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82 abstract
Statistical methods based on Benford’s distribution, Z- and χ2-statistics are being 
successfully applied to detect likely accounting and reporting fraud, for example 
in the daily usage of the Internal Revenue Service in the USA, and in historical 
analysis of Greek macroeconomic reporting. We adapt and apply the methodology 
to the analysis of the reporting of some leading Croatian public companies. We 
find indications of reporting fraud in several of the companies analyzed. In parti-
cular we find correlation between the likelihood of reporting fraud, measured as 
a deviation from Benford’s law, and reported net income losses, for companies 
large enough (with a revenue of at least 1 billion kuna). Finally, we suggest appli-
cation of the methodology to improve the internal processes, efficiency and effec-
tiveness of the State Auditing Office.

Data availability: The data used in the study are corporate data in the public do-
main. For legal reasons, however, the identities of the companies are disguised. 
Contact the first author for the sanitized data sets that can be used to verify and 
replicate the analysis.

Keywords: Benford’s law, public companies, reporting, fraud detection, auditing

1 introduction
The usage of statistical methods in the analysis and detection of fraud in financial 
reporting is becoming widespread and necessary. Perhaps the simplest and best 
known, but still effective test is based on Benford’s law. Newcomb (1881) and 
later Benford (1938) noted that in a sufficiently large collection of numerical data 
expressed in a decimal form, the distribution of occurrences of first digits is not 
uniform (we explain Benford’s distribution in more detail in section 2). Many 
authors, including Carslaw (1988), Guan et al. (2006), Kinnunen and Koskela 
(2003), Nigrini (2005), Niskanen and Keloharju (2000), Skousen et al. (2004), 
Thomas (1989) and Van Caneghem (2002, 2004) investigated the applicability of 
this fact in accounting and auditing, and specifically in the detection of ‟cosmetic 
earning management”. It has been shown that the distribution of first digits in fi-
nancial reports normally complies with Benford’s law. If, however, there have 
been a-posteriori ‟cosmetic interventions”, then for both statistical and psycholo-
gical reasons, the distribution of first digits changes. As a result, the likelihood of 
‟cosmetic earning management” can be statistically verified, and at least theoreti-
cally, the reliability of a specific financial report can be quantified.

In Croatia, we applied these statistical fraud detection tools to the financial reports 
of 7 large Croatian public and state-owned companies, and one publicly traded 
company with a substantial share owned by the state of Croatia. By analyzing 
publicly available data for the years 2010 and 2011, we found that at a level of 
significance 1% and less, the financial reports of 7 (out of 16) annual reports de-
viate from Benford’s law.
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83While these statistical results are not conclusive evidence of accounting and re-
porting fraud, they should be used as an indication for further focused investiga-
tion of the State Auditing Office (SAO).

We explain the methodology of application of Benford’s law and its limitations in 
section 2, including the discussion on why Benford’s law is expected to appear in 
annual reports for companies large enough. We also put our research in the context 
of similar analysis done, e.g. by Nigrini and Mittermaier (1997) for accounting 
data, and by Rauch et al. (2011) in analyzing reported Greek macroeconomic data. 
We then present our findings in section 3.

In section 4, we consider whether our suggested tests and other more sophisticated 
statistical tools could be used by the State Auditing Office when planning audits, 
managing internal resources, and performing actual audits. We also propose some 
changes to the processes and applicable laws regarding SAO in section 4.

2 the approach, methodology and examples
2.1 benford’s distribution in financial reports
Perhaps counter-intuitively, the frequency of occurrence of first digits in a random 
collection of data is very often not uniform. It was noted first by Newcomb (1881) 
that ‟how much faster the first pages [of logarithmic tables] wear out than the last 
ones”, with a heuristic explanation in the form of Benford’s law. Physicist Frank 
Benford (1938) rediscovered the law. Benford showed that in 20 different tables, 
‟including1 such diverse data as areas of 335 rivers, specific heats of 1,389 com-
pounds, American League baseball statistics and numbers gleaned from Reader’s 
Digest articles”, the occurrence of first digits obeys Benford’s law. Several au-
thors, most rigorously Hill (1995a, 1995b) with an explicit statistical derivation, 
demonstrated that in a collection of approximately independent data of different 
orders of magnitude, the frequency of the first digit d=1,…,9 is approximately

 π(d) = log10 
d + 1

d  (1)

(see table 1 for the actual values). 

We can thus observe Benford’s distribution of first digits in many statistical sam-
ples, e.g. the heights of the tallest buildings in the world; the production of copper/
country, and so on. Benford’s distribution does not occur if the observed values 
are from a relatively small range, or if the numbers are assigned (e.g. telephone 
numbers) or fabricated by people, cf. Nigrini (2000). The theoretical reason for 
this is that the Benford distribution is the only distribution of first digits (see Ben-
ford, 1938) invariant for scaling; that is, the distribution does not change if we for 
example change the currency. This was rigorously shown by Pinkham (1961). 

1 Summary from Hill, 1995b.
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84 Hill relatively recently gave a more precise theoretical foundation for the ubiquity 
of Benford’s law (Hill, 1995b). He proved that the sum of independent random 
variables, which themselves have different (random) distributions, has Benford’s 
distribution for sufficiently large samples and collections of random variables. 
Mathematically, the distribution of the sum of random variables converges in di-
stribution to Benford’s distribution, which is a form of the Central Limit Theorem 
(Hill, 1995b:360)2. Hill then concludes (1995b:354) that ‟This helps explain why 
the significant-digit phenomenon appears in many empirical contexts, and helps 
explain its recent application to computer design, mathematical modeling, and 
detection of fraud in accounting data.”

The methods of application of Benford’s law in auditing and tax auditing have 
been developed by Möller (2009), Nigrini (1996), Nigrini and Mittermaier (1997) 
and Watrin et al. (2008). As a result, today these statistical methods are actively 
used for example by the Internal Revenue Service in the USA, by the ‟big four” 
international auditing companies, and have been implemented as a standard tool 
in market-leading auditing software tools (e.g. ‟ACL data analytics”). While these 
statistical methods cannot prove fraud in financial reporting conclusively, as it is 
not a-priori clear (though probable as explained below) that a financial report 
obeys Benford’s distribution, it can be at the very least used as a ‟warning tool”. 
Tax offices and auditing companies use it to identify areas where detailed analysis 
is required, and so manage its resources and accuracy with much more efficiency.

For companies large enough, financial reports are typically assembled as a collec-
tion of individual financial reports of different company units. These units are 
typically of different sizes, have different business scopes, thus the individual di-
stributions of first digits in financials by business unit is expected to be different. 
By the Hill criterion (1995b), the cumulative financial reports for the entire com-
pany should then comply with Benford’s law if the company is large and complex 
enough.

table 1
Benford distribution of first digit, π(d)=log10((d+1)/d)

D 1 2 3 4 5 6 7 8 9
π(d) 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046

The statistical tests developed to analyze Benford’s law typically start with testing 
the following standard criteria for the applicability of Benford’s distribution (Ni-
grini and Mittermaier, 1997):

 – median is smaller than the arithmetic mean,
 – skewness is positive.

2 Hill, 1995b, p. 360: ‟Roughly speaking, this law says that if probability distributions are selected at ran-
dom and random samples are then taken from each of these distributions in any way so that the overall pro-
cess is scale (or base) neutral, then the significant-digit frequencies of the combined sample will converge to 
the logarithmic distribution.”
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85Following that, various statistical tests measure the discrepancy of data sets from 
Benford’s law. Given a particular sample, such as a collection of financial num-
bers from a financial report (balance sheets, profit and loss accounts, cash flows, 
notes to the report), the appropriate statistical test for the Benford distribution fit 
is the Pearson χ2-statistics with 8 degrees of freedom (Ramachadran and Tsokos, 
2009, section 7.6.3).

 χ2 = n 
i = 1 

9 (π(d) − r(d))2

π(d)∑  (2)

here n is the size of the sample, π(d) is the Benford probability of occurrence of 
the digit d, and r(d) is the actual relative frequency of occurrence of the digit d in 
the data sample. The χ2 statistics is then used to verify the hypothesis of Benford 
data fit and report reliability. Thus the null hypothesis is rejected at 5% signifi-
cance if the χ2 statistic exceeds 15.51, 1% significance, if χ2 exceeds 20.09, and at 
0.1% significance, if the χ2 exceeds 26.13. An illustrative but not entirely accurate 
interpretation is that it represents 95%, 99%, respectively 99.9% likelihood of 
fraud.

Another statistics, standardly used for verification of whether the frequency of 
certain digit significantly varies from Benford’s law is Z statistics:

 Zd =   n 
  π(d)(1 − π(d)

|π(d) − r(d)| − 1/(2n) ,  (3)

where d=1,…,9 is a fixed digit, and n, π(d), r(d) is as above. This is for example 
used in Nigrini and Mittermaier (1997), and further explained in Durtschi, Hilison 
and Pacini (2004). As checking and analyzing the values of Zd statistics for each 
value of d is beyond the scope of this communication (this is, for example, typi-
cally used to pinpoint locations of possible fraud more precisely), we consider the 
average of Z statistics for all digits

 Z = Zd .
d = 1 

9
1
9 ∑  (4)

Here the hypothesis rejection values are as they usually are for Z-statistics.

It is noted for example by Rauch et al. (2011) that χ2 statistics is also typically 
larger for larger samples. To compensate for this and verify the methodology, we 
also calculate χ2/n, where n is the size of the sample for each country. In addition, 
we consider an alternative statistics, the normalized Euclidian distance measure

 d* = 
 ∑9

d=1((π(d) − r(d))2

 ∑8
d=1π(d)2 + (1 − π(9))2

 (5)
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86 as in Cho and Gaines (2007) and the distance measure

 a* = 
|μe

 − μb|
9 − μb

 (6)

where µe and µb are the average of the first digit in the data and for Benford’s di-
stribution respectively, as in Judge and Schechter (2009).

Several authors (e.g. Nigrini and Mittermaier, 1997) also use analysis of frequen-
cies of second, third digits, etc. The Benford distribution of second digits is also 
non-uniform, and is expected to appear in data samples by the same argument as 
in Pinkham (1961) and Hill (1996). (One of the authors in Slijepčević (1998) ex-
plicitly calculated second digit Benford’s frequencies, and proved that they appear 
in certain series of numbers.) However the variation in Benford’s frequencies of 
second digits is much smaller than the variation of first digits (and this difference 
diminishes with the third digit and so on), and typically requires large data sam-
ples (over 10,000 data points in individual samples in e.g. Nigrini and Mitterma-
ier, 1997).

Finally, we note the similarity of our techniques to those of Rauch et al. (2011), 
who studied macroeconomic data for various European Union (EU) companies. In 
a way similar to ours, Rauch et al. (2011) studied a limited set of publicly availa-
ble (mostly) financial data of different meanings and types, and obtained results 
quantitatively close to ours. This is similar to our approach to the outside-in 
analysis of published financial reports, and differs from e.g. Nigrini and Mitterma-
ier (1997), a work analyzing confidentially obtained data of the same type.

2.2 the methodology
We focus in our analysis on publicly available data, obtained from annual reports 
of large companies. Our approach, partially by necessity-driven by the availability 
of data, differs somewhat from the typical approach in the literature when ac-
counting data are statistically checked for fraud. Typically authors analyze large 
data sets of transactions of the same or similar type obtained from the companies 
themselves and not publicly available. For example Nigrini (1996) analyzes the 
amounts of total interest paid from 200,000 tax returns; and Nigrini and Mitterma-
ier (1997) consider the sample of over 30,000 invoices paid by the same company.

We, however, choose to use all financial data3 from publicly available financial 
reports. We then test the hypothesis H0: the distribution of first digits in financial 
reports obeys Benford’s law. 

3 In practice, we data mined all the numbers from financial reports (available in pdf format), and then manu-
ally excluded all non-financial data (such as years, numbers of employees, etc.).
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87We explained in the previous section why financial data of large companies should 
obey Benford’s distribution. A valid question is whether the companies in our 
sample are large enough for a meaningful statistical analysis. We argue that this is 
indeed the case. In section 4 we show that we obtain statistically similar discre-
pancies from Benford’s law for 4 smaller companies in our sample (defined in 
accordance to revenue, as these with annual revenue less than 1 billion kuna), and 
for 4 larger companies. If the studied companies had been too small for this 
analysis, the statistical deviation would have been significantly higher for smaller 
companies, as we would not have reached the threshold for which the Hill argu-
ment (1995b) applies.

Our approach consisted of five steps: (1) data mining, (2) descriptive statistics and 
verification of Benford’s law in the entire sample, (3) application of χ2 statistics, Z 
statistics and other tests to individual financial reports, (4) ranking of the compa-
nies according to χ2 and χ2/n statistics, and finally (5) consideration of correlations 
of findings with the company size, the amount of data, and reported financial re-
sults.

Our intention was to analyze all available data for Croatian public companies and 
institutions, with at least several hundred (in our case at least 300) financial data 
points. Only 7 public companies satisfied that criteria. We also added one publicly 
traded company with a large share owned by the State of Croatia (the State is the 
controlling shareholder), to the sample.

For legal reasons, we do not reveal the names of the companies. In this analysis 
we denote them consistently with letters A, B, C, D, E, F, G, H. We sorted them so 
that A is the largest company by annual revenue, and H the smallest. Here A, B, C, 
D are the ‟larger” companies, with annual revenues exceeding 1 billion kuna, and 
E, F, G, H are ‟smaller” companies, with annual revenues less than 1 billion kuna; 
but in no case less than 300 million kuna. The companies in the sample cover a 
range of industries, including financial services, energy, transport and infrastruc-
ture, and consumer goods.

Unfortunately, available data for some major Croatian public companies, inclu-
ding Hrvatske šume (National Forests), Hrvatske vode (National Water Com-
pany), Hrvatska lutrija (National Lottery), and HAC (Croatian Motorways), were 
not sufficient, as the published annual reports typically include only sparse bala-
nce sheet and profit and loss summaries without details. The published reports on 
audits of various ministries, public institutions and companies on the web page of 
the State Auditing Office (www.revizija.hr) contained in all instances we looked 
into also too few data points. We would be happy to extend our analysis if given 
access to further information.

http://www.revizija.hr
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88 The first step, data mining, included developing a simple software tool to extract 
all data from an annual report in a PDF format, downloaded from web pages of 
respective companies. All the data had to be manually checked for consistency. 
We had to manually verify that the extracted data contain only financial informa-
tion, and exclude numbers such as years, percentages, etc. We then applied several 
tools of descriptive statistics as a first check of applicability of Benford’s law. We 
first noted that the cumulative data (n=24,596) from the financial reports for all 
eight companies for years 2010 and 2011 indeed fit Benford’s distribution as ex-
pected. We also demonstrate that all data sets pass the median vs. arithmetic mean, 
and skewness tests.

We then ranked the companies and reports (all 16 data samples), in accordance to 
all five statistics χ2, Z, χ2/n, d* and a*. Our analysis will show that rankings are 
consistent.

We also considered testing the frequency of second (and later) digits. However as 
explained in section 2.1, our data samples are too small to statistically significa-
ntly detect variations in these distributions. 

We finally consider as the final step whether our analysis can be interpreted in 
such a way as to indicate likelihood of fraud. More precisely, our hypothesis is H0: 
discrepancy from Benford’s law is not correlated with the reported net income; 
while its alternative is H1: discrepancy from Benford’s law is positively correlated 
with reported losses. The rationale for this is that both the accounting fraud, and 
reported losses of public companies are expected to be correlated with less com-
petent management and corruption. In other words, we conjecture that public 
companies reporting losses would report even worse financial results without ‟co-
smetic management” of reports. 

We analyze this by first considering the correlation of deviation from Benford’s 
law, measured by χ2 and Z statistics, with the company size. Then we consider the 
correlation of likelihood of fraud and reported net losses. As our data set is limited 
and the actual net income numbers are disguised in this analysis, we study corre-
lation by comparing rankings rather than more precise tools such as regression.

3 findings: statistical analysis of annual reports
3.1 applicability of the methodology
Prior to applying the statistical tests to the analyzed financial data of eight large 
public companies in Croatia, we confirmed that Benford’s law statistical tests are 
probably applicable. Firstly, each data set contained at least 300 individual num-
bers (see N in table 4). Here we included only financial data, and excluded as 
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89 required all other numbers from the financial report. In each instance, we verified 
that the financial data in the sample indeed includes the values of several (at least 
four) orders of magnitude.

figure 1
First digit frequency in the cumulative sample (below) 
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Note: We plot the frequency of first digits in the cumulative data set (n=24,596) – full line, com-
pared with the expected Benford’s law frequency – dashed line. 

We then showed that the aggregate data set, that means all the financial data from 
all 16 financial reports, complies fairly well with Benford’s law, as shown in figu-
re 1 and table 2.

table 2
First digit frequencies in the aggregate data sample (observed and predicted by 
Benford’s law)

d observed benford
1 7,911 7,400
2 4,084 4,328
3 2,944 3,071
4 2,280 2,382
5 2,019 1,946
6 1,627 1,646
7 1,459 1,426
8 1,275 1,257
9 982 1,125
Total 24,581 24,581

We compared for each of 16 data sets whether the arithmetic mean is larger than 
median, and whether skewness is positive, as these are standard ‟tell-tale” signs 
for Benford’s law (Nigrini and Mittermaier, 1997). As shown in table 3, each of 16 
data sets satisfies these criteria. In table 3 we also for illustrative purposes show 
these numbers for the aggregate data set, and for the actual theoretical Benford 
distribution. In addition, we list ratios of frequencies of digits 1 versus 2, and 1 
versus 9, confirming Benford-like behavior.
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90 table 3
Arithmetic mean, median, skewness, ratios of frequencies if 1 vs. 2, 1 vs. 9; all for 
16 data samples, the aggregate data sample, and the Benford distribution

company Year Mean Median skewness 1 vs. 2 1 vs. 9
A 2010 3.20 2.0 0.91 2.3 11.2
A 2011 3.38 3.0 0.78 2.1 9.6
B 2010 3.30 3.0 0.90 1.7 7.6
B 2011 3.27 2.0 0.86 1.9 8.9
C 2010 3.39 3.0 0.80 1.9 7.4
C 2011 3.47 3.0 0.74 1.8 7.6
D 2010 4.13 3.0 0.41 2.0 2.5
D 2011 3.30 3.0 0.80 2.8 26.3
E 2010 3.72 3.0 0.56 2.0 7.0
E 2011 3.78 3.0 0.58 1.9 4.6
F 2010 3.41 3.0 0.77 2.0 8.4
F 2011 3.57 3.0 0.70 2.0 5.9
G 2010 3.77 3.0 0.63 1.1 3.8
G 2011 3.40 3.0 0.80 1.5 7.7
H 2010 3.02 2.0 1.04 2.0 13.3
H 2011 3.10 2.0 0.95 2.2 13.1
Aggregate 3.38 3.0 0.80 1.9 8.1
Benford 3.44 3.0 0.80 1.7 6.6

3.2 statistical results and ranking
As we show in table 4, we found out by applying the χ2-test, that the annual reports 
for four companies deviate at the significance level of 0.1% from Benford’s law. 
The same 7 data sets deviate from Benford’s law by the average Z statistics at the 
average significance level of 5% (significance of selected individual digits is thus 
smaller). We see that in our sample, the χ2-test and the average Z-test ‟flag” the 
same data sets, and also have completely consistent rankings.

An additional argument in favor of the possible unreliability of some financial 
reports is the relative consistency in the ranking of the 16 analyzed financial re-
ports in accordance with all five statistics considered (χ2, Z, χ2/n, d* and a*). Table 
4 shows that the annual reports of H and D relatively consistently lead the ranking 
for all the considered statistics. We conclude that the financial reports of H, D, and 
F for both years 2010 and 2011, and A for the year 2010 should be scrutinized by 
the authorities.

In table 5 we compare the size of data set and the values of χ2 and χ2/n statistics 
with the aggregate values from Rauch et al. (2011) and find out that our data be-
have similarly, as the key values are within the factor 2 of the ones reported in 
Rauch et al. (2011), as shown in table 5. This is relevant, as Rauch et al. (2011) 
report on data with known ‟cosmetic management” of reports, and as such a use-
ful benchmark.
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91table 4
Results of statistical tests and ranking 

Ranking
company Year n χ2  Z  chi/n χ2 Z chi/n d a*
H* 2010 2,120 111.7 3.02 0.053 1 1 4 5 3
H* 2011 2,230 84.8 2.54 0.038 2 2 5 6 4
D* 2011 294 67.3 2.45 0.229 3 3 1 2 10
D* 2010 293 59.0 1.97 0.201 4 4 2 3 2
F* 2010 2,353 37.0 1.88 0.016 5 5 10 11 15
A* 2010 1,135 32.2 1.70 0.028 6 6 7 7 8
F* 2011 2,577 29.8 1.65 0.012 7 7 12 1 1
E 2010 641 23.3 1.23 0.036 8 8 6 8 7
A 2011 1,272 19.9 1.24 0.016 9 9 11 12 12
G 2010 275 18.6 1.25 0.068 10 10 3 4 6
E 2011 751 16.9 1.17 0.022 11 11 8 9 5
C 2011 4,216 16.1 1.02 0.004 12 12 15 16 16
B 2011 891 14.7 1.03 0.016 13 13 9 10 9
C 2010 3,709 10.9 1.02 0.003 14 14 16 15 13
G 2011 1,027 7.9 0.80 0.008 15 15 14 14 14
B 2010 812 7.7 0.80 0.009 16 16 13 13 11

Note: N – the size of the sample. Statistical tests and their ranking as explained in section 2.2. 

* Companies and reports deviating from Benford’s law at significance level of 0.1% (χ2 test), res-
pectively 5% (the average Z test).

table 5
Comparison of the aggregate data sets in our sample and Rauch et al.

aggregate data set size of the sample χ2 χ2/n
Our analysis 24,596 80.87 0.0033
Rauch et al. (2011) 39,691 69.64 0.0018

3.3 correlations of results
As discussed in section 2.1, it is a valid question whether the analyzed companies 
and data samples are large enough for them to be expected to comply with the 
Benford distribution. Extrapolating from our limited data sample, it seems that in 
Croatia, companies with at least 1 billion kuna annual turnover are large enough 
for meaningful analysis. In table 6, we show the number of data samples identified 
as significantly deviating from the Benford law, as explained in the previous sec-
tion (7 in total). We sort them by company size. We see that, at least in our small 
data sample, there seems to be no significant correlation of company size and 
compliance with Benford’s law. We conclude that at least the four larger compa-
nies in our sample are large enough for this type of scrutiny. If this were not the 
case and the companies in our sample were not large and complex enough for 
Benford’s law to occur (in accordance with Hill’s argument discussed in section 
2.1), we would have observed a significantly better Benford fit for larger compa-
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92 nies. We note that these conclusions are preliminary, and we plan to study them 
further on larger company samples.

table 6
Number of data sets/reports, by company size

small companies** large companies**
Not Benford* 4 3
Benford* 4 5

* Not Benford: seven reports in the table 4, significantly deviating from Benford’s distribution.

** Small companies: up to 1 billion kuna annual turnover. Large companies: over 1 billion kuna 
annual turnover.

Finally, we consider whether there is a correlation between the deviation from 
Benford’s distribution and reported net losses. As already explained in section 2, 
such correlation would indicate that our method of fraud detection is effective. We 
focus on 4 larger companies, named A, B, C, D, as the previous discussion sug-
gests they should be large enough to comply with Benford’s law. In table 7 we list 
rankings of all eight reports for these companies, in terms of χ2-test of compliance 
with Benford’s distribution (1 being the most deviant one). We compare this with 
the ranking of their (pretax) net income/annual revenue ratio (I/R), where 1 corre-
spond to the company with the largest reported losses. Here companies A and D 
reported losses in both years 2010, 2011; while companies B and C reported posi-
tive results. Finally, we rank it in accordance with the reported pretax net income.

table 7
Rankings of companies A-D with respect to χ2-test compliance with Benford’s di-
stribution, pretax net income/annual revenue (I/R), and the pretax net income (I) 

Ranking
company Year χ2 I/R I
D 2011 1 1 1
D 2010 2 2 4
A 2010 3 3 2
A 2011 4 4 3
C 2011 5 8 7
C 2010 6 5 5
B 2011 7 6 6
B 2010 8 7 8

Note: For χ2-test, companies ranked from the most deviant from Benford’s law (1) to the least 
(8). For N/I, I, the companies ranked from these with the largest reported losses (1) to the ones 
with the most positive result (8).

We find it significant and revealing, that indeed the rankings in table 7 seem to be 
correlated. In particular, the 4 reports with the largest deviation from Benford’s 
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93law are also the 4 reports with annual net losses, and their rankings of χ2-test (and 
average Z-test) and I/R coincide. A possible interpretation is that the losses of 
companies A and D were even larger than reported, and then cosmetically reduced 
in the final published reports. Again, this analysis is preliminary, and we hope to 
study it further and confirm for sets of more companies, large enough for a more 
precise analysis (e.g. linear regression, etc.).

4 summary and conclusion
Accounting data are collected from a wide variety of sources. Benford’s law, 
which defines the empirical distribution of first digits in diverse data sets, can be 
used to detect manipulated data in financial reporting. We showed that the finan-
cial data of large Croatian public and state-owned companies do on average com-
ply with Benford’s law, while we found indication of reporting manipulation at the 
significance level of 1% and less for several of them. Furthermore, we found indi-
cation of correlation of deviation from Benford’s law, and reported losses, which 
is a further indication of reporting fraud.

Here we outline possible implications and recommendations regarding the opera-
tions of the State Auditing Office in Croatia. In table 8 we list the year for which 
SAO completed the audit for the considered companies. It is perhaps striking that 
for the eight analyzed companies, we found in total only 5 SAO audits for the last 
five full reporting and audited years 2006-2011. The only company from the con-
sidered ones audited for 2011 is company D, where SAO had a qualified opinion.

table 8
The last years audited by the State Auditing Office

company Year
A 2009
B N/A
C N/A
D 2011
E 2009
F N/A
G 2006
H 2007

Source: Državni ured za reviziju. 

Independent auditors, however, audit yearly financial statements of the analyzed 
companies. The auditors auditing analyzed companies include Ernst&Young, 
BDO Croatia and Deloitte. We found audited annual reports for 7 companies from 
our sample; and for one of them we could not find a report.

We believe there is a need for more frequent and thorough audits by SAO. We give 
a few supporting facts. SAO audited in 2012 (i.e. for the year 2011) 23 state  owned 
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94 companies, and issued only 2 unqualified opinions, 20 qualified opinions, and one 
adverse opinion, as reported in the State Auditing Office (Državni ured za reviziju, 
2012). In the specific comparable case of company D, its auditor issued in the 
annual report an unqualified opinion for 2011, contrary to the SAO opinion. The 
company management chooses the independent auditor, thus possibly it may have 
some influence over its opinion in particular in the current challenging market 
conditions in Croatia. In any case the scope of the SAO audit is typically wider 
than that of the independent auditors, as it includes for example verification of 
compliance with public procurement procedures.

SAO audits only the most important and largest public institutions annually and 
all the others much less frequently, as noted in table 8 and clearly visible in the list 
of executed audits on www.revizija.hr. 

We believe that incorporation of the statistical methods including but not restricted 
to Benford’s law χ2 and Z statistics could improve effectiveness and efficiency of 
SAO. For example, SAO could: 

 – more frequently (at least once annually), in a relatively automated way, look 
for statistical indications of ‟cosmetic manipulations” for all public institu-
tions and companies,

 – focused audits could then be performed for the subjects with significant de-
viations,

 – statistical methods could also assist auditors in focusing their work when 
auditing a specific subject.

We believe in such a way SAO could, even with the existing, surely limited and 
constraining, resources, perform better its public service.

http://www.revizija.hr
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