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 This paper proposes a new multi-influence factors 
prediction method for water bloom prediction 
based on a remote monitor system and multi-sensor 
data taking into account the integrated effect of 
multiple influential factors along with the 
periodicity and random effect of environmental 
variables. Valid and accurate water-bloom 
prediction can be obtained by combining various 
multidimensional time series methods. Comparing 
the proposed model based on multi-sensors data to 
a traditional one-dimensional time series model 
based on one-sensor data, it has been found that a 
multidimensional model is a useful and accurate 
model for establishing multiple influential factors 
time series of water bloom. The optimum model can 
be used not only to predict water bloom but also to 
determine the period and random change rule of 
multiple influential factors. 
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1 Introduction 
 
The formation of water bloom is a typical water 
pollution problem in water environment. In view of 
the regional differences in large outbreaks of water 
bloom as well as strong dependence of water bloom 
on various environmental factors and on different 
kinds of substances contained in water, the problem 
of water bloom occurrence is an uncertain non-
linear problem. At present, critical factors and 
mechanisms of water bloom outbreak are not clear. 
Moreover, control methods are not efficient enough 
and water bloom outbreak cannot be accurately 
predicted. 
In recent years, many scholars have made a great 
success in water bloom prediction. However, most 
of them have focused on the use of one-sensor data 
[1-5], which are in such a short supply that they 
only emphasize a single influential prediction factor. 

A few scholars predict the occurrence of water 
bloom using multi-sensor data [6-15], however, they 
analyze them separately and give little consideration 
to the integrated effect of multiple influential factors 
and prediction ability of the model. 
Multidimensional time series analysis based on 
multi-sensor data is a method for establishing a 
multidimensional stochastic model used for 
predicting multi-influence factors on the basis of 
their autocorrelation and cross correlation. 
Subsequently, this stochastic model is to predict the 
long term trend. Traditional time series analysis 
methods usually ignore the integrated and the 
periodicity effect of multi-influence factors based on 
multi-sensors data [16-20]. Therefore, this paper 
proposes a new water bloom prediction 
model/method based on multi-influence factors, i.e., 
multi-sensors data to take into account the integrated 
effect of multiple influential factors along with the 
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periodicity and random effect of environmental 
variables  
 
2 Designing of water bloom remote 

monitor and prediction system 
 
There are three sections in the water bloom remote 
monitor and prediction system: multi-sensor on-site 
data sampling module, GPRS network 
communication module and monitor center module, 
which are shown in Fig. 1. 
 

 
 

Figure 1. Structural diagram of an overall system. 
 
Multi-sensor on-site unit module is used for data 
sampling, packing, transmitting, and responding to 
the commands from the monitor center and 
processing according to those commands. Data will 
be transmitted to Internet by GPRS network. The 
monitor center can be used to accept, display, store 
and process data, and even predict the influence 
factors of water bloom and transmit control 
command to on-site unit. 
 
3 Multidimensional time series modeling 
 
In water environmental monitoring, multiple 
influential factors monitoring data is usually 
collected at defined consistent intervals that produce 
a homogeneous variance.  
Let Yt denote the multiple influential factor 
measurement at time t. Based on the Cramer 
Decomposition Theorem, any multidimensional 
time series {Yt} can be decomposed into two 
components: a deterministic component and a 
stationary random component.  
In water bloom predictions, due to the periodicity 
effect of environmental variables, deterministic 
components of influential factors are usually 

periodicity rather than aperiodicity. Hence, 
deterministic component is the equal of seasonal 
component. Yt could be expressed as, 
 

,     1, 2, ,t t t t m  Y S R    (1) 

 
Here, Yt, St and Rt are n-dimensional vectors. St is a 
multidimensional seasonal component. Rt is a 
multidimensional stationary random component, n is 
the total number of influential factors and m is total 
sampling time. 
 
3.1 Multidimensional seasonal component 

modeling 
 
Most traditional seasonal component model, such as 
Hidden Periodic model, is one-dimensional model 
[21]. This paper puts forward a multidimensional 
seasonal component model, called multi-dependent 
Hidden Periodic model, which takes into account 
the periodicity effect of environmental 
multivariable. 
St is modeled by using a multi-dependent Hidden 
Periodic model, 
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Here St is an n-dependent variable hidden periodic 
function, which effectively fits the period of the 
monitoring data, skt is the seasonal component of kth 
influential factor, akj is the amplitude of kth 
influential factor, q is the total number of angular 
frequency, ωj is the jth angular frequency, φkj is the 
jth phase, k=1,2,…,n.  
 
3.2 Multidimensional random component 

modeling 
 
The multidimensional seasonal component St is 
extracted from multiple influential factors. Then the 
multidimensional random component Rt, is modeled 
using the multidimensional AutoRegressive model, 
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Here p is the order of multidimensional 
autoregressive model; Hj is an n×n 
multidimensional autoregressive coefficient matrix; 

klj  is the kth influential factor multidimensional 

autoregressive coefficient from lth influential factor; 
Et is a n-dimensional white noise vector which 
obeys [0, ]N Q ; kt  is the white noise of kth 

influential factor, k=1,2,…,n, l=1,2,…,n. 
 
3.3 Multiple influential factor time series 

modeling 
 
The multi-dependent Hidden Periodic model for the 
multidimensional seasonal component St and the 
multidimensional AR model of the 
multidimensional stationary random component Rt 
are combined into Yt. Hence, the influential factor 
measurement Yt is obtained as, 
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Eq.4 is a new multidimensional composite time 
series model, and it is also called Multidimensional 
Hidden Periodic-Auto Regression (MHPAR) model 
in this paper.  
 
4 MPHAR model parameters estimation 

and prediction 
 
4.1 Seasonal component model parameters 

estimation 
 
This paper puts forward a new parameter estimation 
method for multi-dependent Hidden Periodic 
modeling as follows. 

Suppose  tY  is an n-dimensional variance 

stationary time series, and its observed data is 
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To determine frequencies of the multi-dependent 
Hidden Periodic model, Eq. 2 is transformed into a 
complex domain form, that is 
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Here, 
1

exp( ), 1,2, ,
2kj kj kjb a i j q   , 

1, 2, ,k n  , j  is the jth angular frequency in a 

complex domain form. 
Then, this paper introduces an exponential function, 
that is 
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      (7) 
It can be proved [22] that when 
 

m  ,    sup = lnm O m mS . (8) 

Then, set 
 

0mA      (9) 

 
to satisfy that when  
   

 m  ,  lnmA O m m  (10) 

 
Firstly, define 
  
    / 2 1, 2, , 2j j m j m     ， , (11) 
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calculate 
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In the following calculation, if there is not only one 
maximum value, any maximum value can be taken. 
Secondly, calculate  
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 0q  , (15) 

   

stop calculating. Here ⌒  is used as notation for 

estimates of values. Otherwise, define  
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By using least square method, estimation of the 
amplitude of multi-dependent hidden periodic 
model, b={bkj}, k=1,2,…,n, j=1,2,…,q, is obtained 
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Then, the estimation of seasonal component S={St}, 
t=1,2,…,m, is 
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4.2 Random component model parameter 
estimation and MPHAR model prediction 

 
Parameters of the multidimensional autoregressive 
model are estimated by applying the Yule-Walker 
estimation method.  

The  thl  step prediction of Yt is obtained from the 
best linear unbiased prediction of Eq. 4. The 
prediction formula is 
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5 Validation of water bloom multi-

influence factors prediction 
 
A lot of research papers indicate that the growth of 
phycophyta is influenced by many kinds of factors. 
Among these factors, the most important restricted 
one is nitrogen which is a necessary nutrient source 
for the growth of hydrophytes. Additionally, the 
growth of phycophyta is also affected by 
environmental factors, such as the water 
temperature.  
Meanwhile, mass propagation of algae will also 
have adverse effect on water environment, which 
will change the pH value, chemical oxygen demand 
and so on. Water body chlorophyll concentration is 
an important reference index for measurement of 
water body primary productivity and eutrophication 
situation and it is also the ultimate index of water 
body algae stock on hand and judgment of water 
bloom. 
Hence, total nitrogen, pH value, temperature, 
oxygen demand, chlorophyll and algae cell density 
are 6 water bloom influential factors in this paper, 
and chlorophyll and algae cell density are 2 
reference indexes for judgment of water bloom. 
1104 days monitoring data of 6 influential factors 
gained by Jiangsu Jinshu hydrological station from 
June in 2009 to June in 2012 are selected to validate 
MPHAR water bloom prediction model in the rivers 
and lakes of Jiangsu.  
In this paper, 1094 days monitoring data of 6 
influential factors are used for MPHAR modeling 
and predicting monitoring data of 6 influential 
factors from 1094 to 1104 days. The real monitoring 
data of 6 influential factors from 1094 to 1104 days 
are showed as blue curves in Fig. 2 to Fig. 7. 
Prediction result is showed in Table 1 and as red 
curves in Fig. 2 to Fig. 7. Prediction error is a 
relative error, which is obtained by  
 

 
prediction data  real data

error =
real data

 . (34) 

 
A comparison between the prediction data by 1-
Dimensional method and the prediction data by 6-
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Dimensional method is showed in Table 1 and Fig. 
2 to Fig. 7. 
 

 
Figure 2.  Prediction of chlorophyll concentration. 
 

 

 
Figure 3. Prediction of algae cell density. 
 
 
 

Table 1. Prediction  Error 
 

Influence Factor 
Error by 1D 

method 
Error by 6D 

method 
chlorophyll 0.1914 0.1743 

algae cell density 1.3528 0.6984 
total nitrogen 0.1668 0.1302 
temperature 0.2092 0.0676 

oxygen demand 0.3055 0.1380 
pH value 0.6315 0.5785 

 
From Table 1 and Fig. 2 to Fig. 7, compared with 
the prediction accuracy of 1-Dimensional method, 
prediction accuracy of MPHAR, which is 6-
Dimensional method, is very satisfactory. MPHAR 
has improved both on the basis of a one-dimensional 
Hidden Periodic-Auto Regression model taking into 
account the integrated effect of multiple influential 
factors, and on the basis of a Multidimensional Auto 
Regression model taking into account the 
periodicity effect of environmental variables. 
 

 

 
 
Figure 4.  Prediction of total nitrogen. 
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Figure 5. Prediction of temperature. 
 

 

 
 
Figure 6. Prediction of oxygen demand. 
 
 

6 Conclusions 
 
In this paper, a new MPHAR model is proposed for 
time series analysis of multiple influence factors 
employed in the prediction of water bloom.  Very 
accurate and valid water-bloom prediction is 
obtained by combining time series methods. 
According to the occurrence of the principle of 
water bloom, total nitrogen, pH value, temperature, 
oxygen demand, chlorophyll and algae cell density 
are used as influence prediction factors. The 
Chlorophyll and algae cell density are thus predicted 
as 2 reference indexes for judgment of water bloom. 
The prediction results show the effectiveness of the 
proposed method. 
 

 

 
 
Figure 7. Prediction of pH value. 
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