Erratum to "Total domination number of Cartesian products" [Math. Commun. 9(2004), 35-44]*

Dorota Kuziak ${ }^{1}$, Iztok Peterin ${ }^{2}{ }^{\dagger}{ }^{\dagger}$ and Ismael G. Yero ${ }^{3}$
${ }^{1}$ Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Països Catalans 26, S-43 007 Tarragona, Spain
${ }^{2}$ FEECS, University of Maribor, Smetanova 17, SL-2 000 Maribor, Slovenia
${ }^{3}$ Departamento de Matemáticas, EPS Algeciras, Universidad de Cádiz, Av. Ramón Puyol $s / n, S$-11 202 Algeciras, Spain

Received October 9, 2013; accepted November 21, 2013

Abstract

We correct a partial mistake for the total domination number of $\gamma_{t}\left(P_{6} \square P_{k}\right)$ presented in the article "Total domination number of Cartesian products" [Math. Commun. 9(2004), 35-44]. AMS subject classifications: 05C69, 05C76

Key words: total domination, Cartesian products, grid graph

1. Introduction and preliminaries

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. We use the standard notations $N_{G}(v)$ for the open neighborhood $\{u: u v \in E(G)\}$ and $N_{G}[v]$ for the closed neighborhood $N_{G}(v) \cup\{v\}$ of a graph G. Throughout the article we only consider simple graphs.

The Cartesian product $G \square H$ of the graphs G and H is a graph with vertex set $V(G \square H)=V(G) \times V(H)$. Two vertices (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ are adjacent in $G \square H$ whenever $\left(g g^{\prime} \in E(G)\right.$ and $\left.h=h^{\prime}\right)$ or $\left(g=g^{\prime}\right.$ and $\left.h h^{\prime} \in E(H)\right)$. The Cartesian product is commutative and associative (see [5]). For a fixed $h \in V(H)$ we call $G^{h}=\{(g, h) \in V(G \times H): g \in V(G)\}$ a G-layer in $G \times H$. An H-layer ${ }^{g} H$ for a fixed $g \in V(G)$ is defined symmetrically. Any subgraph of $G \square H$ induced by G^{h} or ${ }^{g} H$ is isomorphic to G or H, respectively. A Cartesian product graph is called a grid if both factors are isomorphic to paths. Since here we are only interested in grid graphs, more precisely in $P_{6} \square P_{k}$, we use the following notation for vertices of $P_{6} \square P_{k}$:

$$
V\left(P_{6} \square P_{k}\right)=\{(i, j): i \in\{1, \ldots, 6\}, j \in\{1, \ldots, k\}\} .
$$

The domination number $\gamma(G)$ of a graph G is one of the classical invariants in graph theory. It is given by the minimum cardinality of a set S for which the union of

[^0]closed neighborhoods centered in the vertices of S covers the whole vertex set of G. Such a set S is called a dominating set of G. Hence, each vertex of G is either in S or adjacent to a vertex in S. In other words, we can say that vertices of S control each vertex outside of S. A classical question in such a situation is: what controls the vertices of S ? One possible solution to this dilemma is the total domination. A set $D \subseteq V(G)$ is a total dominating set of G if every vertex of G is adjacent to a vertex of D. (Hence, also vertices of D are controlled by D.) The total domination number of a graph G is the minimum cardinality of a total dominating set of G and it is denoted by $\gamma_{t}(G)$. A total dominating set D of cardinality $\gamma_{t}(G)$ is called a $\gamma_{t}(G)$-set. For more information about total domination in graphs we suggest the recent monograph [6].

Several graph products have been investigated in the last decades and a rich theory involving the structure and recognition of classes of these graphs has emerged, cf. [5]. Probably the most studied graph product is the Cartesian product, which is also the most problematic for domination related problems. We just mention the famous Vizing's conjecture: $\gamma(G \square H) \geq \gamma(G) \gamma(H)$, which is probably the most challenging problem in the area of domination (see the latest survey on Vizing's conjecture [1]).

Closely related to the problem of domination in grid graphs, recently solved in [4], also the total domination number of grid graphs attracted some attention in the past decade. For instance, in [3], the value of $\gamma_{t}\left(P_{r} \square P_{t}\right)$ was computed for $r \in\{1,2,3,4\}$. This work was continued in [7] for $r \in\{5,6\}$. Unfortunately, there is a partial mistake in the value of the total domination number of $P_{6} \square P_{t}$ given in [7], which we correct in the next section.

2. The grid $P_{6} \square P_{k}$

The following formula appeared in [7] for $k \geq 6$:

$$
\begin{equation*}
\gamma_{t}\left(P_{6} \square P_{k}\right)=\left\lfloor\frac{12 k+21}{7}\right\rfloor . \tag{1}
\end{equation*}
$$

However, this formula is not correct in some cases. As we will show below, this result is not correct when $k \equiv x(\bmod 7)$ for $x \in\{0,4,5,6\}$. The mistake is due to the facts that, on one hand, not all optimal patterns have been considered in [7] and, on the other hand, the number stated in Equation 1 is incorrect (for $x=4$). To do so, we need to introduce some terminology. A graph G is an efficient open domination graph if there exists a set D, called an efficient open dominating set, for which

$$
\bigcup_{v \in D} N_{G}(v)=V(G) \text { and } N_{G}(u) \cap N_{G}(v)=\emptyset
$$

for every pair u and v of distinct vertices of D (see [2]). The following result from [8] is useful to prove our results. (We also state the proof to make the present work self contained.)

Lemma 1 (see [8]). If G is an efficient open domination graph with an efficient open dominating set D, then $\gamma_{t}(G)=|D|$.

Proof. If D is an efficient open dominating set of G, then D is also a total dominating set of G and $\gamma_{t}(G) \leq|D|$ follows. On the other hand, every vertex of D has at least one neighbor in every $\gamma_{t}(G)$-set D^{\prime}, since

$$
\bigcup_{v \in D^{\prime}} N_{G}(v)=V(G) .
$$

Moreover, these neighbors must be different, since

$$
\bigcup_{v \in D} N_{G}(v)
$$

forms a partition of $V(G)$. Hence $\gamma_{t}(G) \geq|D|$ and the equality follows.
Theorem 1. Let $k \geq 6$. Then

$$
\gamma_{t}\left(P_{6} \square P_{k}\right)=\left\{\begin{array}{l}
\frac{12 k+14}{7}, \text { if } k \equiv 0(\bmod 7), \\
\frac{12 k+16}{7}, \text { if } k \equiv 1(\bmod 7), \\
\frac{12 k+18}{7}, \text { if } k \equiv 2(\bmod 7), \\
\frac{12 k+20}{7}, \text { if } k \equiv 3(\bmod 7), \\
\frac{12 k+8}{7}, \text { if } k \equiv 4(\bmod 7), \\
\frac{12 k+24}{7}, \text { if } k \equiv 5(\bmod 7), \\
\frac{12 k+12}{7}, \text { if } k \equiv 6(\bmod 7),
\end{array}\right.
$$

Proof. First we try to find a total dominating set D for $G=P_{6} \square P_{k}$ where every vertex is totally dominated exactly once. Notice that if every vertex of G is totally dominated by D exactly once, then G is an efficient open domination graph. Thus, by Lemma 1 we have that $\gamma_{t}(G)=|D|$. We have only three options, up to the symmetry, to totally dominate each vertex exactly once in the first layer P_{6}^{1} of G, see Figure 1. Moreover, each of these three possibilities expands to the whole G in a unique way (the pattern is forced by the starting position in the first layer P_{6}^{1}), again see Figure 1. Double doted lines in each graph of Figure 1 show the positions in which the pattern can stop to obtain a total dominating set for G where every vertex is totally dominated exactly once. This is done when $k \equiv x(\bmod 7)$ for $x \in\{1,4,6\}$. Hence, if $x \in\{1,4,6\}$, then D is a $\gamma_{t}(G)$-set and we only need to know the cardinality of the set D. If we split G into consecutive blocks isomorphic to $P_{6} \square P_{7}$ and the remainder $P_{6} \square P_{x}, x \in\{1,4,6\}$, then it is easy to see that each block contains twelve vertices of D. In the remainder $P_{6} \square P_{1}$ we get additional four vertices (see Figure 1 b)), in $P_{6} \square P_{4}$ additional eight vertices (see Figure 1 a)) and in $P_{6} \square P_{6}$ additional twelve vertices (see Figure 1 b$)$). For $k \equiv 1(\bmod 7)$ we have $k=7 n+1$ and

$$
\gamma_{t}\left(P_{6} \square P_{k}\right)=12 n+4=\frac{12 k+16}{7}
$$

by Lemma 1. By doing a similar computation we obtain that $\gamma_{t}\left(P_{6} \square P_{k}\right)=(12 k+$ $8) / 7$ for $k \equiv 4(\bmod 7)$ and $\gamma_{t}\left(P_{6} \square P_{k}\right)=(12 k+12) / 7$ for $k \equiv 6(\bmod 7)$.

Let now $k \equiv x(\bmod 7), x \in\{0,2,3,5\}$. Notice that in Figure 1 a), for $x \in\{0,3\}$, and in Figure 1 b), for $x \in\{2,5\}$, vertices $(3, k)$ and $(4, k)$ are only not totally
dominated vertices in these patterns. (Notice also that in all three patterns we get two or more vertices which are not totally dominated by D.) Hence $D^{\prime}=D \cup$ $\{(3, k),(4, k)\}$ is a total dominating set of $P_{6} \square P_{k}$.

Figure 1: The efficient open dominating set is given by the white vertices

For $x=0$, we have $k=7 n$ and there is no remainder, but two additional vertices in D^{\prime}. Thus $\gamma_{t}\left(P_{6} \square P_{k}\right) \leq 12 n+2=(12 k+14) / 7$.

For $x=2$, we have $k=7 n+2$ and in the remainder $P_{6} \square P_{2}$ there are six additional vertices in D^{\prime}. Thus $\gamma_{t}\left(P_{6} \square P_{k}\right) \leq 12 n+6=(12 k+18) / 7$.

For $x=3$, we have $k=7 n+3$ and in the remainder $P_{6} \square P_{3}$ there are eight additional vertices in D^{\prime}. Thus $\gamma_{t}\left(P_{6} \square P_{k}\right) \leq 12 n+8=(12 k+20) / 7$.

For $x=5$, we have $k=7 n+5$ and in the remainder $P_{6} \square P_{5}$ there are twelve additional vertices in D^{\prime}. Thus $\gamma_{t}\left(P_{6} \square P_{k}\right) \leq 12 n+12=(12 k+24) / 7$.

We still need to show the lower bounds for $x \in\{0,2,3,5\}$. Let $k=7 n+r$ for some integers $n \geq 1$ and $r \in\{0,2,3,5\}$. Notice that, considering the symmetry, $P_{6} \square P_{k}$ can be partitioned into $n-1$ consecutive blocks $B_{i}, i \in\{1, \ldots, n-1\}$, isomorphic to $P_{6} \square P_{7}$ and one final block Y isomorphic to $P_{6} \square P_{7+r}$, with $r \in\{0,2,3,5\}$. Let D be a $\gamma_{t}\left(P_{6} \square P_{k}\right)$-set and for every block B_{i}, let B_{i}^{\prime} be the subset of B_{i} obtained from B_{i} by deleting its last P_{6}-layer. We denote by L_{i} this last P_{6}-layer of B_{i}. We will show that there are at least twelve vertices in $D \cap B_{i}$ to totally dominate each B_{i}^{\prime}.

Let $i=1$. It is not hard to see that B_{1}^{\prime} can be totally dominated in B_{1} by twelve vertices, only if all these twelve vertices lie in B_{1}^{\prime}. Clearly, we need at least four vertices in the first two P_{6}-layers to totally dominate P_{6}^{1}. We have three possibilities in Figure 1 and there are two additional possibilities, where we have exactly four vertices of D in the first two P_{6}-layers. These two are:

$$
\begin{aligned}
& A_{1}=\{(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)\}, \\
& A_{2}=\{(2,1),(2,2),(5,1),(5,2),(1,4),(3,4),(4,4),(6,4),(1,5),(6,5),(3,6),(4,6)\} .
\end{aligned}
$$

If we have more than four vertices of D in the first two P_{6}-layers, then this is even easier to see. Also, each of these sets does not totally dominate the whole set B_{1} and
at least two vertices of B_{1} are not totally dominated by them. Notice that we can exchange the last two vertices of A_{2} for $\{(2,7),(3,7),(4,7),(5,7)\}$. Hence the whole set B_{1} is totally dominated, but then we use fourteen vertices. We will denote such a set by A_{2}^{\prime}. If we set $A_{1}^{\prime}=A_{1} \cup\{(2,7),(5,7)\}$, then we also get a total dominating set of B_{1} with fourteen vertices. Now, if $\left|B_{1} \cap D\right|=12$, then $L_{1} \cap D=\emptyset$ and, if $\left|B_{1} \cap D\right|=14$, then $L_{1} \cap D$ contains two vertices in the case $A_{1}^{\prime} \subset D$ or four vertices when $A_{2}^{\prime} \subset D$. The remaining option $\left|B_{1} \cap D\right|>14$ leads to a contradiction with D being a $\gamma_{t}(G)$-set as can be seen later from the context.

Let now $i=2$. If $L_{1} \cap D=\emptyset$, then we have the same arguments as for B_{1} and we obtain at least twelve vertices in $B_{2} \cap D$. If $\left|L_{1} \cap D\right|=2$, then $(2,7),(5,7) \in D$ and $(2,8)$ and $(5,8)$ are already totally dominated. To totally dominate other vertices of P_{6}^{8} we need additional four vertices from P_{6}^{8} or P_{6}^{9} in D. These vertices have no influence on layers P_{6}^{11}, P_{6}^{12} and P_{6}^{13}. Hence, we need six additional vertices to totally dominate these layers to finish B_{2}^{\prime}. With this we already have at least ten vertices in $B_{2} \cap D$, which gives twelve together with two vertices of $\left|L_{1} \cap D\right|$. Notice that there is a possibility to totally dominate the whole set B_{2}, if we have (at least) two additional vertices in $L_{2} \cap D$. If $\left|L_{1} \cap D\right|=4$, then $A_{2}^{\prime} \cap L_{2} \subset D$ and $(2,8),(3,8),(4,8),(5,8)$ are dominated by them. In this case there is only one possibility to totally dominate B_{2}^{\prime} with ten additional vertices and this happens when

$$
\{(1,9),(6,9),(1,10),(3,10),(4,10),(6,10),(2,12),(5,12),(2,13),(5,13)\} \subset D
$$

For every other option we need more vertices in $B_{2}^{\prime} \cap D$. So, in this case we have fourteen vertices, together with four vertices of $\left|L_{1} \cap D\right|$, but from these four vertices of $\left|L_{1} \cap D\right|$, two of them must be counted for B_{1}. Thus, there are twelve vertices for B_{1} and twelve vertices for B_{2}. Notice that there is a possibility to totally dominate the whole set B_{2}, if we have (at least) two additional vertices in $L_{2} \cap D$ (these are $(2,14)$ and $(5,14))$.

We continue for $i \in\{3, \ldots, n-1\}$ and, by using the same procedure, for every B_{i}^{\prime} we can find twelve vertices, which totally dominate B_{i} and no vertex is counted twice. Hence, $|D| \geq 12(n-1)$ and we still need to check Y. If $L_{n-1} \cap D=\emptyset$, then we are immediately done for Y, since we have

$$
\gamma_{t}\left(P_{6} \square P_{9}\right)=14, \gamma_{t}\left(P_{6} \square P_{9}\right)=18, \gamma_{t}\left(P_{6} \square P_{10}\right)=20 \text { and } \gamma_{t}\left(P_{6} \square P_{12}\right)=24,
$$

for $r=0, r=2, r=3$ and $r=5$, respectively. Altogether, we have

$$
|D| \geq 12(n-1)+14=12 n+2=\frac{12 k+14}{7}
$$

for $r=0$ and $k=7 n$. Similarly, we get other values. Now, if

$$
L_{n-1} \cap D=\{(2,7(n-1)),(5,7(n-1))\}
$$

then these two vertices have not been counted yet. Also, if $\left|L_{n-1} \cap D\right|=4$, then as above, two of these vertices are counted for B_{n-1} and the other two vertices are still not counted. Hence, in these two cases, by applying the same argument as before, for this situation we easily get the desired values:

$$
|Y \cap D| \geq 12,|Y \cap D| \geq 16,|Y \cap D| \geq 18 \text { and }|Y \cap D| \geq 22
$$

for $r=0, r=2, r=3$ and $r=5$, respectively. By adding the two vertices from $L_{n-1} \cap D$ we get the final solution.

It is straightforward to observe that for $k \equiv x(\bmod 7), x \in\{0,5,6\}$, the result of Theorem 1 gives smaller values than Equation 1.

References

[1] B. Brešar, P. Dorbec, W. Goddard, B. Hartnell, M. A. Henning, S. Klavžar, D. F. Rall, Vizing's conjecture: a survey and recent results, J. Graph Theory 69(2012), 46-76.
[2] H. Gavlas, K. Schultz, P. Slater, Efficient open domination in graphs, Sci. Ser. A Math. Sci. 6(2003), 77-84.
[3] S. Gravier, Total domination number of grid graphs, Discrete Appl. Math. 121(2002), 119-128.
[4] D. Gonçalves, A. Pinlou, M. Rao, S. Thomassé, The domination number of grids, SIAM J. Discrete Math. 25(2011), 1443-1453.
[5] R. Hammack, W. Imrich, S. Klavžar, Handbook of product graphs, Second edition, CRC Press, Boca Raton, 2011.
[6] M. A. Henning, A. Yeo, Total domination in graphs, Springer monographs in mathematics, Springer, New York, 2013.
[7] A. KlobuČAR, Total domination number of cartesian products, Math. Commun. 9(2004), 35-44.
[8] D. Kuziak, I. Peterin, I. G. Yero, Efficient open domination in graph products, preprint.

[^0]: *The research was done while the third author was visiting the University of Maribor, Slovenia, supported by "Ministerio de Educación, Cultura y Deporte", Spain, under the "Jose Castillejo" program for young researchers. Reference number: CAS12/00267.
 ${ }^{\dagger}$ Corresponding author. Email addresses: dorota.kuziak@urv.cat (D.Kuziak), iztok.peterin@uni-mb.si (I. Peterin), ismael.gonzalez@uca.es (I. G. Yero)

