
 
* Author to whom correspondence should be addressed. (E-mail: kleind@tamug.edu) 

CROATICA CHEMICA ACTA 
CCACAA, ISSN 0011-1643, e-ISSN 1334-417X 

Croat. Chem. Acta 87 (1) (2014) 49–59. 
http://dx.doi.org/10.5562/cca2000 

Original Scientific Article 

Forcing, Freedom, & Uniqueness in Graph Theory & Chemistry 

Douglas J. Klein* and Vladimir Rosenfeld 

Texas A&M University at Galveston, Galveston, TX 77553 

RECEIVED JULY 15, 2011; REVISED DECEMBER 20, 2013; ACCEPTED DECEMBER 26, 2013 

 

Abstract. Harary’s & Randić’s ideas of “forcing” & “freedom” involve subsets of double bonds of Kekule 
structure such as to be unique to that Kekule structure. Such forcing sets are argued to be greatly general-
izable to deal with various other coverings, and thence forcing seems to be fundamental, and of notable 
potential utility. Various forcing invariants associated to (molecular) graphs ensue, with illustrative 
(chemical) examples and some mathematical consequences being provided. A complementary “unique-
ness” idea is noted, and the general characteristic of “derivativity” of “forcing” is established (as is rele-
vant for QSPR fittings). Different ways in which different sorts of forcings arise in chemistry are briefly 
indicated.(doi: 10.5562/cca2000) 
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HYSTORY & MOTIVATION 

Professor Frank Harary was arguably “the” leading 
popularizer of graph theory, as in his classic influential 
text1 (along with perhaps a half dozen other co-authored 
monographs), while also he was the most prolific re-
searcher in the field (in terms of published articles), and 
yet further he was intently interested in whatever sci-
ence utilized graph theory – even chemistry, having 
published therein several articles, including a prominent 
position in Balaban’s early edited monograph2 on 
Chemical Applications of Graph Theory. Thus Frank (as 
Professor Harary preferred to be called by friends) was 
a special invited speaker at the 1991 mathematical 
chemistry conference in Galveston, where there was to 
be a strong showing of “chemical graph theory”. Fur-
ther, Frank was invited to submit a manuscript for con-
sideration for publication in a special edition3 of J. 
Math. Chem. devoted to this meeting, and the day of the 
third & final dead-line for submission of such manu-
scripts, he submitted (via FAX) four pages of hand-
scrawled notes (broadly concerning benzenoids) for 
consideration for such a paper. These notes were too far 
from being a completed paper to be included in the 
special issue. Indeed a good portion of Frank’s notes 
presented various ideas, results, or questions, several 
already known in chemistry – though now approached 
from a more purely graph-theoretic more general view-
point. One of these ideas was that of “forcing” ex-

pressed in the context of Kekule structures, or “perfect 
matchings”: a set of double bonds of a given Kekule 
structure is said to be forcing if there is no other Kekule 
structure containing the same set of double bonds. But 
this and particularly his idea of “forcing number” of a 
Kekule structure (as the minimum number of such forc-
ing bonds) had already been conceived by Milan Randić 
under the title of “degree of freedom” of a Kekule struc-
ture, with two papers indicating some chemical rele-
vance already published.4,5 Frank argued that the idea of 
“forcing” was much more general, and that the “forc-
ing” nomenclature was better. He encouraged collabora-
tion on the topic, which indeed ensued: a degree of 
concurrence of opinions was achieved, some initial 
results were established (on forcing, and some other 
ideas), and a paper subsequently appeared.6  

Following this work, forcing for Kekule structures 
has continued to receive attention, in both the mathe-
matical,7–18 and the chemical19–27 literature. And further, 
what has been termed an “anti-forcing” idea has also 
been proposed17 & studied.17,28–33 All this would surely 
immensely please Frank – including the evident efficacy 
of his nomenclature, such as deeply interested him, in a 
very general context. 

Now perhaps is a good time to emphasize the wid-
er generality of the “forcing” idea, as is attempted here, 
indicating that “anti-forcing” is part of this broad gen-
eral picture, with further illustration of the extended 
idea, though first retaining the context of Kekule struc-
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tures. But after this initial discussion, the idea is further 
generalized to deal with maximum matchings, maxi-
mum Clar structures, so-called “A[B]-coverings”, and 
on to “ |AB -coverings”, and then yet further, ultimately 
beyond even the realm of graph theory. Relevances for 
chemical resonance-related ideas are noted, both from 
the point of view of Pauling & of Clar, and also possible 
relevance is noted for statistical mechanical modelling 
of locally structured fluids. It is suggested that whenev-
er such globally spanning graphic structures are chemi-
cally important, then also associated mathematically 
fundamental ideas of forcing via “local substructures” 
should be of chemical relevance. That is, in chemistry, 
properties are often viewed to be appear in some local 
way, with “forcing” one generally means by which to 
manifest the “local” in terms of the “global” (e.g., Ke-
kule structures). The interconnection of “local” to 
“global” is also here described in terms of a comple-
mentary idea of “uniqueness” (which might be viewed 
as an “anti-analogue” of forcing). Some few consequent 
results for forcing invariants are mentioned, particularly 
their “derivativity” and their mode of use in describing 
molecular properties which are commonly thought of as 
“additive”. 

 

FORCING FOR KEKULE STRUCTURES 

Here, fairly standard graph theoretical nomenclature and 
notation form the background, say following Ref. 1 or 
Ref. 34. Thus G denotes a graph with vertex set ( )V G  

and edge set ( )E G . A subgraph H of G is such that 

( ) ( )V H V G  & ( ) ( )E H E G . A spanning subgraph 

of G is one such that ( ) ( )V H V G . The G-complement 
cGH  of a subgraph H of G is that which has 
( ) {{ , } ( ) : , ( ),{ , } ( )}cGE H i j E G i j V G i j E H     and 

( )
( )

cGE HcG

e
V H e


 . A perfect matching – or more 

chemically, a (fully neighbor-paired) Kekule structure – 
of G  is a spanning subgraph κ  of G such that the de-
gree of every site of κ  is 1. In modelling absorption of 
dimers on surfaces, these Kekule structures are often 
termed “dimer coverings”. The number of Kekule struc-
tures of G  is denoted ( )K G , and graphs with 

( ) 1K G   are called Kekulean. For a Kekule structure 

κ  of G, a cycle C of G is said to be conjugated if alter-
nate edges of C are in κ  (and in mathematics a conju-
gated cycle is often termed an “alternating cycle”). The 
Pauling bond order e  of an edge e of a Kekulean G is 

the fraction of Kekule structures which contain e. The 
conjugated 6-circuit expectation C  for a given 6-

cycle C G  is the fraction of Kekule structures for 

which C is conjugated. It is realized that e  is chemi-

cally relevant in Pauling’s work,35,36 and C  is relevant 

in “conjugated-circuits” theory.37–43 
Next, our initial view of “forcing” is indicated. 

Given a Kekule structure κ  of a Kekulean G, a subset 

eS  of its edges is e-forcing if no other Kekule structure 
contains eS  as a subset of its edges. Also a subset ( )eS  
of edges of cGκ  is (e)-forcing if ( )eS  is contained in no 
G-complement of any other Kekule structure of G. For a 
Kekule structure κ  of G , a subset 6S  of conjugated 6-
cycles of G is 6-forcing if no other Kekule structure κ  
of G  manifests the same subset of conjugated 6-cycles 
with the same conjugation pattern within each of these 
cycles. For each of the sets τS  eS , ( )eS , or 6S  with 

, ( ),  or 6τ e e , define the τ -freedom of κ as the mini-
mum order of a τ -forcing of κ . The sum of τ -
freedoms for the Kekule structures of G  gives a net τ -
force ( )τf G , which evidently is a graph invariant, with 

( ) / ( )τf G K G  the mean τ -freedom of G . 
An example is provided by the phenanthrene 

graph, of 3 hexagonal rings of which two are fused to 
next neighbor sides of the central ring. There are 5 Ke-
kule structures, as indicated in Figure 1, with minimal e-
forcing, (e)-forcing, & 6-forcing sets also there indicat-
ed for each Kekule structure, and the resultant e-, (e)-, 
& 6-freedoms are noted, along with the net forces. 
There is seen to be a degree of correlation amongst 
these quantities, and it is natural to speculate as to the 
general extent of this. Evidently these forcings corre-
spond to much smaller (more “local”) graphs than the 
Kekule structures – so that one could also view them to 
be abbreviated representations of the various Kekule 
structures. 

Here e-force corresponds to what has previously 
been termed simply “net forcing number” (or “net de-
gree of freedom”), and (e)-force corresponds to what 
has previously been called the “net anti-forcing num-
ber”. Further examples of e-freedoms & e-forces are 
found elsewhere4,5,8–10 (under this earlier alternate no-
menclature), and also similarly for (e)-forcing.7,18,20,21 

Now Pauling bond orders can be related to e-
forcing: 
Proposition 1 – For a graph G, let nM be the number of 
edges taking the maximum value M of ( )e K G , and 
let n1 be the number of edges for which ( ) 1e K G  . 
Then  

1( 1) ( ) ( ) 2 ( )M eM K G n f G K G n        

Proof: Clearly, to distinguish any Kekule structure 
κ  which shares one of the nM maximally shared bonds 
with 1M   other Kekule structures, one need choose no 
more than M  bonds from κ  – and at the same time the 
remaining at least ( ) MK G n  Kekule structures require 
fewer bonds, i.e., at the most 1M   bonds. Thus 

( 1) ( ( ) )M MM n M K G n      is an upper bound to 
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( )ef G , as in the proposition. For the lower bound, one 
notes that each Kekule structure κ  requires at least 1 
bond to distinguish it from the others, and the only ones 
which can do this are ones which give ( ) 1e K G  , 
there clearly being no more than 1n  such Kekule struc-
tures – while at least 1( )K G n  Kekule structures re-
quire at least 2 bonds to distinguish them. Thus 

1 12{ ( ) }n K G n   is a lower bound to ( )ef G , as in the 
proposition.  

Presumably there is a similar relation of 6-forcing 
to conjugated circuits expectations C . But there are 
some other initial questions about 6-forcing. 
 
Admissability of 6-Forcing & e6-Forcing 

The present definition of 6-forcing indicates a wider 
implementation of the forcing idea than exhibited in 
earlier papers.6–20 But it should be mentioned that not all 
Kekule structures of general graphs admit a 6-forcing 
set, and consequently do not admit a 6-freedom. Such 
clearly is the circumstance with any multi-Kekulean 
graph without any 6-cycles – e.g., the 4-cycle (butadi-
ene). It is a fundamental conjecture that every Kekule 
structure of a Kekulean benzenoid admits a 6-forcing – 
a benzenoid being a subgraph of the honeycomb net-
work enclosed in a Jordan curve consisting of the outer 
edges of the subgraph. That is, just having every edge in 

a 6-cycle does not of itself guarantee the admissibility 
of 6-forcing – as is illustrated with the Kekule structure 
κ  in Figure 2 (such as is a “coronoid” – which does not 
meet the technical definition of a ‘benzenoid”). 

One might imagine that our 6-forcing is admissi-
ble at least for suitable benzenoids, such as the catacon-
densed benzenoids which are those benzenoids with 
every vertex on the outer boundary. Indeed, we have: 
Proposition 2 – For finite catacondensed benzenoids, 
every Kekule structure is 6-forced. 

Proof: The simplest catacondensed species (ben-

 

Figure 1. The 5 Kekule structures of phenanthrene, with e-forcing, (e)-forcing, and 6-forcing sets marked in “wiggly bold” in the
respective associated graphs. 

 

Figure 2. A coronoid structure, showing a Kekule structure
without any conjugated 6-circuits. 
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zene) has two Kekule structures, and with the recursive 
addition of hexagons, one sees that the number only 
increases with each addition. Thus the catacondensed 
benzenoids are Kekulean (as has long been known), with 
multiple Kekule structures. Consider a Kekule structure 
κ  and suppose that a (possibly empty) set Slist of 6-
cycles conjugated in κ  has been selected but fails to 
distinguish κ  from another Kekule structure κ  . Then 
κ κ   contains a cycle C, which must be conjugated, 
and also forms the boundary to a catacondensed species 
C  which has two Kekule structures Cκ C κ   & 

Cκ C κ    conjugated around the boundary of C .  

Now for such a C  with such Cκ  & Cκ   we wish 

to show that Cκ  contains a conjugated 6-circuit. If C  

is a 6-cycle, the result is trivially immediate. If C  is 
not a 6-cycle, then consider a terminal hexagon endη  of 

C  (i.e., a hexagon fused to no more than one other 
hexagon), whence if there is conjugation around endη , 

as in Figure 3(a), then the result is again immediate. If 
not, then follow from endη  to the adjacent hexagon, and 

if this hexagon is fused to only one further on the oppo-
site side from endη , repeat continuing on to ever more 

distant hexagons till one 0η  is found without a further 

hexagon fused on the opposite side. This is illustrated in 
Figure 3(b), where it is seen that 0η  must be a conjugat-

ed 6-circuit in Cκ  . 

Granted the 6-circuit in Cκ κ , one adds this 6-

circuit to the list Slist, thereby distinguishing κ  from κ  . 
And one similarly continues to expand Slist till κ  is 
distinguished from every other Kekule structure, where 
Slist has become a 6-forcing set, and our proof is com-
pleted.  

One may note that the condition of finiteness is 
required in the proof, and in the theorem. For instance, 
the infinite polyacene (with no terminal hexagonal ring) 
has just 4 particular Kekule structures with continual 
alternation down each (disjoint) boundary of the strip – 
and these 4 have no conjugated 6-circuit. 

A further related definition considers subsets 6eS  

with members which are either edges or 6-cycles of G, 
so that 6eS  is partitioned into a set eS  of edges of G and 

a set 6S  of 6-cycles of G. Then 6 6e eS S S   is e6-

forcing for a Kekule structure κ  of G  if ( )eS E κ , 

each member of 6S  is conjugated in κ , and no other 

Kekule structure has this same relation to 6eS . The e6-

forcing number of κ  of G is the minimum size of such 
an 6eS . This amends the complicit restriction on the 

completeness of 6-forcing, as noted before proposition 2. 
 
Forcing for A[B]-Covers 

Actually the “forcing” concept is somewhat more gen-
eral than indicated in the preceding two sections. Con-
sider a (perhaps small) nonempty set   of connected 
isomorphicly distinct graphs and define an  -cover of 
G to be a spanning subgraph of G such that every com-
ponent is isomorphic to a member of  . Now granted a 
disjoint union A B   with each member of A  
having a B -covering (and no members of B  with an 
A -cover), there is amongst all the  -covers some 

which have a maximum number of components isomor-
phic to members of A . Each such A -maximum -
cover is termed an A[B]-cover of G. Let G  be the set 
of subgraphs of G such that each member of G  is 
isomorphic to a member of  . Now in correspondence 
to selected F   , we entertain a certain type of partial 
ordering relation F  to select G GF   from within an 
A[B]-cover ξ  such that GF  is isomorphic to F   – 
there being different possible choices for the relation 

F , say: 

 G FF ξ  could denote just the ordinary subgraph 
relation GF ξ ; or 

 G FF ξ  could require that GF  is a component of 
ξ  and also is induced in G ; or 

 F  could indicate the G-complement relation 

G cF ξ , by which we mean that cG
GF ξ ; or 

 G FF ξ  could mean that GF ξ  while also GF  
induces in G  to a graph containing a subgraph 
isomorphic to a given graph C  (say a cycle), 
whence we also could more precisely write 

,G F CF ξ . 

For a given choice of relation, if G FF ξ , we say ξ  is 
 -consistent. If there is a unique A[B]-cover ξ  which is 
 -consistent, then G  is said to  -force ξ . The min-
imum size of such a unique G  is said to be the  -
freedom for ξ . There is an associated  -force 

[ ] ( )A Bf G , which is the sum of the  -freedom for each 
A[B]-cover ξ . That the relations F  are in correspond-
ence with the F   means that we have a set 

{ : }F F   , so that one should generally speak of 
an ,  -forcing, ,  -freedoms, and an ,  -force – 
but typically we presume the role of   to be understood. 

Figure 3. In (a) a terminal hexagon endη  which turns out to be
conjugated (in κ ), while in (b), endη  is not conjugated, though
the related ring 0η  must  be. 
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All the ideas of the preceding two sections are 
now recovered as special cases, mostly when a Kekule 
structure is identified as an A[B]-cover with 2A K  
(the 2-site 1-edge graph) and B    (the empty graph). 
Then 2{ }K  and when the relation F  is  ,  -
forcing becomes what we called e-forcing. For the rela-
tion c ,  -forcing becomes (e)-forcing. For the rela-
tion C  with F C  being the 6-cycle,  -forcing 
becomes 6-forcing. If we take 6 2{ , }C K A  , we are 
led to e6-forcing. 

Moreover, the present formulation extends beyond 
the ideas of the preceding two sections. A maximum 
matching is an A[B]-cover with 2A K  (the 2-site 1-
edge graph) and 1{ }B K  (the 1-site graph). From the 
chemical valence-bond (VB) point of view these maxi-
mum matchings represent VB resonance structures with 
the possibility of unpaired electrons, though of a mini-
mum number, and they are of especial interest when 
there are no fully neighbor-paired Kekule structures. 
One may consider 2{ }K  or 1{ }K , with associ-
ated relation  , to obtain two natural types of  -
forcing . Dealing with maximum matchings (instead of 
just simple matchings) is chemically meaningful within 
a resonance-theoretic context, since with the loss of 
each possible edge in a matching the (VB-theoretic) 
energy cost goes up (and the associated contribution to 
stability goes down). Mathematically it is more difficult 
(in terms of the requisite size of the forcing set S ) to e-
force a general matching, in-as-much as each potential 
edge would also be a potential pair of isolated sites – 
that is, a forcing set would need to contain every edge 
and every adjacent pair of sites in a matching being 
forced. 

Another nice example of A[B]-covers is provided 
by what are frequently termed44–49 “Clar structures”. In 
this context, 6A C  the 6-cycle & 2B K , and one 
may consider 6{ }C , 2{ }K , or 6 2{ , }C K
with associated relation  , to obtain three natural types 
of  -forcing . These ideas are returned to in the next 
section, with a different (related) definition of Clar 
structure. 
 
Forcing for A B -Covers 

Another chemically motivated slightly more generalized 
possibility for covers & associated forcings deals with 
A-maximal  -covers, by which we mean those  -
covers ξ  for which there are no other A B  -
covers ζ  with the set of A-components of ξ  being a 
proper subset of those of ζ . With the notation that ξA  
is the set of A-components of ξ , then ξ  is A-maximal 
when there is no other A B  -cover with ξ ζA A  
– and such maximal A B  -covers are here denot-
ed as A|B-covers. It is understood that for 2 1|K K -
covers, there are naturally associated τ -forcings, τ -
freedoms, and τ -forces, for τ e , ( )e , 6, & 6e . 

Of particular chemical relevance in this regard are 
the maximal matchings, for which our preceding defini-
tion means those matchings ξ  with no adjacent sites 
both of which are unpaired. That is, these maximal 
matchings are those ξ  for which the subset of edges of 
ξ  is 2{ }K -forcing. Chemically these unpaired sites 
generally cost some additional energy when they have 
less than the maximum number of neighbor pairings, but 
if there are vastly more of the non-maximum resonance 
patterns (as when the maximum ones are more easily 

2{ }K - or 1{ }K -forced), then the maximal matchings 
still may play a major role because of the then more 
significant “resonance” energy. Indeed, maximal match-
ing resonance structures are often mentioned by Pauling, 
e.g., in his master work of Ref. 24. Notably especially 
for large benzenoids the molecular boundaries might50,51 
severely constrain the Kekule structures, or even maxi-
mum matchings, whence the maximal ones can become 
not just contributory but crucial, and dominant. Indeed 
this recognition has enabled38,39,52,53 general simple 
(chemical) results in understanding defects in graphene – 
that is, for the occurrence of unpaired electrons localized 
near boundaries, vacancy defects, and more. 

Also maximal matchings naturally occur in the 
consideration (e.g., as in Refs. 54 and 55) of monomer-
dimer coverings. Here if each dimer is permanently 
absorbed at neighbor pairs of positions on the lattice 
graph of a surface, then the process continues to a max-
imal extent where no two adjacent sites unoccupied by a 
dimer remain – that is, maximal matchings result. 

As another example of an A|B-cover, consider the 
definition of a Clar structure as an A|B-covering with

6A C  & 2B K . These are of relevance in Clar’s 
view56 of electronic structure of benzenoids, and some 
related conjugated carbon networks. Here one may 
consider 6{ }C , or 2{ }K , or 6 2{ , }C K  
with associated relation  , to obtain three natural types 
of  -forcing . An example of the 4-hexagon chrysene 
graph is illustrated in Figure 4, showing different forc-
ing sets for different choices of 6{ }C  and  . 
Much as with Kekule structures, there seems to be a 
correlation amongst our first considered τ -forces. It 
also seems likely that there is an intimate relation be-
tween 6-forcing (or {C6}-forcing) of Kekule structures, 
and {C6}-forcing of Clar structures. Frequently in place 
of C6|K2-covers, the smaller set of a C6[K2]-cover is 
considered32 (and taken as the definition of a Clar struc-
ture). But much as for unpairing in Kekule structures, 
the less restrictive C6|K2-covers (i.e., those without a 
maximum number of 6A C  components) should be 
crucially relevant when there are many more of them 
than the C6[K2]-covers. 

We may note: 
Observation 3 – The τ -forcings of A[B]-coverings 
with A B  form a partially ordered set (or poset), 
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under the subgraph partial ordering, and the poset is 
closed under set union. 
The same is true for A|B-coverings with A B . 
This then provides yet another example of posets57 ap-
pearing in a chemical context. 
 
Complement to Forcing 

An idea developed by Golumbic et al.58 may be modi-
fied and extended so as to relate to A[B]-covering & 
associated forcings. Given a subset S of vertices of a 
graph G, the induced graph GS  is that with ( )GV S S  

& ( ) {{ , } ( ) : , }GE S i j E G i j S   . For a subgraph 

H G , abbreviate ( )GV H  to GH , which is then 

called the subgraph induced from H. Thus ( ) .G G GH H  

And a subgraph H G  is itself induced if GH H . 

Given an A[B]-covering ξ  of G , a subgraph Aξ ξ  

composed solely from A-components of ξ  induces a 

subgraph G
Aξ  which may have but a single A-covering, 

in which case we say G
Aξ  is A -unique. Then the [ ]A B

-uniqueness [ ] ( )A Bυ ξ  is the maximum number of A-

components in such an A-unique subgraph G
Aξ  arising 

from Aξ ξ . Define the A[B]-richness invariant 

[ ] ( )A Br G  for graph G as the sum of [ ] ( )A Bυ ξ  over all 

A[B]-coverings of G. Then the mean- A[B]- uniqueness 

[ ],A B G
υ  is [ ] [ ]( ) / # ( )A B A Br G G . Given an A[B]-covering 

ξ  of G, define its A-order as the number | |Aξ  of its A-

components. Then if ξ  is A -perfect, one has 

| | | ( ) | / | ( ) |Aξ V ξ V A . Similar definitions apply for 

A B -coverings. 

As an example consider the 2 1[ ]K K -coverings of 
perinapthyl (with 3 hexagons mutually edge-fused at a 
single site common to all 3). In Figure 5 a representative 
set of 2 1[ ]K K -coverings ξ  is shown, along with a max-
imal K2-unique subset for each of these coverings (with 

2Kξ  being understood to be the subset of edges there 

 

Figure 4. The 3 Clar structures of chrysene, with e-forcing, (e)-forcing, and 6-forcing sets marked in bold in the respective asso-
ciated graphs. 

Figure 5. Four resonance structures of perinaphthyl, with K2-
unique subgraphs, and associated uniqueness numbers. 
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indicated as double). Also shown there is the conse-
quent 2 1[ ]K K -uniqueness 

2 1[ ] ( )K Kυ ξ . All other 2 1[ ]K K -
coverings are symmetry equivalent to one of the 4 
shown, whence we indicate also the number of members 
of such an equivalence class ( )ξO . Finally the 2 1[ ]K K -
richness is also given at the bottom of the figure. 

Golumbic et al.45 consider maximum matchings 
(i.e., of 2 1[ ]K K -coverings), and rather than the invari-

ants 
2 1[ ] ( )K Kr G  or 

2 1[ ],K K G
υ  consider the invariant 

which is the maximum value of 
2 1[ ] ( )K Kυ ξ  amongst all 

the considered matchings. The K2-unique subsets 
2Kξ  of 

a matching ξ  are (fully paired) Kekule structures in the 

induced subgraph 
2

G
Kξ , and of course 

2Kξ  is the sole 

Kekule structure of 
2

G
Kξ , which elsewhere59 then is 

called minimally Kekulenoid. Several known results45,46 
for minimally Kekulenoid graphs then are relevant – 
even chemically relevant (for HOMO-LUMO gaps of 
such graphs) – but this is not pursued here. 

Another example involves Clar structures as 

6 2C K -coverings. For G being the benzo-chrysene of 
Figure 6, there are three 6 2C K -coverings indicated 
there, and also this figure gives 6C -uniquenesses and 

6 2C K -richnesses. 
Notably uniqueness is related to freedom (in a 

complementary fashion): 
Proposition 4 – Let ξ  be an A[B]-covering of G, with 
forcing based on subgraphs of A-components of ξ , and 
let ξ  have freedom [ ] ( )A Bφ ξ . Then 

[ ] [ ]( ) ( ) | |A B A B Aφ ξ υ ξ ξ  . 

Proof: For an A[B]-covering ξ , let Aζ  be a max-
imum-sized A-unique subgraph of ξ , and let the sub-
graph of the remaining A-components of ξ  be Aη , so 
that the full set of A  components of ξ  is 

A A Aζ η ξ   (where   indicates a union where the 
two combined sets are disjoint). Now within Aξ , Aη  
determines the complementary set of vertices (which is 

( )AV ζ ) and so determines Aζ , whence Aη  forces Aζ  
in G

Aξ . That is, ( ) | |G
A A Aφ ξ η , ( ) | |G

A A Aυ ξ ζ , and 
( ) ( ) | |G G

A A A Aφ ξ υ ξ ξ  . But also the freedom for ξ  
must be at least as large as that for the subgraph 

A Aζ η , so that ( ) ( ) | |Aφ ξ υ ξ ξ  . On the other hand, 
given a forcing set Aθ  for ξ , the remnant subgraph Aρ  
of A-components of ξ  must be A-unique. That is, | |Aθ  
and ( ) | |A Aυ ξ ρ , so that ( ) ( ) | |Aφ ξ υ ξ ξ  . Combina-
tion of the two inequalities on 

A
ξ  yields the desired 

result.  
 
“Functionalities” Related to Forcing 

A fundamental related graph invariant is found in the 
number [ ]# ( )A B G  of A[B]-coverings of G. Another 
graph invariant is found in the force [ ] ( )A Bf G  of G , 
given as the sum of  -forcing numbers over all A[B]-
coverings. Two graphs 1G  & 2G  with disjoint vertex 
sets & disjoint edge sets, give a direct sum 1 2G G  with 
vertex set 1 2 1 2( ) ( ) ( )V G G V G V G    & edge set 

1 2 1 2( ) ( ) ( )E G G E G E G   . Then  
Proposition 5 – If G is the direct sum of 1G  & 2G  , 
then [ ]# ( )A B G  is “multiplicative” in the sense that 

[ ] 1 2 [ ] 1 [ ] 2# ( ) # ( ) # ( )A B A B A BG G G G   . 
Proof: The disjointness of 1G  & 2G  implies an associ-
ated disjointness of the respective parts 1 1ξ G  & 

2 2ξ G  of an A[B]-covering ξ  of 1 2G G G  . Indeed 
the parts 1ξ  & 2ξ  are independent of one another, in the 
sense that 1ξ  must be an A[B]-covering of 1G  & that 2ξ  
similarly must be one for 2G . Thus the multiplicative 
result follows.  
Proposition 6 – If G is the direct sum of 1G  & 2G  , 

then ( ) ( )A Bf G  is “derivative” in the sense that 

[ ] 1 2 [ ] 1 [ ] 2

[ ] 1 [ ] 2

( ) ( ) # ( )

# ( ) ( ).
A B A B A B

A B A B

f G G f G G

G f G

   


 



 

Proof: Following the notation of the preceding proof, 
one has 

1 2

1 2

[ ] 1 2 [ ] 1 2( ) ( )
G G

A B A B
ξ ξ

f G G f ξ ξ     

where the sums here are over A[B]-coverings of 1G  & 

2G , and [ ] ( )A Bf ξ  is understood to denote the  -
forcing number of the A[B]-covering ξ  of G. For a 
minimum A[B]-forcing set   , each S   is a direct 
sum of 1 1S G  & 2 2S G , so that 

[ ] 1 2 [ ] 1 [ ] 2( ) ( ) ( )A B A B A Bf ξ ξ f ξ f ξ     . Then 

Figure 6. Three Clar structures as 6 2C K -coverings for a
benzo-chrysene, showing 6C -unique subgraphs, and their 
associated uniquenesses. 
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1 2

1 2

1 2 1 2

1 2 1 2

( ) [ ] 1 [ ] 2

[ ]) 1 [ ] 2

( ) { ( ) ( )}

( ) { 1} { 1} ( )

G G

A B A B A B
ξ ξ

G G G G

A B A B
ξ ξ ξ ξ

f G f ξ f ξ

f ξ f ξ

  

  



   

  

 

 

which then leads directly to the claim of the theorem. 
If the notation for f  (or [ ]A Bf ) were here 

changed to #  (or [ ] #A B ), then the result of this 
proposition would appear even more like the standard 
Leibnizian relation. These results have already been 
noted5 in the special context of the e-forcing of Kekule 
structures. 

This result may be viewed as a qualitative “func-
tionality” characterization of the forcing invariants for 
graphs. Of course, molecular graphs are not typically 
direct sums, but approximate versions of multiplicativity 
& derivativity should hold when G nearly separates into 
separate vertex-disjoint pieces 1G  & 2G  – with the 
nearness to separation mediated by the smallness of the 
number of edges between the two prospective separate 
pieces. Moreover, different types of molecular properties 
may be viewed as at least approximately manifesting 
different types of such “functionality” dependences. 
Amongst common molecular properties X, several turn 
out to be at least approximately “additive”, in the sense 
that they appear more like a sum of the invariants for 
their component parts (rather than a product, or deriva-
tive form). Indeed such expansions are complicit in clas-
sical chemistry, and there are monographs60–63 devoted 
just to such additive expansions for a single property. It 
can be argued that over all of chemistry such additive 
expansions are the most frequented type – though the 
decorations due to hetero-atoms (and consequent consid-
eration of “colored” graphs) typically is an over-riding 
concern, which then tends to bring chemistry to the fore 
while often the graph theory is less noticed. Of the mo-
lecular properties, which one may argue are approxi-
mately “additive”, one finds various system energies, 
magnetic susceptibilities, polarizabilities, molar refrac-
tivities, entropies, and various specific heats. Yet other 
properties may be argued to “scale” in a roughly additive 
manner – this including boiling points, heats of vaporiza-
tion, chromatographic retention indices, some reactivi-
ties, and selected bioactivities. Thus it is of relevance 
that we have in hand the general result: 
Proposition 7 – Let X & X  be graph invariants which 
respectively are “multiplicative” & “derivative” in the 
sense that 1 2 1 2( ) ( ) ( )X G G X G X G    & 

1 2 1 2 1 2( ) ( ) ( ) ( ) ( )X G G X G X G X G X G       . Then 
the ratioed graph invariant ( ) ( ) / ( )R G X G X G   is 
“additive” in the sense that 

1 2 1 2( ) ( ) ( ).R G G R G R G    
The proof5 is straight-forward. It may be noted 

that (other) derivative invariants have been successfully 

so ratioed to make additive invariants. See, e.g., Ref. 64. 
One widely utilized example, is found with the sum 6  
over all Kekule structures κ  of the number of 6-circuits 
appearing in each κ , whence one finds that 6  is deriv-
ative (with respect to the associated multiplicative 
K(G)), and the ratio 6 / ( )K G  is additive – and equal to 
the relevant26,27 net conjugated 6-circuit expectation 

6-cycle

C
C . Still the most widely studied “additive” 

expansions are in terms of substructure counts (often 
described as “group-function” expansions, “substructur-
al” expansions, etc). Another way to obtain an additive 
invariant is to take the logarithm of a (positive) multi-
plicative invariant. Thus it may be of some interest, that 
here with the various τ -force ratios, we have another 
group of somewhat different additive invariants, in 
terms of which to make expansions for “additive” prop-
erties. 

 
“Full” Generalization of Forcing Idea 

Although a fair degree of generality was sought for the 
definition of forcing in the earlier sections, it seems to 
be even more general than so far indicated. Indeed G. 
Chartrand & co-workers65–68 have explored yet other 
novel “forcing” constructions for graphs not covered in 
our preceding definitions. The “AIM Minimum Rank – 
Special Graphs Work Group” has69 also considered a 
novel type of “forcing” resulting from a dynamic algo-
rithmic process. Perhaps it was the difficulty in delimit-
ing the full range of the idea of “forcing” which pre-
cluded Professor Harary from seeking to explain the 
idea in general. 

Now a more far-ranging generalization beyond 
even the realm of graph theory is proposed. Let P  be a 
parent set, with C P  an (object) class, and PF P  
be a (forcing) family. Further let there be a partial or-
dering  relation on P , along with a commutative 
binary joining operation   on P  such that S T    
  S S T  & T S T . Then F  PF  is a forcing 
of S C  (with F S ) if   F T T S  C . An 
order-consistent norm P  on the elements PP  is 
such that P Q  P Q . Then the minimum value 
of F  for a forcing of S C  is the freedom of S . The 
sum of the freedoms over all S C  is the (net) force of 
P . 

For instance, P  might be the subgraphs of a par-
ent graph G, and C  the class of [ ]A B -coverings, while 

PF  is the family of subgraphs with all components 
isomorphic to A, and  is the ordinary subgraph rela-
tion, with S T  the union of A-components which are 
either identical or disjoint from one another in S  & T ( 
and if not identical or disjoint, then S T   ). Thence 
the ideas of [ ]A B -forcing emerge, as also do the ideas 
of freedom & force when the order-consistent norm is 
taken to be the number of A-isomorphic components of 
a subgraph. If the relation  is chosen as the comple-
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mentary relation c , then the (e)-forcing ideas for 

2 1[ ]K K -covers emerge – and if chosen as the super-
graph relation  , then the 6-forcing ideas for 6 2[ ]C K -
coverings emerge. Similar emergences arise with simi-
lar choices except that C  is the class of A B -
coverings. 

But some graphic examples not yet explicated here 
would be nice. Recall that a subset of vertices of G is 
called independent in G  if no two are adjacent in G, 
and a subset D of vertices of G  is called dominant in 
G  if every vertex D  is adjacent to one in D. Then 
one might choose P  to be the dominant subgraphs of a 
parent graph G, and C  the class of the minimum domi-
nant subgraphs, while PF  is the family of subgraphs 
with all components isomorphic to 1K , and  is the 
ordinary subgraph relation. Then one obtains the 1{ }K -
forcing proposed & studied by Chartrand, Gavlas,  
Vandell, & Harary.52 And their work on “forcing” has 
quite separately motivated some mathematical 
work,66−71 with it perhaps being worthwhile to explore 
the connections to what else described in the present 
article. Presumably the “forcing” idea may also be ap-
plied to minimal dominant sets, as well as to maximum 
& maximal independent sets. It may be noted that inde-
pendence has been proposed72,73 to be of importance in 
identifying stabilities of fullerenes, and possibly other 
conjugated-carbon networks. These examples suggest 
that one imagine colored spanning subgraphs, with for 
example the independent set of vertices and its comple-
ment identifying the two different colors of vertices in 
what might be described as a 1 1{ , }[ ]K K   -cover sub-
ject to an independence constraint for the vertices of the 
first color. One can even imagine allowing more than 
just two colors into such definitions, along with differ-
ent constraints that might be imposed on such colored 
covers. 

Even without coloring, more than two types of 
components of a covering can be entertained, e.g., for 
generalized Clar structures with components isomorphic 
to 6C , 2K , or 1K , with constraints that there are not  
two K1 components at adjacent sites and no three K2 
components around a 6-cycle of G. Such (maximal) 

6 2 1C K K -coverings are relevant74 in circumstances 
when (generalized) Clar structures with unpaired sites 
are relevant – i.e., for the cases of radicaloid systems – 
as are especially relevant in the consideration of mag-
netic & electrical properties of benzenoid polymers & 
graphene. 

Finally it may be noted that our ultimate general 
idea of forcing has many points in common with the 
general notion of “filters” from topology. See, Cartan’s 
original work75 or for a more general view Bourbaki.76 
But we do not pursue this here. 

Notably in all the so imagined circumstances in 
the earlier sections, the “derivativity” result of the pre-
ceding section seems to hold. 

CONCLUSION 

The overall idea of forcing (e.g., for various sorts of 
graph covers) seems to be of great generality, going 
much beyond the Kekulean case earlier considered – 
just as Professor Harary intimated in 1990. Forcing is 
here presented in an ultimately far-reaching generality, 
to reveal it as mathematically fundamental, with a few 
relevant characteristics developed. There are numerous 
cases where forcing seems to have significant chemical 
suggestiveness, especially in the context of valence-
bond-theoretic ideas, and (closely related) Clar-theoretic 
ideas. That is, forcing measures how “non-rigid” va-
lence-bond structures are, or alternatively, how much 
“freedom” they have; and there is an associated implica-
tion, that given sufficient rigidity such a structure is 
determined in terms of a few local pieces – or alterna-
tively that the structure has a high degree of “unique-
ness”, which is also here formally defined. Should all 
Kekule structures share a common mode of rigidity, this 
would implicate a “long-range order”, discussed in 
general in Refs. 77,78; and with different physical con-
sequences – as in Refs. 38–40,62,79–81,38. On the 
other hand, from a molecular-orbital perspective, there 
are relevant spanning subgraphs (identified with Sachs 
subgraphs,23 supplemented with single-site components 
to make the result spanning), for which forcing ideas 
might somehow also be relevant. Further with the con-
sequent novel force invariants for graphs, there are 
possible uses in QSPR & QSAR. The relevance of “ad-
ditivity” (say for QSPR & QSAR) and how to obtain 
this behavior from the manifested “derivativity” of 
typical force invariants has been clarified. The use of 
different types of “incomplete” coverings (or alterna-
tively complete coverings with many 1K  components) 
occurs when one looks at the problem82 of bidentate 
ligands attached to a molecular skeleton. Also this arises 
in absorption of dimers on surfaces where it is83,84 natu-
ral to also use a variable weight for the lone (

1
K ) sites 

– and this presumably might lead to development of 
forcing ideas for weighted coverings, as in fact should 
also be relevant in a resonance theoretic circumstance. 
In the use of coverings to represent isomers with biden-
tate (or even higher multidentate) ligands, the equiva-
lence classes of symmetry equivalent substitutional 
patterns becomes relevant, and undoubtedly leads to 
further mathematical novelties. Both the full utility and 
even the full generality of forcing remain to be delineat-
ed and explored. 
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