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Abstract 
Multivariate approaches like principal component analysis (PCA) are powerful tools to investigate 

hydrophobic descriptors and to discriminate between intrinsic hydrophobicity and polar contributions as 

hydrogen bonds and other electronic effects. PCA of log P values measured for 37 solutes in eight solvent-

water systems and of hydrophobic octanol-water substituent constants  for 25 meta- and para-

substituents from seven phenyl series were performed (re-analysis of previous work). In both cases, the 

descriptors are reproduced within experimental errors by two principal components, an intrinsic 

hydrophobic component and a second component accounting for differences between the systems due to 

electronic interactions. Underlying effects were identified by multiple linear regression analysis. Log P 

values depend on the water solubility of the solvents and hydrogen bonding capabilities of both the solute 

and the solvents. Results indicate different impacts of hydrogen bonds in nonpolar and polar solvent-

water systems on log P and their dependence on isotropic and hydrated surface areas. In case of the -

values, the second component (loadings and scores) correlates with electronic substituent constants. More 

detailed analysis of the data as -values of disubstituted benzenes XPhY has led to extended symmetric 

bilinear Hammett-type models relating interaction increments to cross products X Y, Y X and X Y 

which are mainly due to mutual effects on hydrogen-bonds with octanol.  
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Introduction 

Per IUPAC definition [1], hydrophobicity "is the association of nonpolar groups or molecules in an 

aqueous environment which arises from the tendency of water to exclude nonpolar molecules". In the 

strict sense, this operational definition specifies "hydrophobic effects" and "hydrophobic bonding" as 

intramolecular or intermolecular interactions in an aqueous phase due to attracting forces (van der Waals 

forces based on orientation, induction and dispersion) and structural reorganization of water adjacent to 

nonpolar groups. Ordered water molecules in hydration shells with enthalpically stronger H-bonds are 

transferred into bulk water with a lower degree of order, leading to an increase of both enthalpy and 

entropy (for review, see [2]). With a predominating entropy term (which is not necessarily the case if 

restriction of flexible solutes is taken into acccount) hydrophobic interactions are stronger than the 

attracting forces themselves. In this context, hydrophobic effects are closely related to the interacting 

nonpolar surface and volume fractions of groups or molecules. 

http://www.pub.iapchem.org/ojs/index.php/admet/index
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Hydrophobicity is operationally discriminated from lipophilicity which "represents the affinity of a 

molecule or a moiety for a lipophilic environment", commonly "measured by its distribution behavior in a 

biphasic system" (IUPAC [1]). With this definition, experimental aspects come into play: Hydrophobic or 

lipophilic effects are quantified by measurement of partition coefficients P in solvent-water systems or 

retention indices in RP-HPLC or TLC (for reviews of methods, see [3] and articles therein). These quantities 

do not simply reflect "hydrophobicity" as defined above, but depend on the interactions of the complete 

solute molecules with both phases and on the phase transfer. I.e., not only the nonpolar surface fraction of 

the solute plays a role, but also polar effects like dipole-dipole interactions as well as formation and 

breaking of hydrogen bonds (see [4] and references therein). Different conformations and intramolecular 

interactions in both phases may also be of impact. Hydrophobic (or lipophilic) descriptors are therefore 

rather complex. Nevertheless, in a first approximation they may be regarded as consisting of a nonpolar 

and a polar component, making factorization an attractive tool to better understand their nature. 

The introduction of hydrophobic effects and parameters into systematic quantitative structure-activity 

relationships (QSAR) analysis was an essential part of the pioneering work of Corwin Hansch, Albert Leo and 

their coworkers. On one hand, they collected or measured a huge number of partition coefficients in 

different solvent-water systems [5, 6], documented as linear free-energy related quantities log P, derived 

the hydrophobic substituent constant  [7] in analogy to Hammett's electronic  parameter, and developed 

a constructional fragment method of calculating partition coefficients [8]. On the other hand, the 

exploration of numerous QSAR on different levels of integration led to a substantial advancement of the 

theoretical background, namely of the role of hydrophobic effects in ADMET (especially in transport, 

distribution, membrane passage) and in protein-ligand interactions ("hydrophobic bonding").           

Beginning with the work of Collander [9], the correlation of log P values from different solvent-water 

systems and the decomposition of log P into more fundamental molecular descriptors like solubility, 

surface fractions, polarizability and hydrogen-bond strengths have contributed to quantitative structure-

property analysis (QSPR) of hydrophobic effects (for review, see [4, 10]). However, already in 1964 octanol-

water partition coefficients were implemented as standard in QSAR analysis because of the similarity of n-

octanol and lipophilic biophases [7]. QSPR with focus on octanol-water log P were integral parts of the 

foundation of log P calculation software as Rekker's fragment additivity method [11, 12], CLOGP (for 

review, see [10]), ACDLabs [13], several atomistic approaches and the recent surface-integral model using 

local properties from semiempirical MO-calculations and their integrals over the molecular surface [14]. 

Based on large log P databases – in 1995, Hansch, Leo and Hoekman documented ca. 17,000 values [6] – 

these methods have become more and more predictive, but also rather intransparent for an ordinary user 

with respect to the underlying QSPR, i.e., to the "factors", the specific inter- and intramolecular interactions 

and forces which affect the log P under consideration. Thus, in addition to available papers and manuals, 

detailed QSPR of hydrophobic descriptors may be helpful to interprete and validate calculated quantities. 

At this point, multivariate analysis may come into play. The linear decomposition of correlated 

hydrophobic descriptors into uncorrelated "inner variables" (factors or principal components, PCs) by factor 

or principal component analysis (PCA) yields the underlying, "inner" data structure (dimensionality, 

common and specific components). Correlation of the PCs with physicochemical parameters identifies basic 

effects accounting for the multivariate QSPR. With this feedback, hydrophobic descriptors may be modeled 

as linear functions of nonpolar and polar components by comparative multiple regression analysis. In the 

following sections, previous multivariate approaches jointly investigating log P values from diverse solvent-

water systems and substituent constants  derived from different aromatic scaffolds will be reviewed, 

accompanied by recalculations based on more recent data if available.       
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Experimental  

The present study is based on principal component analysis and multiple linear regression analysis of 

hydrophobic descriptors. In brief, PCA factorizes correlated data from m variables (systems) and n objects 

(compounds) into uncorrelated PCs according to the model: 

     etay ijkj

p

1k
ikij

 


 

where aik are system-specific PC loadings and tkj compound-specific PC scores. The number of significant 

PCs p yields the dimensionality of the data, i.e., their recombination by the model except for an error eij. 

Scaling of the variables (original data, normalized with zero means, or standardized with zero means and 

standard deviations of one) determines whether the cross product, the covariance or the correlation matrix 

is diagonalized. The PCs 1 to p are calculated via successive extraction of the maximal (residual) 

"correlation", i.e., via the eigenvalues and eigenvectors of the matrix under consideration. Present 

recalculations were performed with in-house programs FAPCA and REGRE.  

Multivariate analysis of partition coefficients log P from different solvent-water systems 

The correlation of log P-values from different solvent-water systems was first reported by Collander [9]. 

The Collander-equation 

log Psolvent 1 = a0 + a1 log Psolvent 2          (1) 

is restricted to homologous series or purely nonpolar solutes and models the different contribution of 

nonpolar solute-solvent interactions in the two solvents. The more hydrophobic solvent 1, the higher the 

slope a1. The intercepts a0 are positively correlated with the water solubility of solvent 1, i.e., hydrophilic 

solutes (log P < 0) result in higher log P if solvent 1 is more polar than solvent 2. PCAs of log P-values from 

such restricted series extract just one significant PC. The loadings increase with the hydrophobicity of the 

solvent, and the scores are strongly correlated with the nonpolar surface of the solutes. 

With variable polar solute moieties, the situation becomes more complex. Then the phase transfer 

comes along with different contributions of electrostatic interactions and, in particular, of broken solute-

water and newly formed solute-solvent hydrogen bonds. PCAs of such extended series commonly lead to 

two significant PCs, a "hydrophobic" and a "polar" one. All analyses known from the literature comply with 

this rule, namely PCAs of log P-values 

 from 18 solutes in six solvent-water systems (n-octanol, diethylether, chloroform, benzene, 

toluene, cyclohexane) [15]; 

 from 28 solutes [16], 50 solutes [17], and 69 solutes [18], respectively, in six solvent-water systems 

(n-octanol, diethylether, chloroform, carbon tetrachloride, benzene, n-hexane) 

Whereas Dove et al. [15] applied the standard PCA method, diagonalization of the correlation matrix, 

the results of the group of Bill Dunn [16, 17, 18] were based on diagonalizing the matrix of cross products 

implied in the SIMCA software pocket. 

In the following section, a newly calculated PCA of log P-values from 37 solutes will be presented to 

exemplify common principles and results. The series is a subset of the solutes analyzed by Koehler et al. 

[18], the number of solvents was extended to eight (by toluene and cyclohexane). Data, either taken from 

ref. [18] or from the tables of Hansch and Leo [5, 6], are presented in Table 1. 
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 Table 1. PCA of log P-values from different solvent-water systems: data and PC scores. 

Nr Solute Octanol 
Diethyl 
ether 

Chloro- 
form Benzene Toluene CCl4 n-Hexane c-Hexane t1 t2 

1 Methanol -0.77 -1.15 -1.26 -1.89 -2.15 -2.10 -2.80 -2.80 -2.65 -0.77 

2 Ethanol  -0.31 -0.57 -0.85 -1.62 -1.70 -1.40 -2.10 -2.10 -2.07 -0.66 

3 n-Propanol 0.25 -0.02 -0.40 -0.70 -0.82 -0.82 -1.52 -1.52 -1.38 -0.46 

4 n-Butanol 0.88 0.89 0.45 -0.12 -0.30 -0.40 -0.70 -0.70 -0.63 -0.09 

5 n-Pentanol  1.56 1.20 1.05 0.62 0.51 0.40 -0.40 -0.26 0.02 0.05 

6 n-Hexanol  2.03 1.80 1.69 1.30 1.29 0.99 0.46 0.70 0.78 0.05 

7 n-Heptanol  2.41 2.40 2.41 1.91 1.84 1.67 1.01 1.49 1.45 0.07 

8 Propionic acid  0.33 0.27 -0.96 -1.35 -1.47 -1.60 -2.14 -2.54 -1.93 0.50 

9 Acetone  -0.24 -0.21 0.24 -0.05 -0.31 -0.30 -0.91 -0.96 -0.97 -1.47 

10 Trimethylamine 0.27 -0.26 0.54 -0.29 -0.36 -0.09 -0.48 -0.44 -0.75 -1.47 

11 Butylamine  0.74 0.11 0.99 0.14 0.30 -0.04 -0.62 -0.29 -0.42 -1.04 

12 Diethylamine 0.57 -0.07 0.81 -0.05 -0.09 0.03 -0.48 -0.34 -0.54 -1.26 

13 Pyridine 0.65 0.08 1.43 0.41 0.29 0.23 -0.21 -0.31 -0.23 -1.37 

14 Aniline  0.90 0.85 1.42 1.00 0.78 0.60 -0.30 0.02 0.12 -0.85 

15 Phenol  1.46 1.64 0.37 0.36 0.15 -0.36 -0.70 -0.81 -0.36 0.81 

16 2-Cl-Phenol 2.15 2.05 1.36 1.46 1.37 1.19 0.85 0.86 0.92 0.19 

17 3-Cl-Phenol 2.50 2.10 1.02 1.12 1.05 0.49 -0.07 0.08 0.49 1.10 

18 4-Cl-Phenol 2.39 2.22 1.01 1.13 1.08 0.48 -0.11 0.08 0.49 1.11 

19 2-Me-Phenol 1.95 1.70 1.23 1.14 1.14 0.67 -0.05 0.15 0.46 0.35 

20 2,4-diMe-Phenol 2.30 2.40 1.50 1.34 1.26 0.78 0.34 0.34 0.76 0.83 

21 2,5-diMe-Phenol 2.33 2.40 1.59 1.52 1.43 1.00 0.38 0.56 0.90 0.71 

22 3,5-diMe-Phenol 2.35 2.43 1.60 1.33 1.29 0.82 0.32 0.27 0.79 0.87 

23 2-Naphthol  2.70 1.77 1.74 1.74 1.68 0.99 0.30 0.32 0.92 0.57 

24 2-OH-Benzoic acid 2.26 2.37 0.58 0.45 0.31 0.00 -0.57 -0.50 0.01 1.61 

25 4-OH-Benzoic acid  1.58 1.42 -0.50 -1.07 -1.17 -1.38 -1.82 -1.77 -1.31 1.72 

26 2-OH-Anisole 1.32 1.44 1.70 1.32 1.26 0.98 0.36 0.48 0.60 -0.60 

27 2-OMe- Benzoic acid 1.59 0.78 2.53 2.68 2.59 2.70 1.65 2.15 1.71 -2.18 

28 2-NO2-Phenol  1.79 2.18 2.35 2.32 2.28 1.91 1.40 1.45 1.53 -0.65 

29 3-NO2-Phenol 2.00 2.18 0.60 0.48 0.34 -0.64 -1.40 -1.22 -0.34 1.80 

30 4-NO2-Phenol 1.91 2.01 0.20 0.17 -0.06 -0.92 -2.00 -1.70 -0.72 2.04 

31 2-NO2-Aniline 1.85 1.95 2.13 1.78 1.64 1.08 0.25 0.36 0.89 0.02 

32 3-NO2-Aniline  1.37 1.71 1.61 1.31 1.19 0.45 -0.62 -0.42 0.28 0.18 

33 4-NO2-Aniline 1.39 1.48 1.23 0.93 0.78 -0.14 -1.14 -1.00 -0.14 0.53 

34 Vanillin  1.21 0.96 1.42 0.82 0.62 0.20 -0.72 -0.70 -0.09 -0.21 

35 o-Vanillin  1.37 1.35 2.30 1.87 1.73 1.40 0.53 0.65 0.94 -0.96 

36 i-Vanillin  0.97 0.82 1.18 0.74 0.46 0.04 -0.85 -0.82 -0.26 -0.32 

37 p-Toluidine  1.39 1.35 1.99 1.43 1.35 1.11 0.44 0.65 0.73 -0.76 
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Table 2 shows PCA results with respect to the solvents as well as the means and variances of the solvent 

columns which had to be additionally considered since merely the correlation structure of the data was 

analyzed by our PCA. 

Table 2. PCA results for the solvents and water solubility parameters used for correlations 

  
Mean Variance 

PC loadings Extracted 
variance 

water solubility 

a1 a2 log  h 

1 n-Octanol 1.39 0.75 0.775 0.609 97.1 % 3.01 5.8 

2 Diethyl ether 1.24 0.95 0.724 0.675 98.0 % 1.28 2.2 

3 Chloroform 1.04 0.91 0.951 -0.194 94.3 % 0.75 2.8 

4 Benzene 0.69 1.14 0.983 -0.035 96.8 % 0.65 1.0 

5 Toluene 0.58 1.19 0.989 -0.039 98.0 % 0.56 1.0 

6 Carbon tetrachloride 0.27 1.03 0.964 -0.253 99.3 % -0.07 0.3 

7 n-Hexane -0.39 1.02 0.946 -0.243 95.3 % -1.87 0.0 

8 Cyclohexane -0.29 1.19 0.953 -0.240 96.7 % -0.90 0.1 

 Total   83.8 % 13.1 % 96.9 %   

The order of the means and variances reflects the general rules derived above from the Collander 

equation. The means are highly correlated with the water solubility of the solvents expressed in terms of 

log  [19]: 

Mean = 0.43 (± 0.16) log  + 0.39 (± 0.23)  r2 = 0.88, s = 0.23,  = 0.001   (2)  

The variances are inversely related to the hydrogen bonding component of the solvent solubility in 

water, h [20] (data from ref. [21]): 

Variance = -0.065 (± 0.042) h + 1.13 (± 0.10) r2 = 0.70, s = 0.08,  = 0.009   (3) 

Thus, log P scales from water soluble solvents capabable of forming hydrogen bonds show higher means 

and lower variances compared to log P scales from nonpolar solvents.        

Two PCs account for 96.9 % of the data variance (first PC, 83.8 %, second PC, 13.1 %). Thus, PCA of log P-

values again results in a two-component model as in the case of the previous analyses [15, 16, 17, 18]. The 

loadings aik (Table 2) represent correlation coefficients between log P from solvent i and scores tk (Table 1). 

Obviously all nonpolar solvents, in particular benzene and toluene, are sufficiently described by the first PC 

which, however, extracts only ca. 55 % of the variance of the hydrogen bonding solvents n-octanol and 

diethylether. Therefore, the first PC represents "pure" hydrophobic effects due to the transfer of solutes 

from water into inert solvents. For polar solvents, a second PC accounting for hydrogen bonds and 

electrostatic interactions between solutes and solvents is necessary. This relationship may be modeled by 

correlation of a2 with the water solubility of the solvents: 

a2 = 0.21 (± 0.17) log  + 0.05 (± 0.24)  r2 = 0.61, s = 0.24,  = 0.021   (4)  

Large positive loadings of highly water-soluble solvents are in contrast to negative loadings of carbon 

tetrachloride, n-hexane and cyclohexane. 

Inspection of the scores tk and their correlation with suitable solute descriptors will enable more 

detailed insights into the QSPR. Figure 1 presents a plot of t1 vs. t2 accounting for "purely hydrophobic" 

effects and polar corrections, respectively, as described above. A homologous series as aliphatic alcohols is 

characterized by a flat line nearly parallel with the abszissa, i.e., by variation of mainly the hydrophobic 

component. Amines under consideration are clustered, their contribution to PC2 is significantly negative. 
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Aniline (14) resides close to the other amines, whereas phenol (15) has a positive t2 value, indicating strong 

interactions with hydrogen-bond acceptor solvents like n-octanol and diethylether. 

 

 

Figure 1.Plot of the scores from PCA. Remarkable solutes are highlighted by colored symbols and/or numbers (cp. 
Table 1): red – alcohols, green – amines, brown – acids, redorange – nitrophenols, orange – 2-OH-anisole, yellow – 

chlorphenols, purple – nitroanilines.      

Positional effects in disubstituted benzenes are evident. On one hand, m-nitroanilines and m-

nitrophenols are slightly more hydrophobic than their p-substituted isomers (compare 29, 30 and 32, 33, 

respectively). On the other hand, o-substituted benzenes are located down to the right with respect to 

their m- and p-isomers as obvious from Figure 1 for hydroxybenzoic acids (24 vs. 25), chlorphenols (16 vs. 

17 and 18), nitrophenols (28 vs. 29 and 30) as well as nitroanilines (31 vs. 32 and 33). The rightward shift is 

due to intramolecular hydrogen bonds and/or proximity effects, both increasing the nonpolar surface and 

reducing hydrogen bonds as well as electrostatic interactions with water. However, these effects are much 

more significant in nonpolar solvents.     

Diethylether and n-octanol are strong hydrogen bond acceptors (n-octanol additionally a weak donor), 

preventing the formation of internal hydrogen bonds in solutes similarly as water (for review, see [22]). The 

downward shift of o-substituted isomers is a consequence of this phenomenon which is most pronounced 

in the case of o-methoxybenzoic acid (27). Also o-hydroxyanisole (26) shows a small negative "ortho-factor" 

in polar solvents rather due to twist than to a hydrogen bond effect [23]. 

Suitable descriptors for the identification of scores from PCA were provided by Dunn et al. [16, 17, 18] 

who defined and calculated the isotropic surface area, ISA [24], of solutes as the surface of the molecule 

accessible to nonspecific interactions with the solvent. The surface area of the solutes involved in specific 

hydrogen bonds with water, HSA, was excluded from the ISA. For calculation of ISA and HSA, Dunn et al. 

constructed hydrated solutes, "supermolecules", from empirical hydration rules based on crystallographic 

data, quantum-chemical approaches, solution modeling and experimental data from solute-gas phase 

equilibria (see [25, 26] and references therein). 
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The scores of PC1, t1, are highly correlated with the isotropic surface area (data from [18]): 

t1 = 2.15 (± 0.25) ISA - 4.96 (± 0.58)  r2 = 0.90, s = 0.32,  < 0.001    (5)  

Thus, the first PC accounts for the well known dependency of log P values on the nonpolar surface 

fraction of solutes based on entropic effects of water exclusion and nonspecific solute-solvent interactions. 

In the PCA approach of Koehler et al. [18], the matrix of cross products was diagonalized, leading to 

orthogonal but correlated scores which also depend on the means and variances of log P in six analyzed 

water-solvent systems. The correlation of t1 from ref. [18] with ISA was weaker than that shown in eq. 5 (r2 

= 0.81).  

The scores of PC2, t2, are significantly related to the hydrated surface area  (r2 = 0.46) [24], but even if 

four outliers (compounds 11, 12, 27, 36) are excluded from the analysis, the correlation remains rather 

weak: 

t2 = 2.67 (± 0.86) HSA - 1.56 (± 0.60)  r2 = 0.56, s = 0.63,  < 0.001    (6) 

I.e., the hydrated surface area plays a role in increasing log P in polar solvents (positive PC2 loadings) 

and decreasing log P in nonpolar solvents (negative PC2 loadings), but HSA is not sufficient to quantitatively 

describe this effect. Compared to eq. 6, Koehler et al. [18] obtained a better correlation of the scores from 

the second PC with the hydrated fraction of the solvent accessible surface area, f(HSA) (69 solutes, r2 = 

0.74) [24]. In our PCA approach, HSA is superior to f(HSA). However, the scores t2 from ref. [18] account 

only for nonpolar solvent-water systems as evident from correlation coefficients between log P and t2 (in 

analogy to loadings a2 from our PCA): octanol, 0.23, diethylether, 0.12, chloroform, 0.84, carbon 

tetrachloride, 0.88, benzene, 0.78, hexane, 0.89. Thus, the correlation of t2 with f(HSA) in the paper of 

Koehler et al. [18] mainly reflects a negative impact of the hydrated surface area fraction on the 

hydrophobicity of solutes in nonpolar solvents.            

The discriminative effect of f(HSA) on log P-values from different solvent-water systems may be 

explored in more detail by regression analysis of log P as function of ISA and f(HSA) (see Table 3). 

Table 3. Regression equations of log P-values (Table 1) as function of surface area descriptors [18]. 

  Regression coefficients 
s r

2
 r

2
 [18]

b 

  ISA f(HSA)
a
  intercept 

1 n-Octanol 2.16 (± 0.61) 6.20 (± 3.00) -4.96 (± 1.96) 0.54 0.61 0.57 

2 Diethyl ether 2.32 (± 0.74) 6.69 (± 3.61) -5.59 (± 2.35) 0.65 0.56 0.48 

3 Chloroform 1.94 (± 0.24) -0.89 (± 1.17) -3.26 (± 0.76) 0.21 0.95 0.88
c 

4 Benzene 2.31 (± 0.37) 0.23 (± 1.82) -4.68 (± 1.19) 0.33 0.91 0.86 

5 Toluene 2.35 (± 0.38) 0.18 (± 1.86) -4.88 (± 1.21) 0.34 0.91  

6 Carbon tetrachloride 1.80 (± 0.37) -2.18 (± 1.81) -3.40 (± 1.18) 0.33 0.90 0.88 

7 n-Hexane 1.56 (± 0.46) -3.09 (± 2.25) -3.32 (± 1.47) 0.40 0.84 0.80 

8 Cyclohexane 1.81 (± 0.49) -2.64 (± 2.40) -3.89 (± 1.56) 0.43 0.84  

a
 Regression coefficients in italics are not significant ( > 0.05). 

b
 Corresponding correlations of the whole dataset in 

ref. [18] (n = 69). 
c 
Regression coefficient of -1.59 for f(HSA) significant ( = 0.01).  

All equations for nonpolar solvents provide a sufficient decomposition of log P into surface area terms. 

In contrast, equations for n-octanol and diethylether explain only ca. 60 % of the data variance. Whereas 

regression coefficients of ISA and intercepts do not significantly differ, effects of f(HSA) are distinctive with 

respect to the solvent class: polar solvents are characterized by a positive, nonpolar solvents by a negative 

or no impact of the hydrated surface area fraction of solutes on log P. Solutes with a high hydration 

potential are poorly transferred just into carbon tetrachloride, n-hexane and cyclohexane. Koehler et al. 
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[18] correlated log P-values calculated from loadings and scores with ISA and f(HSA). Because of the 

nonsignificance of f(HSA) in equations for n-octanol and diethylether, they sugggested that the solutes 

partition into the solvent as the hydrated "supermolecule" due to the water solubility of these solvents 

which compete with water for the hydrogen bonding sites of the solutes, leading to displacement of water 

from the "supermolecule". However, f(HSA) is significant if measured n-octanol and diethylether log P-

values are correlated (Table 3), albeit both equations do not sufficiently model hydrophobicity. Therefore, 

additional descriptors must be taken into account for polar solvents.   

The free energy of solute partition from water into n-octanol and diethylether depends on the 

difference of hydrogen bond interactions in both phases. Suitable descriptors considering these effects on 

log P have been derived by Taft, Kamlet and Abraham et al. [27, 28, 29, 30, 31]. Based on the 

solvatochromic model [32, 33, 34], log P-values are factorized into four parameters: the molecular volume 

V for nonpolar interactions, the solute's dipolarity/polarizability * for orientation and induction forces, as 

well as  and  for the hydrogen bond donor acidity and acceptor basicity, respectively. For example, 

solvatochromic analysis of octanol-water partition coefficients for 103 solutes resulted in the following 

equation [35]: 

log P =  5.15 (± 0.16) V/100 - 1.29 (± 0.16) * - 3.60 (± 0.18)  + 0.45 (± 0.12)   r2 = 0.98   s = 0.16 (7) 

From the series of Koehler et al. [18], solvatochromic descriptors were available for 45 compounds [27, 

30]. Also in case of this subset, the correlations of n-octanol and diethylether log P-values with ISA and HSA 

(r2: 0.77 and 0.63, respectively) or with ISA and f(HSA) (r2: 0.74 and 0.60, respectively) are not sufficient. 

Combining these parameters with the solvatochromic descriptors leads to the following equations for n-

octanol: 

log P =  1.88 (± 0.21) ISA + 1.59 (± 0.34) HSA     - 2.59 (± 0.59)  - 2.99 (± 0.70)  r2 = 0.92   s = 0.25 (8) 

log P =  2.42 (± 0.31) ISA + 5.82 (± 1.40) f(HSA) - 2.53 (± 0.64)  - 4.32 (± 1.06)  r2 = 0.91   s = 0.27 (9) 

and for diethylether: 

log P =  1.80 (± 0.18) ISA + 1.19 (± 0.30) HSA     - 4.19 (± 0.52)  - 1.81 (± 0.62)  r2 = 0.95   s = 0.22 (10) 

log P =  2.24 (± 0.25) ISA + 4.55 (± 1.12) f(HSA) - 4.13 (± 0.51)  - 3.08 (± 0.85)  r2 = 0.95   s = 0.22 (11) 

The volume, dipolarity/polarizability and hydrogen bond acidity descriptors V, * and , respectively, 

are not significant. However, both hydrated surface area descriptors show a multiple collinearity with  and 

: 

HSA     = 1.05 (± 0.20)  + 1.00 (± 0.39)  - 0.22 (± 0.24) r2 = 0.74 s = 0.14   (12) 

f(HSA) = 0.37 (± 0.08)  + 0.38 (± 0.16)  - 0.08 (± 0.10) r2 = 0.66 s = 0.06   (13) 

Taken together, these equations represent the different impacts of hydrogen bonds in nonpolar and 

polar solvent-water systems. The hydrated surface area reflects hydrogen bond donor acidity and acceptor 

basicity in equal parts and is a suitable descriptor of the detrimental effect of solute-water hydrogen bonds 

on log P-values in nonpolar solvents as chloroform, n-hexane and cyclohexane. In contrast, n-octanol and 

diethylether are strong hydrogen bond acceptors themselves. Donor solutes are favored, i.e., log P 

increases if a large hydrated surface area is mainly due to a high -term. The net effect of  on log P is 

negative (compare eqs. 8-11 with 12-13). Accordingly, hydrogen bond acceptor solutes are less 

hydrophobic in these solvents, in particular in diethylether since n-octanol is also a hydrogen bond donor, 

but weak compared to water. In conclusion, the decomposition of log P-values must always consider 

differences of solute-water and solute-solvent interactions. 
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Multivariate analysis of hydrophobic substituent constants  from disubstituted benzenes 

The hydrophobic substituent constant  was first introduced by Hansch et al. [36] as difference of the 

octanol-water log P of substituted and unsubstituted phenoxyacetic acid. Following this concept, numerous 

-values were derived for ortho-, meta- and para-substituents X in various aromatic systems PhY as 

benzenes, nitrobenzenes, anilines, phenols, phenylacetic acids and phenoxyacetic acids [7]. Whereas meta-

para positional effects on X and X-differences of inert substituents were only marginal, X-values of 

hydrogen-bonding, electron-attracting or -releasing substituents depend significantly on the nature of the 

"functional group" Y. Thus, log P values of disubstituted benzenes XPhY are not simply the sum of log P 

(benzene), X and Y from the benzene system, but include "interaction increments" due to electronic 

effects. In a first approximation, their nature was identified by correlations of the type [7]: 

 = X (PhY) – X (PhH) = k X         (14) 

I.e., the difference of the X-values from a series PhY and benzene depends on the electronic properties of 

X, described by Hammett's  constant, and on the specific impact of Y on X, reflected by k.  

To further investigate these effects, principal component analyses of XY-values from different meta- 

and para-substituted aromatic series PhY [5, 7, 37] were performed by Franke et al. [38, 39]. Both 

approaches with separate [38] and simultaneous [39] consideration, respectively, of 27 meta- and para-

substituents (PhY: benzenes, nitrobenzenes, anilines, phenols, benzoic acids, phenylacetic acids, 

phenoxyacetic acids, piperidinoacetanilides) resulted in two significant PCs. The first PC accounted for the 

"average" hydrophobicity of the substituents, and the second PC was due to electronic interactions 

between X and Y and correlated with X. However, these PCAs suffered from too many unknown XY values 

(36 of 216, 17%) which had to be estimated by regression analysis in order to obtain a full data matrix. 

Consideration of more recent experimental log P-values [6] and withdrawal of -values of piperidinoacet-

anilides and the CH2OH group enables a substantial reduction of calculated data (10 of 175, 6%). With this 

update and some substitutions by more reliable values [6, 40], the simultaneous PCA of meta- and para-

disubstituted benzenes was recalculated. The data matrix is shown in Table 4.  

Table 5 presents PCA results for the systems PhY. Two PCs account for 98.7 % of the data variance (first 

PC, 92.6 %, second PC, 6.1 %). The loadings aYk as correlation coefficients between XY from series Y and 

scores tk (Table 4) show that -values from benzenes, phenoxyacetic, phenylacetic and benzoic acids are 

sufficiently reproduced by the first PC, indicating only weak effects of X on Y and vice versa in these 

systems. Thus, PC 1 represents hydrophobicity of substituents X largely unaffected by interaction with Y. 

The hydrogen bonding acceptor system nitrobenzene and the donor-acceptor systems aniline and phenol 

bear considerable, opposed loadings in the second PC which is significantly correlated with p-values of the 

"functional groups" Y: 

a2 = 0.49 (± 0.26) Yp + 0.02 (± 0.12)  r2 = 0.83, s = 0.11,  = 0.005    (15) 

The correlation with Ym is only weak (r2 = 0.63). These results must be interpreted in context with the 

scores t1 and t2 (Table 4). Figure 2 presents a plot of t1 vs. t2 accounting for "unaffected" hydrophobicity of 

substituents X and X-Y interactions, respectively. There is obviously no positional effect, corresponding m- 

and p-substituents overlap apart from small differences in the case of OH, OMe, COMe, CN and Br. Thus, 

the joint analysis of meta- and para-disubstituted benzenes is justified. The arrangement of the 

substituents along the abscissa (PC 1) corresponds to the common hydrophobicity scale (polar, hydrogen-

bonding substituents < H < Me, F < Cl < Br < I).  
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Table 4. PCA of XY-values
a
 from different aromatic series PhY: data, PC scores and X. 

Nr Substituent Benzene 
PhOAc 

Acid 
PhAc 
Acid 

Benzoic 
Acid Aniline 

Nitro 
benzene Phenol t1 t2 X 

1 H 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.51 0.38 0.00 

2 m-F 0.14 0.22 0.19 0.28 0.40 0.05 0.47 -0.08 -0.33 0.34 

3 p-F 0.14 0.15 0.14 0.19 0.25 -0.05 0.31 -0.23 -0.25 0.06 

4 m-Cl 0.71 0.76 0.68 0.83 0.98 0.61 1.04 0.89 0.05 0.37 

5 p-Cl 0.71 0.70 0.70 0.78 0.93 0.54 0.93 0.81 0.06 0.23 

6 m-Br 0.86 0.94 0.91 0.99 1.20 0.79 1.17 1.20 0.18 0.39 

7 p-Br 0.86 1.02 0.90 0.98 1.36 0.70 1.13 1.22 -0.16 0.23 

8 m-J 1.12 1.15 1.22 1.28 1.46 1.09 1.47 1.68 0.44 0.35 

9 p-J 1.12 1.26 1.23 1.14 1.44 1.02 1.45 1.65 0.25 0.18 

10 m-Me 0.56 0.51 0.54 0.52 0.50 0.57 0.56 0.43 0.86 -0.07 

11 p-Me 0.56 0.52 0.45 0.42 0.49 0.52 0.48 0.35 0.81 -0.17 

12 m-CF3 0.88 1.07 1.16 1.07 1.39 0.77 1.49 1.43 -0.39 0.43 

13 p-CF3 0.88 1.13 1.04 1.23 1.49 0.70 1.36 1.43 -0.48 0.54 

14 m-OMe -0.02 0.12 0.04 0.14 0.03 0.31 0.12 -0.32 0.93 0.12 

15 p-OMe -0.02 -0.04 0.01 0.08 0.05 0.18 -0.12 -0.47 0.90 -0.27 

16 m-OH -0.67 -0.49 -0.52 -0.38 -0.73 0.15 -0.66 -1.31 1.87 0.12 

17 p-OH -0.67 -0.61 -0.66 -0.30 -0.86 0.11 -0.87 -1.44 2.19 -0.37 

18 m-NO2 -0.28 0.11 -0.01 -0.05 0.47 -0.36 0.54 -0.43 -1.66 0.71 

19 p-NO2 -0.28 0.24 -0.04 0.02 0.49 -0.39 0.50 -0.40 -1.72 0.78 

20 m-COOH -0.28 -0.15 -0.27 -0.19 -0.18 -0.02 0.04 -0.77 0.31 0.37 

21 p-COOH -0.28 -0.22 -0.49 -0.05 -0.22 0.03 0.12 -0.78 0.42 0.45 

22 m-CN -0.57 -0.30 -0.28 -0.37 0.17 -0.68 0.22 -1.00 -1.88 0.56 

23 p-CN -0.57 -0.32 -0.35 -0.31 -0.06 -0.66 0.14 -1.06 -1.50 0.66 

24 m-COMe -0.55 -0.28 -0.83 -0.31 -0.04 -0.43 -0.07 -1.15 -0.78 0.38 

25 p-COMe -0.55 -0.37 -0.73 -0.26 -0.08 -0.36 -0.11 -1.13 -0.50 0.50 

 log P (PhY) 2.13 1.26 1.41 1.87 0.90 1.85 1.46    

a
 XY values in italics were not available and therefore calculated as means of at least three regression equations of the 

type XY1 = f (XY2, X) 

Table 5. PCA results for the aromatic systems PhY and descriptors used for correlations 

            
Y 

PC loadings Extracted 
variance 

YH  Ym Yp 
a1 a2 

1 Benzene H 0.986 0.103 98.3 % 0.00 0.00 0.00 

2 Phenoxyacetic acid OCH2COOH 0.995 -0.055 99.3 % -0.87 0.30 -0.33 

3 Phenylacetic acid CH2COOH 0.985 0.012 97.1 % -0.72 0.15 -0.07 

4 Benzoic Acid COOH 0.992 0.066 98.8 % -0.28 0.37 0.45 

5 Aniline NH2 0.957 -0.276 99.2 % -1.23 -0.16 -0.66 

6 Nitrobenzene NO2 0.869 0.489 99.3 % -0.28 0.71 0.78 

7 Phenol OH 0.947 -0.301 98.8 % -0.67 0.12 -0.37 

 Total  92.6 % 6.1 % 98.7 %    
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Figure 1.Plot of the scores from PCA. Substituent types are highlighted by colored symbols: red – electron-attracting, 

redorange – electron-releasing, green – halogens, blue – H, Me. 

The spread of PC 2 is due to electronic properties. Electron-releasing substituents (OH, OMe) are 

characterized by positive, electron-attracting groups (COMe, CN, NO2, CF3) by negative scores t2. These 

relationships may be quantified by the following correlations with "unaffected" -values from benzenes 

(XH) and Xp: 

t1 =    1.63 (± 0.12) XH - 0.25 (± 0.07)  r2 = 0.97, s = 0.17,  < 0.001    (16) 

t2 = - 2.55 (± 0.56) Xp + 0.58 (± 0.23)  r2 = 0.80, s = 0.46,  < 0.001    (17) 

Eq. 17 is better than the correlation with position-dependent Xm- and Xp-values (r2 = 0.68). Taken 

together, eqs. 15 and 17 reflect an electronic X-Y interaction increment described by the product Xp Yp. 

The hydrophobicity of a substituent X increases if its electronic effects on the phenyl nucleus are 

counterbalanced by Y  (electron-attracting X combined with electron-releasing Y and vice versa). 

These findings obtained from the multivariate PCA approach may be explored in more detail by 

individual consideration of the series. Instead of correlating X with X as in eq. 14 [7], the XY-values were 

directly related to XH and X by multiple regression analysis (see Table 6). Calculated XY-values were 

omitted. Since correlations with Xp and position-dependent Xm- and Xp-values led to approximately 

equivalent equations, the latter, "correct" descriptors were used. All regression equations except that for 

the nitrobenzene series result in an intercept of approximately zero and explain more than 95 % of the data 

variance. 

As expected from the PCA (eqs. 15, 17), the regression coefficients for X depend on electronic 

properties of Y. However, the coefficients for XH and in particular their deviation from unity seem to follow 

the same trend. Correlation of the regression coefficients with Y results in: 

c (XH) =  -0.36 (± 0.11) Ym + 1.01 (± 0.04)  r2 = 0.94, s = 0.03,  < 0.001   (18) 

c (X)   =  -0.83 (± 0.53) Yp + 0.28 (± 0.24)  r2 = 0.76, s = 0.23,  = 0.01   (19) 



Dove Multivariate analysis of hydrophobicity 

doi: 10.5599/admet.2.1.35 14 

Table 6. Regression equations of XY-values as function ofXH and X (Table 4). 

  Regression coefficients 
r

2
 s n 

b
 

  XH X intercept
 a 

1 Benzene 1.00 0.00 0.00 1.00 0.00 25 

2 Phenoxyacetic acid 0.92 (± 0.06) 0.34 (± 0.12) 0.05 (± 0.04) 0.98 0.07 23 

3 Phenylacetic acid 0.95 (± 0.06) 0.27 (± 0.12) 0.03 (± 0.05) 0.98 0.07 21 

4 Benzoic Acid 0.91 (± 0.07) 0.18 (± 0.14) 0.12 (± 0.06) 0.97 0.10 25 

5 Aniline 1.04 (± 0.12) 0.84 (± 0.23) 0.07 (± 0.09) 0.95 0.15 22 

6 Nitrobenzene 0.72 (± 0.14) -0.44 (± 0.28) 0.22 (± 0.12) 0.86 0.18 24 

7 Phenol 0.99 (± 0.06) 0.91 (± 0.13) -0.07 (± 0.06) 0.98 0.09 25 

a
 Intercepts in italics are not significant ( > 0.05) 

b
Nr. of XY-Values used for analysis. 

In both cases, the correlation with m- and p-values, respectively, is significantly better than with 

Hammett-constants of the other position (r2 = 0.71, 0.53). Eqs. 18 and 19 indicate that XY-values include 

two X-Y interaction increments depending on the products XHYmand Xp Yp. However, the drawback of 

this model is that it has been derived from separate analyses of the seven systems. A common model for all 

systems must be based on equivalent, "symmetric" consideration of substituents X and Y in meta- and 

para-disubstituted benzenes. Fujita [40] published such a model relying on bidirectional Hammett-type 

relationships: 

 = XY – XH  =  Y X + X Y         (20) 

In this equation, Y is the difference of the susceptibility contants Y(octanol) – y(water) of hydrogen 

bonding association between the respective solvent and the fixed substituent Y to the effect of variable 

substituents X, and X is the equivalent difference for the impact of Y on X. Thus, the transmission of 

electronic effects of substituents from X to Y is assumed to be independent of transmission from Y to X. 

To make the Hammett-type relationships from eqs. 18, 19 and Table 6 bidirectional implies the 

introduction of an additional X-Y interaction increment YHX. The following common models for meta- and 

para-disubstituted benzenes, respectively, were derived from the data in Table 4 (calculated data omitted, 

known XY values of X = CH2OH included): 

XYm = 0.98 (± 0.08) XH - 0.25 (± 0.20) XHYm - 0.34 (± 0.22) YHXm - 0.56 (± 0.20) Xp Yp + 0.13  (± 0.06) 

 r2 = 0.95    s = 0.14   < 0.001 n = 72      (21) 

XYp = 0.93 (± 0.06) XH - 0.24 (± 0.12) XHYp  - 0.42 (± 0.16) YHXp  - 0.41 (± 0.21) Xp Yp + 0.11  (± 0.04) 

 r2 = 0.95    s = 0.15   < 0.001 n = 69      (22) 

Both equations are equivalent and without collinearities of descriptors. The regression coefficients of 

XH are close to unity, and the intercepts may be neglected. Small differences between the terms XHY and 

YHX are possibly due to the imbalance of the numbers of X and Y substituents. For meta-disubstituted 

benzenes, the correlation with Xp Yp is better than with Xm Ym (r2 = 0.93). Eqs. 21 and 22 resemble the 

Hammett formalism for bidirectional inductive interaction of any two fragments [41]: 

GXY = 00 + 01 X + 10 Y + 11 X Y        (23) 

i.e., the contribution of the interaction to a property as, e.g., solvation energy is a function of the electronic 

effects of the fragments and  constants depending on the skeleton between them. 
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Comparing these models with such bidirectional approaches [40, 41] indicates that the "susceptibility 

constants" X and Y depend on XHand YH, respectively. Polar substituents (negative -values)increase 

XY in combination with a second, electron-attracting substituent. By this, polarity is reduced and 

interactions with the strong hydrogen bond acceptor octanol become slightly more favorable. In case of 

hydrophobic substituents (positive -values), the interaction of a second, electron-releasing group with 

octanol is favored by the same reason. The Xp Yp cross term may be due to electron-releasing hydrogen 

bond donor substituents as OH and NH2. Combined with electron-attracting groups, their hydrogen bonds 

with octanol are facilitated. This effect is even underestimated by the cross term since the greatest 

differences between measured and calculated XY-values of +0.3 to +0.4 occur just in case of phenols and 

anilines with strongly electron-withdrawing substituents as NO2, CF3 and CN. Combination of two hydrogen 

bond acceptors with positive Xp-values reduces XY most. In contrast to previous suggestions [38], 

electronic effects on the phenyl nucleus play a minor role since otherwise meta-disubstituted benzenes 

should be correlated with a Xm Ym cross term. Taken together, the Hammett-type relationships 

represented by eqs. 21 and 22 indirectly account for mutual interactions of substituents favorable or 

detrimental for hydrogen bonds with octanol. 

Models of this type may be used for the calculation of log P values of meta- and para-disubstituted 

benzenes: 

log P (XPhY)  = log P (benzene) + YH + XY           (24) 

where XY is the difference between log P (XPhY) and log P (PhY) and comprises all X-Y interactions. Thus:   

log P (XPhY) = 2.13 + XH + YH - cX XHYm - cY YHXm - cXY Xp Yp     (25) 

where cX (ca. 0.25), cY (ca. 0.4) and cXY (ca. 0.5) quantify the influence of the three Hammett-type 

increments. This is an extension of the method applied in CLOGP [10] where electronic interactions in 

meta- and para-disubstituted benzenes are considered by factors FXY = Y X (here, X is no Hammett 

constant, but derived from log P values). For ortho-disubstituted benzenes, additional factors come into 

play representing an ortho-effect (Fortho), intramolecular hydrogen bonding (FHB) and alkyl-aryl interaction 

(FA), so that in this case 

 FXY = Y X + Fortho + FHB + FA          (26) 

  

Conclusions 

Multivariate, simultaneous analysis of hydrophobic descriptors by PCA may provide valuable 

information about the data structure (dimensionality of two, two common components). Correlated 

parameters from different solvent-water systems and phenyl series have been transformed into 

uncorrelated "inner" variables discriminating between the systems and leading to suggestions about 

underlying interactions. Via identification of such interactions per multiple linear regression analysis, the 

different impact of hydrogen bonds in nonpolar and polar solvent-water systems on log P values and their 

dependence on isotropic and hydrated surface areas has become obvious. The analysis of -values of meta- 

and para-disubstituted benzenes has led to extended symmetric bilinear Hammett-type models relating 

interaction increments to three cross products XY, YX and X Y. The resulting models from both 

approaches provide detailed insight into the nature of hydrophobic descriptors and fall into line with 

numerous other theoretical investigations on the background of hydrophobicity and lipophilicity.  
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