, the swing-up of single and
double inverted pendulum systems is also addressed in the
literature, e.g. swing-up of classic single pendulum on a
cart [8, 15], Acrobot and Pendubot [5, 6] and the rotary
pendulum [11, 16]. Beyond non-mobile inverted pendu-
lum systems, wheeled inverted pendulum mobile robots or
commonly known as balancing robots e.g., Segway [17],
Quasimoro [18], and Joe [19], have also induced much
interest and extensive controller developments have been
achieved by researchers over the last decade [20–23].

Online ISSN 1848-3380, Print ISSN 0005-1144
ATKAFF 55(1), 32–40(2014)

32 AUTOMATIKA 55(2014) 1, 32–40



Swing-Up and Stability Control of Wheeled Acrobot (WAcrobot) Mohsen Moradi Dalvand, Bijan Shirinzadeh, Saeid Nahavandi

In this paper, the swing-up control problem of the
WAcrobot from its natural equilibrium point called pen-
dant position to any arbitrarily small neighbourhood of
the upright equilibrium point called inverted position and
then switching to balance control problem, is investigated.
The design of the swing-up controller is based on the no-
tion of partial feedback linearisation of underactuated sys-
tems [24] that linearises the active or passive DOF(s) of
the WAcrobot. The Linear Quadratic Regulator (LQR)
controller is employed to stabilise the WAcrobot around
the inverted equilibrium position. The effectiveness of the
proposed control system is verified using numerical sim-
ulation visualised by graphical simulation to illustrate the
physical response of the WAcrobot.

θ1

θ3

θ2

Active Joint

Passive Joint

a

b

Fig. 1. WAcrobot, Acrobot (a) and Wheeled Inverted Pen-
dulum (b)

The rest of the paper is organised into five sections.
In the next section, the WAcrobot mechanism is explained
and its model is schematically described. In section 3, the
stabilisation controller and the swing-up controller are dis-
cussed and the mode switching approach is discussed. Nu-
merical and graphical simulations results are demonstrated
in section 4. Section 5 gives conclusion.

2 THE WACROBOT

The WAcrobot (Figure 1) is an underactuated system
consisting of an Acrobot, a double inverted pendulum

Table 1. Definition of Parameters
Parameter Definition

θi(i = 1, 2, 3)
Angular rotation of wheels and
pendulums

mi(i = 1, 2, 3) Mass of wheels and pendulums

lci(i = 2, 3)
Length from the joint to the centre
of the gravity of pendulums

li(i = 1, 2, 3)
Radius of wheels and length of
pendulums

Ii(i = 1, 2, 3)
Inertia moment around the centre of
gravity

with actuator at the second joint only (Figure 1-a), that is
equipped with actuated wheels and is able to move [25].
In other words, the WAcrobot is the combination of an Ac-
robot and a wheeled inverted pendulum robot (Figure 1-b).
The mathematical model of the WAcrobot can be derived
in the form of the Euler-Lagrange equations as:

M11θ̈1 +M12θ̈2 +M13θ̈3 +H1 +G1 = τ1 (1)
M21θ̈1 +M22θ̈2 +M23θ̈3 +H2 +G2 = 0 (2)
M31θ̈1 +M32θ̈2 +M33θ̈3 +H3 +G3 = τ2 (3)

where θ1, θ2 and θ3 are angular positions of wheels,
first and second pendulum respectively, M(θ)εR3×3 is the
symmetric, positive definite inertia matrix, HεR3 contains
Coriolis and centrifugal terms, G(θ)εR3 contains gravita-
tional terms and τ = [τ1 0 τ2]

T is the input generalised
force vector produced by two actuators at wheels and the
second pendulum. This equation represents the underac-
tuated system of the WAcrobot including two inputs (τ1
and τ2), two active DOFs (θ1 and θ3) and one passive DOF
(θ2). Parameters of the WAcrobot are defined in Table 1.

3 SWING-UP CONTROLLER

The swing-up controller of WAcrobot is achieved by
rolling the wheels within the limited travel while forcing
the actuated or not actuated pendulums to track the pro-
posed trajectories in order to guarantee that eventually tra-
jectories enter the basin of attraction of the balance con-
troller, which is in turn designed to exponentially stabilise
the inverted equilibrium state. The swing-up controller
of the WAcrobot is designed based on collocated or non-
collocated partial feedback linearisation techniques [26]
followed by switching to the balancing controller based on
Linear Quadratic Regulator (LQR).

3.1 Collocated Linearisation
Collocated linearisation refers to a control technique

that linearises the equations associated with the active
DOFs (y = [θ1 θ3]

T ).
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Fig. 2. Block diagram of the collocated feedback lineari-
sation control

Since M22 = m2l
2
c2 + m3(l

2
c3 + l22) + I2 + I3 +

2m3l2lc3cos(θ3) from Equation (2) is always bounded
away from zero over the configuration manifold, as a con-
sequence of the uniform positive definiteness of the inertia
matrix, θ̈2 can be derived from this Equation as:

θ̈2 = −M−122 (M21θ̈1 +M23θ̈3 +H2 +G2) (4)

Further, substituting Equation (4) to Equations (1) and
(3), the collocated feedback linearisation controller is de-
rived and the original system of the WAcrobot is repre-
sented as:

θ̈1 = v1 (5)
M22θ̈2 +H2 +G2 = −M21v1 −M23v3 (6)

θ̈3 = v3 (7)

where v1 and v3 are the new control inputs as

v1 = θ̈r1 + kd1(θ̇
r
1 − θ̇1) + kp1(θ

r
1 − θ1) (8)

v3 = θ̈r3 + kd3(θ̇
r
3 − θ̇3) + kp3(θ

r
3 − θ3) (9)

where θr1(t) and θr3(t) are reference trajectories and kd1 ,
kp1 , kd3 and kp3 are positive gains. These gains together
with the initial condition, completely determine the partic-
ular trajectory of the zero dynamic to which the response
of the complete system converges. Block diagram of the
collocated feedback linearisation controller is illustrated in
Figure 2. To excite the WAcrobot, from its pendent posi-
tion, arctangent as function of velocity of second pendulum
and sine function are employed for θr3 and θr1, particularly
θr3 = α arctan(θ̇2) and θr1 = a sin(ωt) where α, a, and
ω are constants. The arctangent function has the desirable
characteristic of straightening out the first pendulum, al-
lowing a balancing controller to catch the system in the
approximately inverted position.

3.2 Non-Collocated Linearisation
In non-collocated linearisation, the passive DOF (θ2)

as well as the active DOF θ1, as output y = [θ1 θ2]
T is

linearised by nonlinear feedbacks. Equation (2) yields:

θ̈3 = −M−123 (M21θ̈1 +M22θ̈2 +H2 +G2) (10)

where the condition M23 = m3lc3(lc3 + l2cos(θ3)) 6= 0 is
termed Strong Inertial Coupling and imposes some restric-
tions to the inertia parameters of the WAcrobot, namely
that lc3 > l2. Further, substituting Equation (10) to Equa-
tions (1) and (3), the non-collocated partial feedback lin-
earisation controller is derived and the original system of
the WAcrobot is represented as :

θ̈1 = v1 (11)
θ̈2 = v2 (12)

M23θ̈3 +H2 +G2 = −M21v1 −M22v2, (13)

where v1 and v2 are the new control inputs. Using the non-
collocated linearisation method, a linear response from the
second DOF (θ2) can be achieved, even though it is not di-
rectly actuated but is instead driven by the coupling forces
arising from motion of the third DOF (θ3). If θr1(t) and
θr2(t) are reference trajectories for θ1 and θ2, the input
terms v1 and v2 may be chosen as:

v1 = θ̈r1 + kd1(θ̇
r
1 − θ̇1) + kp1(θ

r
1 − θ1) (14)

v2 = θ̈r2 + kd2(θ̇
r
2 − θ̇2) + kp2(θ

r
2 − θ2) (15)

where kd1 , kp1 , kd2 and kp2 are positive gains. Similar to col-
located feedback linearisation case, for θr1 and θr2, the sine
and arctangent functions are used.
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Fig. 3. Switching block diagram

4 MODE SWITCHING AND BALANCING

The controller supervisor excites the WAcrobot and
forces the trajectories of pendulums to enter the basin of at-
traction of the local balancing controller and then smoothly
switches to the balancing controller employed to maintain
the WAcrobot inverted and to reject the possible external
disturbance. The balancing controller is designed using
the Linear Quadratic Regulator (LQR) based on the lin-
earised plant model around the inverted equilibrium point.
The LRQ is a controller for state variable feedback in such
a way that u = −Kx is the input so that the value of K is
obtained from a minimizing problem of the functional cost

J =

∞̂

0

(x
′
Qx+ u

′
Ru)dt

where matrix Q and R are positive semidefinite matrix
and symmetric positive definite matrix which penalize the
state error and the control effort, respectively. Figure 3
illustrates the switching block diagram from partial feed-
back linearisation controller to the balancing controller. In
the proposed control system disturbances are handled by
switching back into the swing-up mode and re-converging
to the basin of attraction of the balancing controller. In this
system, large disturbance can also be treated by switch-
ing to another linear controller for the nearest equilibrium
point to the deviated position to keep the robot balanced
there and then switching back again to the linear controller
for the inverted position.

5 SIMULATION RESULTS

In order to verify the validity of the proposed method,
numerical and visual simulations are carried out. The sim-
ulations are performed with the parameters given in Table
2.

Table 2. Parameters of the WAcrobot
Wheels/

Pendulums Wheels First
Pendulum

Second
Pendulum

mi [kg] 1.22 0.28 0.72
li [m] 0.05 0.15 0.45

Ii [kg.m
2] 1.53E-003 5.98E-004 1.3138E-

002

In table 2, parameter l for wheels means radius while
this parameter for pendulums means length. The initial
conditions for the WAcrobot while it is at rest in the pen-
dent position are as

θ1 = 0 θ2 = π θ3 = 0

θ̇1 = 0 θ̇2 = 0 θ̇3 = 0
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and Q and R in the optimal regulator are chosen as Q =
diag([10, 100, 100, 0, 0, 0]) and R = diag([0.1, 0.1]). By
computing the LQR control law, the state-feedback gain
matrix is obtained as:

K =

[
29.64 −3.57 −8.09 −0.93 −2.15 −0.13
11.00 38.40 53.51 7.27 14.64 3.46

]

5.1 Collocated Linearisation

Figure 4 shows the simulation results for the swing-up
of the WAcrobot using the collocated feedback linearisa-
tion controller. In this figure the simulation responses of
angular position and velocity of the wheels and pendulums
as well as applied torque to actuated DOFs are shown, re-
spectively. In this simulation, controller gains are selected
as α = 0.05, a = −2, ω = 2, kp1 = 20, kd1 = 10, kp2 = 10
and kd2 = 5 and the switching conditions to be met before
changing from swing-up to balancing controller are deter-
mined by the following criteria:

||θ2| − nπ| < 0.33, (n = 0, 2, ...)

||θ3 − θ2| − nπ| < 0.27, (n = 0, 2, ...)

which yields a suitable neighbourhood of the inverted po-
sition. As Figure 4 shows the switching conditions are sat-
isfied and the swing-up phase is terminated at t = 0.96 s.

Figure 6 shows different snapshots of the visualised
simulation of the swing- up and stabilisation of the WAc-
robot. It is clear from both numerical and visualised simu-
lations that the WAcrobot is swung up from its initial pen-
dant position and is stabilised in the inverted position in
less than 8 seconds. Note that both pendulums undergoes
a complete rotations, but in different clockwise and counter
clockwise directions.

5.2 Non-Collocated Linearisation

Considering the parameters in Table 2, the Strong Iner-
tial Coupling condition is satisfied and the control law for
the non-collocated linearisation can be utilised. The results
of the swing-up simulation based on the non-collocated
feedback linearisation controller using controller gains
α = 0.05, a = 2, ω = 2.5, kp1 = 20, kd1 = 10, kp2 = 10
and kd2 = 5 and the switching criteria as

||θ2| − nπ| < 0.25, (n = 0, 2, ...)

||θ3 − θ2| − nπ| < 0.15, (n = 0, 2, ...)
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Fig. 4. The simulation responses of the wheels and pendu-
lums using collocated feedback linearisation method
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Fig. 5. The simulation responses of the wheels and pendu-
lums angles and velocities as well as applied torque to ac-
tuated degrees of freedom using non-collocated feedback
linearisation method.

are shown in Figure 5. Switching criteria are satisfied at
time t=0.90 s. Various snapshots of the graphical simula-
tion of the swing-up based on non-collocated linearisation
are shown in Figure 7. It is concluded that, non-collocated
linearisation controller, similar to the collocated lineari-
sation controller, forces both pendulums to undergo one
complete rotation from different directions, but the direc-
tions in collocated and non-collocated controller systems
are reverse. Therefore, considering the mechanical spec-
ification of the WAcrobot, either of them can be chosen.
The simulation results illustrate the effectiveness of the
proposed control methodologies and the developed theo-
ries.

6 CONCLUSION

In this paper a novel underactuated mechanical system
called WAcrobot, that is combination of Acrobot and mo-
bile inverted pendulum, has been described. The swing-up
control problem of the WAcrobot on the basis of switch-
ing control strategy is addressed. Collocated and non-
collocated feedback linearisation methods have been eval-
uated to swing the WAcrobot up to any arbitrarily small
neighbourhood of the upright equilibrium point. Balancing
controller based on the LQR technique has been employed
to stabilise it in the upright equilibrium point. This pa-
per has also provided numerical and graphical simulation
results to validate the obtained theoretical results and to
demonstrate the correlation between the numerical results
and the WAcrobot physical response. Good performance
results have been obtained with the partial feedback lin-
earisation and balancing controllers developed to swing up
and stabilise the WAcrobot.
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