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REGULAR OPEN ARITHMETIC PROGRESSIONS IN

CONNECTED TOPOLOGICAL SPACES ON THE SET OF

POSITIVE INTEGERS

Paulina Szczuka
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Abstract. In this paper we characterize regular open arithmetic
progressions in four connected topological spaces on the set of positive
integers with bases consisting of some arithmetic progressions and we
examine which of these spaces are semiregular.

1. Preliminaries

The letters Z, N, N0, and P denote the sets of integers, positive integers,
non-negative integers, and primes, respectively. For each set A we use the
symbols clA and intA to denote the closure and the interior of A, respectively.
The symbol Θ(a) denotes the set of all prime factors of a ∈ N. For all a, b ∈ N,
we use the symbols (a, b) and lcm(a, b) to denote the greatest common divisor
of a and b and the least common multiple of a and b, respectively. Moreover,
for all a, b ∈ N, the symbols {an+b} and {an} stand for the infinite arithmetic
progressions:

{an+ b} := a · N0 + b and {an} := a · N.

Clearly {an} = {an+ a}. Let X be a topological space. A subset A ⊂ X is
called a regular open set, if int clA = A. Clearly each regular open set is open
and if both sets A and B are regular open, then A ∩ B is regular open, too.
We say that a topological space X is semiregular, if regular open sets form a
base of X .
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We use standard notation. For the basic results and notions concerning
topology and number theory we refer the reader to the monographs of
J. L. Kelley ([4]) and W. J. LeVeque ([6]), respectively.

2. Introduction

In 1955 H. Furstenberg ([2]) defined the base of a topology on Z by means
of all arithmetic progressions and gave an elegant topological proof of the
infinitude of primes. In 1959 S. Golomb ([3]) presented a similar proof of the
infinitude of primes using a topology D on N with the base

BD =
{

{an+ b} : (a, b) = 1
}

,

defined in 1953 by M. Brown ([1]). Ten years later A. M. Kirch ([5]) defined
a topology D′ on N, weaker than Golomb’s topology D, with the base

BD′ =
{

{an+ b} : (a, b) = 1 and a− square-free
}

.

Both topologies D and D′ are Hausdorff, the set N is connected in these
topologies and locally connected in the topology D′, but it is not locally
connected in the topology D (see [3] and [5]). Recently I showed that
the arithmetic progression {an + b} is connected in the topology D if and
only if Θ(a) ⊂ Θ(b) (see [9, Theorem 3.3]). Moreover, I proved that all
arithmetic progressions are connected in the topology D′ ([9, Theorem 3.5]).
Some properties of topologies D and D′ were also described in [8, p. 82–
84]. Topologies D and D′ were called relatively prime integer topology and
prime integer topology, respectively. However, I call the topology D Golomb’s

topology and the topology D′ Kirch’s topology.
In 1993 G. B. Rizza ([7]) introduced the division topology T ′ on N as

follows: for X ⊂ N he put

g(X) = clX =
⋃

x∈X

D(x), where D(x) = {y ∈ N : y | x}.

The mapping g forms a topology T ′ on N. It is easy to see that the family

BT ′ =
{

{an}
}

is a basis for this topology. In the paper [10] I defined a topology T on N,
stronger than the division topology T ′, with the base

BT =
{

{an+ b} : Θ(a) ⊂ Θ(b)
}

.

Both topologies T and T ′ are T0–topology and they are not a T1–topology, the
set N is connected in these topologies and locally connected in the topology T ′,
but it is not locally connected in the topology T (see [7] and [10]). Moreover
I proved that the arithmetic progression {an+b} is connected in the topology
T if and only if (a, b) = 1 ([10, Theorem 3.4]) and I showed that all arithmetic
progressions are connected in the topology T ′ ([10, Theorem 4.1]).
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In this paper we characterize regular open arithmetic progressions in
four mentioned topologies on the set of positive integers. Moreover we
show that the set N is semiregular in stronger topologies D and T and it
is not semiregular in weaker topologies D′ and T ′. The motivation to our
studies were results from [8] concerning regular open arithmetic progressions
in Golomb’s topology D on N and semiregularity of the space (N,D) (see [8,
pages 82-83, Properties 10-12]). Unfortunately proofs of these results are
not correct because of a mistake in the proof of Property 10. The authors
did not take into account that if b > pk, (where p ∈ P , k ∈ N, and
(pk, b) = 1), then cl{pkn+ b} 6= {pkn+ b}∪{pn} (see [8, p. 83]). Indeed, e.g.,
cl{3n+ 4} = {3n+ 1} ∪ {3n} 6= {3n+ 4} ∪ {3n}. For this reason properties
from [8] must be proven in this paper.

3. Auxiliary lemmas

Lemma 3.1. Let a = pα1

1
. . . pαk

k be the prime factorization of a and

assume that b ≤ a. Then there are numbers b1, . . . , bk ∈ N such that bi ≤ pαi

i

for each i ∈ {1, . . . , k} and

{an+ b} =
⋂

i∈{1,...,k}

{pαi

i n+ bi}.

In particular, if (a, b) = 1, then bi < pαi

i for each i ∈ {1, . . . , k}.

Proof. It easy to see that if a = pα1

1
. . . pαk

k , where p1, . . . pk ∈ P , then

(3.1) {an+ b} =
⋂

i∈{1,...,k}

{pαi

i n+ b}.

Observe that for each i ∈ {1, . . . , k} there are bi ≤ pαi

i and ki ∈ N0 such that
b = kip

αi

i + bi. So, b ∈ {pαi

i n+ bi} for each i ∈ {1, . . . , k} and, by assumption,
1 ≤ b ≤ a. Moreover, by the Chinese Remainder Theorem (CRT), there is
exactly one number x such that 1 ≤ x ≤ a and

x ∈
⋂

i∈{1,...,k}

{pαi

i n+ bi}.

Consequently x = b, and by (3.1),

{an+ b} =
⋂

i∈{1,...,k}

{pαi

i n+ bi}.

Obviously, if (a, b) = 1, then (pi, bi) = 1, which shows that bi < pαi

i for each
i ∈ {1, . . . , k}.

Lemma 3.2. Assume that T ∈ {D,D′, T } and U is T–open set. If c ∈ U ,

then there is an arithmetic progression {an+c} ∈ BT such that {an+c} ⊂ U .
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Proof. Let T ∈ {D,D′, T } and c ∈ U . Since the set U is T–open, there
is an arithmetic progression {an+ b} ∈ BT, such that c ∈ {an+ b} ⊂ U . So,
{an+ c} ⊂ {an + b} ⊂ U . Observe that if (a, b) = 1, then (a, c) = 1, and if
Θ(a) ⊂ Θ(b), then Θ(a) ⊂ Θ(c). Moreover, if T = D′, then a is square-free.
This implies that {an+ c} ∈ BT.

Lemma 3.3. Assume that b1 ≡ b(mod a) and b1 ≤ a. If {an+ b} ∈ BT,

then {an+ b1} ⊂ cl{an+ b} in (N,T) for T ∈ {D,D′, T }.

Proof. Let T ∈ {D,D′, T }, {an+ b} ∈ BT, and x ∈ {an+ b1}. We will
show that x ∈ cl{an+b}. Since b1 ≡ b(mod a) and b1 ≤ a, we have {an+b} ⊂
{an+ b1}. Hence it is sufficient to assume that x ∈ {an+ b1} \ {an+ b}. It
follows that {an+ b} ⊂ {an+x}. Moreover, if (a, b) = 1, then (a, x) = 1, and
if Θ(a) ⊂ Θ(b), then Θ(a) ⊂ Θ(x).

Fix the set U ∈ T such that x ∈ U . By Lemma 3.2, there is an arithmetic
progression {cn+x} ∈ BT with {cn+x} ⊂ U . Since progressions {an+x} and
{cn+x} are T–open and x ∈ {an+x}∩{cn+x}, using again Lemma 3.2, we
obtain that there is an arithmetic progression {dn+x} ∈ BT with {dn+x} ⊂
{an + x} ∩ {cn + x}. Taking into account that the progression {dn + x}
is infinite and the set {an + x} \ {an + b} is finite, we can conclude that
{dn + x} ∩ {an + b} 6= ∅. Hence U ∩ {an + b} 6= ∅, which proves that
x ∈ cl{an+ b} in (N,T).

Lemma 3.4. Let T ∈ {D,D′, T }. If the arithmetic progression {an + b}
is regular open in (N,T), then {an+ b} ∈ BT and b ≤ a.

Proof. Assume that T ∈ {D,D′, T } and int cl{an + b} = {an + b} in
(N,T). Then {an + b} is T–open. Since all T–open arithmetic progressions
belong to the base BT, we have {an + b} ∈ BT. Now let b1 ≡ b(mod a) and
b1 ≤ a. By Lemma 3.3, {an + b1} ⊂ cl{an + b}. Moreover observe that, if
(a, b) = 1, then (a, b1) = 1, and if Θ(a) ⊂ Θ(b), then Θ(a) ⊂ Θ(b1). So, the
progression {an+ b1} ∈ T. Therefore

{an+ b1} = int{an+ b1} ⊂ int cl{an+ b} = {an+ b},

which proves b = b1 ≤ a.

Lemma 3.5. Assume that a and b are odd. If {an + b} ∈ BT, then

cl{an+ b} = cl{2an+ b} in (N,T) for T ∈ {D,D′}.

Proof. Since cl{2an+b} ⊂ cl{an+b}, it is sufficient to show the opposite
inclusion. Let x ∈ cl{an + b}. Fix the set U ∈ T such that x ∈ U . By
Lemma 3.2, there is an arithmetic progression {cn+x} ∈ BT with {cn+x} ⊂
U . Observe that

{an+ b} = {2an+ b} ∪ {2an+ (a+ b)},

where progressions {2an+b} and {2an+(a+b)} are disjoint. Moreover, since
a and b are odd, a + b is even. The assumption x ∈ cl{an + b} implies that
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V := {an+ b}∩{cn+x} 6= ∅. Since V ∈ T, there is an arithmetic progression
{dn + e} ∈ BT such that {dn + e} ⊂ V and (d, e) = 1. If {dn + e} ⊂
{2an+ (a+ b)}, then d and e are even, which contradicts (d, e) = 1. So,

∅ 6= {dn+ e} ∩ {2an+ b} ⊂ U ∩ {2an+ b},

which proves that x ∈ cl{2an+ b} in (N,T).

Lemma 3.6. Assume that Θ(a) ⊂ Θ(b). If there are numbers p ∈ P and

s ∈ N such that a = ps and p2 ∤ a, then cl{an+ b} ⊃ {sn+ b} in (N, T ).

Proof. Let x ∈ {sn+b}. Then there is an n0 ∈ N0 such that x = sn0+b.
If n0 = 0, then x = b ∈ cl{an+ b} in (N, T ). So, we can assume that n0 6= 0.
We consider two cases.

Case 1 . p | n0.

Then there is k0 ∈ N0 such that n0 = pk0. Hence, since a = ps, we have

x = spk0 + b = ak0 + b ∈ {an+ b} ⊂ cl{an+ b}

in (N, T ).

Case 2 . p ∤ n0.

Then fix the set U ∈ T such that x ∈ U . By Lemma 3.2, there is an
arithmetic progression {cn+ x} ∈ BT with {cn+ x} ⊂ U . If p | c, then p | x.
But x = sn0 + b, p | b and p ∤ n0, whence p ∤ x, a contradiction. So, (p, c) = 1.
Moreover, it is easy to see that

{an+ b} = {pn+ b} ∩ {sn+ b}

and
{sn+ x} ∩ {cn+ x} = {lcm(s, c)n+ x}.

Since p2 ∤ a and a = ps, we have (p, s) = 1. Therefore (p, lcm(s, c)) = 1. By
CRT, we obtain that

∅ 6= {pn+ b} ∩ {lcm(s, c)n+ x} = {pn+ b} ∩ {sn+ x} ∩ {cn+ x} ⊂

⊂ {pn+ b} ∩ {sn+ b} ∩ {cn+ x} ⊂ {an+ b} ∩ U,

which proves that x ∈ cl{an+ b} in (N, T ).

Lemma 3.7. Assume that p ∈ P and k ∈ N. If b < pk and (b, pk) = 1,
then cl{pkn+ b} = {pkn+ b} ∪ {pn} in (N,D).

Proof. Let x ∈ cl{pkn+ b}. Observe that

(3.2) N =

pk

⋃

c=1

{pkn+ c},

where all progressions {pkn+c} are pairwise disjoint. Fix a c ∈ {1, . . . , pk}\{b}
such that x ∈ {pkn+ c}. If (c, pk) = 1, then the progression {pkn+ c} is D–
open and, by (3.2), {pkn+b}∩{pkn+c} = ∅, which contradicts the assumption
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x ∈ cl{pkn+ b}. And if (c, pk) 6= 1, then p | c, whence {pkn+ c} ⊂ {pn}. So,
x ∈ {pn} and consequently cl{pkn+ b} ⊂ {pkn+ b} ∪ {pn} in (N,D).

Now we will show the opposite inclusion. Clearly {pkn+b} ⊂ cl{pkn+b}.
So, assume that x ∈ {pn}. Fix the set U ∈ D such that x ∈ U . By Lemma 3.2,
there is an arithmetic progression {an+x} ∈ BD with {an+x} ⊂ U . Therefore
(a, x) = 1, whence (a, pk) = 1. By CRT, {an+ x} ∩ {pkn+ b} 6= ∅. It proves
that U ∩ {pkn+ b} 6= ∅, whence x ∈ cl{pkn+ b} in (N,D).

Lemma 3.8. Assume that p ∈ P. If b < p, then cl{pn+ b} = {pn+ b} ∪
{pn} in (N,D′).

Proof. Since set {pn+b}∪{pn} is D′–closed and D′ ⊂ D, by Lemma 3.7
applied for k = 1, we have cl{pn+ b} = {pn+ b} ∪ {pn} in (N,D′).

Lemma 3.9. Assume that p ∈ P and k ∈ N. If b ≤ pk and p | b, then

cl{pkn+ b} =
⋃

c∈{1,...,p−1}

{pn+ c} ∪ {pkn+ b}

in (N, T ).

Proof. Define

A :=
⋃

c∈{1,...,p−1}

{pn+ c} ∪ {pkn+ b}.

Observe that the set

N \A =
⋃

s∈S

{pkn+ s}, where S := {s ≤ pk : p | s ∧ s 6= b},

is T –open and nonempty for k 6= 1. Hence A is T –closed and since {pkn+b} ⊂
A, we have cl{pkn+ b} ⊂ clA = A in (N, T ).

Now we will show the opposite inclusion. Clearly {pkn+b} ⊂ cl{pkn+b}.
So, we can assume that x ∈ A \ {pkn + b}. Observe that (p, x) = 1. Fix the
set U ∈ T such that x ∈ U . By Lemma 3.2, there is an arithmetic progression
{cn+x} ⊂ U with Θ(c) ⊂ Θ(x). If p | c, then p | x, a contradiction. Therefore
p ∤ c, whence (c, pk) = 1. So, by CRT, {cn + x} ∩ {pkn + b} 6= ∅. It proves
that U ∩ {pkn+ b} 6= ∅, whence x ∈ cl{pkn+ b} in (N, T ).

Lemma 3.10. Assume that p ∈ P, k ∈ N, pk > 2, and b < pk. If

(pk, b) = 1, then the arithmetic progression {pkn+b} is regular open in (N,D).

Proof. We will prove that int cl{pkn+ b} = {pkn+ b} in (N,D). Since

{pkn+ b} = int{pkn+ b} ⊂ int cl{pkn+ b},

it is sufficient to show the opposite inclusion. Let x ∈ int cl{pkn + b}. Then
there is D–open set U ⊂ cl{pkn + b} such that x ∈ U . By Lemma 3.7, we
have U ⊂ {pkn + b} ∪ {pn}. Now suppose that U ∩ {pn} 6= ∅. Then there
is a z ∈ U such that p | z. Since the set U is D–open, by Lemma 3.2, there
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exists an arithmetic progression {tn+ z} ⊂ U with (t, z) = 1. So, (p, t) = 1,
whence (pk, t) = 1. By CRT, {tn+z}∩{pkn+c} 6= ∅ for each c ∈ {1, . . . , pk}.
Consequently, since {pkn} ⊂ {pn}, condition pk > 2 implies that
(

N \
(

{pkn+ b} ∪ {pn}
))

∩ {tn+ z} ⊂
(

N \
(

{pkn+ b} ∪ {pn}
))

∩ U 6= ∅,

which is impossible. Therefore x ∈ U ⊂ {pkn+ b}, and we have int cl{pkn+
b} ⊂ {pkn+ b} in (N,D). This completes the proof.

Lemma 3.11. Let p ∈ P \ {2}. If b < p, then the arithmetic progression

{pn+ b} is regular open in (N,D′).

Proof. By Lemma 3.8, we have int cl{pn + b} = int
(

{pn + b} ∪ {pn}
)

in (N,D′). Since D′ ⊂ D and {pn+ b} ∈ D′, using Lemmas 3.10 and 3.7, we
obtain that int

(

{pn + b} ∪ {pn}
)

= {pn + b} in (N,D′). It proves that the
arithmetic progression {pn+ b} is regular open in (N,D′).

Lemma 3.12. Assume that p ∈ P, k ∈ N \ {1}, and b ≤ pk. If p | b, then
the arithmetic progression {pkn+ b} is regular open in (N, T ).

Proof. We will prove that int cl{pkn+ b} = {pkn+ b} in (N, T ). Since

{pkn+ b} = int{pkn+ b} ⊂ int cl{pkn+ b},

it is sufficient to show the opposite inclusion. Let x ∈ int cl{pkn + b}. Then
there is T –open set U ⊂ cl{pkn + b} such that x ∈ U . By Lemma 3.9, we
have

U ⊂
⋃

c∈{1,...,p−1}

{pn+ c} ∪ {pkn+ b}.

Now suppose that U ∩ {pn+ c} 6= ∅ for some c ∈ {1, . . . , p− 1}. Then there
is a z ∈ U ∩ {pn + c}. Since z ∈ U , by Lemma 3.2, there is an arithmetic
progression {αn+ z} ⊂ U with with Θ(α) ⊂ Θ(z), and since z ∈ {pn+ c}, we
have (p, z) = 1. If p | α, then p | z, a contradiction. Therefore p ∤ α, whence
(α, p) = 1. So, by CRT, {αn + z} ∩ {pkn + t} 6= ∅ for each t ∈ N. It proves
that

U ∩
(

N \
⋃

c∈{1,...,p−1}

{pn+ c} ∪ {pkn+ b}
)

6= ∅,

which is impossible. Therefore U ⊂ {pkn+ b}, whence x ∈ {pkn+ b}.

4. Main results

Theorem 4.1. The arithmetic progression {an + b} is regular open in

(N,D) if and only if (a, b) = 1, b < a, and if a is even, then 4 | a.

Proof. First assume that the arithmetic progression {an+ b} is regular
open in (N,D). By Lemma 3.4, {an+ b} ∈ BD and b ≤ a. Hence (a, b) = 1
and b < a. Now suppose that a is even and 4 ∤ a. Then there exists an a1 ∈ N
such that a = 2a1. Moreover, numbers a1 and b are odd and (a1, b) = 1.
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So, by Lemma 3.5, cl{a1n + b} = cl{an + b}. Since {a1n + b} ∈ D and
int cl{an+ b} = {an+ b}, we have

{an+ b}  {a1n+ b} = int{a1n+ b} ⊂ int cl{a1n+ b} = int cl{an+ b}

= {an+ b},

a contradiction. Consequently, if a is even, then 4 | a.
Now assume that (a, b) = 1, b < a, and if a is even, then 4 | a. Let

a = pα1

1
. . . pαk

k be the prime factorization of a. By Lemma 3.1, there are
numbers b1, . . . , bk ∈ N such that bi < pαi

i for each i ∈ {1, . . . , k} and

(4.1) {an+ b} =
⋂

i∈{1,...,k}

{pαi

i n+ bi}.

Condition (a, b) = 1 implies that (pαi

i , b) = 1 for each i ∈ {1, . . . , k}, whence
(pαi

i , bi) = 1 for each i ∈ {1, . . . , k}. Moreover, we know that if a is even,
then 4 | a. So, all pαi

i > 2. By Lemma 3.10, the arithmetic progression
{pαi

i n + bi} is regular open in (N,D) for each i ∈ {1, . . . , k}. Consequently,
using condition (4.1), we obtain that the arithmetic progression {an + b} is
regular open in (N,D), too.

Corollary 4.2. The space (N,D) is semiregular.

Proof. It is easy to see that B′
D =

{

{an + b} : (a, b) = 1, b < a
}

is the base of Golomb’s topology D on N, too. Moreover, each arithmetic
progression {2cn+ b} such that 2 ∤ c and (2c, b) = 1 may be written as

{2cn+ b} = {4cn+ b} ∪ {4cn+ (2c+ b)}.

Since (2c, b) = 1, we have (4c, b) = 1 and (4c, 2c + b) = 1. Hence the
family B′′

D = B′
D \

{

{2cn + b} : 2 ∤ c
}

is the another base of (N,D). So,
by Theorem 4.1, the base B′′

D consists of regular open sets, which proves that
(N,D) is semiregular.

Theorem 4.3. The arithmetic progression {an + b} is regular open in

(N,D′) if and only if (a, b) = 1, b < a, and a is odd and square-free.

Proof. First assume that the arithmetic progression {an+ b} is regular
open in (N,D′). By Lemma 3.4, {an + b} ∈ BD′ and b ≤ a. Hence a is
square-free, (a, b) = 1, and b < a. Now suppose that a is even. Then there is
a square-free number a1 ∈ N such that a = 2a1. Moreover, numbers a1 and b

are odd and (a1, b) = 1. So, by Lemma 3.5, cl{a1n+ b} = cl{an+ b}. Since
{a1n+ b} ∈ D′ and int cl{an+ b} = {an+ b}, we have

{an+ b}  {a1n+ b} = int{a1n+ b} ⊂ int cl{a1n+ b} = int cl{an+ b}

= {an+ b},

a contradiction. So, a is odd.
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Now assume that (a, b) = 1, b < a, and a is odd and square-free. Let
a = p1 . . . pk be the prime factorization of a. By Lemma 3.1, there are numbers
b1, . . . , bk ∈ N such that bi < pi for each i ∈ {1, . . . , k} and

(4.2) {an+ b} =
⋂

i∈{1,...,k}

{pin+ bi}.

Condition (a, b) = 1 implies that (pi, b) = 1 for each i ∈ {1, . . . , k}, whence
(pi, bi) = 1 for each i ∈ {1, . . . , k}. Since a is odd, all pi > 2. By Lemma 3.11,
the arithmetic progression {pin + bi} is regular open in (N,D′) for each i ∈
{1, . . . , k}. Consequently, using condition (4.2), we obtain that the arithmetic
progression {an+ b} is regular open in (N,D′), too.

Corollary 4.4. The space (N,D′) is not semiregular.

Proof. By Lemma 3.8, the arithmetic progression {2n+1} is not regular
open. Moreover, observe that {2n + 1} consists of odd numbers only and
1 ∈ {2n+1}. But all other arithmetic progressions, which are regular open in
(N,D′) and to which 1 belongs, consist of both odd and even numbers. Hence
there is no base of Kirch’s topology D′ on N consisting of regular open sets.
This proves that the space (N,D′) is not semiregular.

Theorem 4.5. The arithmetic progression {an + b} is regular open in

(N, T ) if and only if Θ(a) ⊂ Θ(b), b ≤ a, and if p | a, then p2 | a for each

p ∈ P.

Proof. First assume that the arithmetic progression {an+ b} is regular
open in (N, T ). By Lemma 3.4, {an+ b} ∈ BT and b ≤ a. So, Θ(a) ⊂ Θ(b).
Now suppose that there are numbers p ∈ P and s ∈ N such that a = ps and
p2 ∤ a. By Lemma 3.6, cl{an+ b} ⊃ {sn+ b} in (N, T ). Since Θ(s) ⊂ Θ(a) ⊂
Θ(b), the arithmetic progression {sn+ b} is T –open. Therefore

{an+ b}  {sn+ b} = int{sn+ b} ⊂ int cl{an+ b},

a contradiction. Consequently, if p | a, then p2 | a for each p ∈ P .
Now assume that Θ(a) ⊂ Θ(b), b ≤ a, and if p | a, then p2 | a for each

p ∈ P . Let a = pα1

1
. . . pαk

k be the prime factorization of a. By Lemma 3.1,
there are numbers b1, . . . , bk ∈ N such that bi ≤ pαi

i for each i ∈ {1, . . . , k}
and

(4.3) {an+ b} =
⋂

i∈{1,...,k}

{pαi

i n+ bi}.

Condition Θ(a) ⊂ Θ(b) implies that Θ(pαi

i ) ⊂ Θ(b) for each i ∈ {1, . . . , k},
whence pi | bi for each i ∈ {1, . . . , k}. Moreover, we know that if p | a,
then p2 | a for each p ∈ P . So, all αi > 1. By Lemma 3.12, the arithmetic
progression {pαi

i n + bi} is regular open in (N, T ) for each i ∈ {1, . . . , k}.
Consequently, using condition (4.3), we obtain that the arithmetic progression
{an+ b} is regular open in (N, T ), too.
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Corollary 4.6. The space (N, T ) is semiregular.

Proof. It is easy to see that B′
T =

{

{an + b} : Θ(a) ⊂ Θ(b), b ≤ a
}

is the base of topology T on N, too. Moreover, each arithmetic progression
{an+ b} may be written as

{an+ b} =
a−1
⋃

k=0

{a2n+ (ka+ b)}.

Clearly Θ(a) ⊂ Θ(ka+ b), for each k ∈ {0, . . . , a− 1}. Hence the family

B′′
T = B′

T \
{

{an+ b} : ∃p ∈ P such that p | a ∧ p2 ∤ a
}

is the another base of (N, T ). So, by Theorem 4.5, the base B′′
T consists of

regular open sets, which proves that (N, T ) is semiregular.

Theorem 4.7. Every arithmetic progression is not regular open in

(N, T ′).

Proof. Since the arithmetic progression {an+ b} is T ′–open if and only
if b = a, and since cl{an} = N in (N, T ′), there is not regular open arithmetic
progression in the division topology (N, T ′).

An immediate consequence of Theorem 4.7 is the following corollary.

Corollary 4.8. The space (N, T ′) is not semiregular.
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