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Abstract. Let a and b be positive integers with a < b, such that ab+1
is a perfect square. In this paper we give an upper bound for the minimal
positive integer c such that {a, b, c, d} is the set of positive integers which
has the property that the product of any two of its elements increased by 1

is a perfect square and d 6= a+ b+ c+2(abc±
√

(ab + 1)(ac + 1)(bc+ 1)).

1. Introduction

A set {a1, a2, . . . , am} of m positive integers is called a Diophantine m-

tuple if aiaj + 1 is a perfect square for all i, j with 1 ≤ i < j ≤ m. A folklore
conjecture says that there does not exist a Diophantine quintuple.

Arkin, Hoggatt and Strauss [1] found that any Diophantine triple can
be extended to a Diophantine quadruple. More precisely, if {a, b, c} is a
Diophantine triple, then {a, b, c, d+} is a Diophantine quadruple, where

d+ = a+ b+ c+ 2abc+ 2rst(1.1)

and r, s, t are the positive integers satisfying

ab+ 1 = r2, ac+ 1 = s2, bc+ 1 = t2.

We call such a Diophantine quadruple regular. Recently, Dujella ([6]) proved
that there does not exist a Diophantine sextuple and that there exist only
finitely many Diophantine quintuples. The most recent results concerning the
problems with Diophantine m-tuples and also the rich history can be found
on Dujella’s webpage [4]. The following is a strong version of the folklore
conjecture.
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Conjecture 1.1. Any Diophantine quadruple is regular.

For a Diophantine triple {a, b, c} with a < b < c, put

d− = a+ b+ c+ 2abc− 2rst.(1.2)

Then, d− > 0 if and only if c > a + b + 2r and in this case {a, b, c, d−}
is a Diophantine quadruple which is also regular with c the fourth (largest)
element. The aim of this paper is to give an upper bound for the third element
c which is “minimal” in some sense. More precisely, for a fixed Diophantine
pair {a, b} with a < b, we give an upper bound for minimal c such that
{a, b, c, d} is an irregular Diophantine quadruple with b < c < d.

Theorem 1.2. Let {a, b, c} be a Diophantine triple with a < b. Suppose

that {a, b, c, d} is a Diophantine quadruple with d > d+ and that {a, b, c′, c} is

not a Diophantine quadruple for any c′ with 0 < c′ < d−, where d+ and d−
are defined by (1.1) and (1.2), respectively.

(1) If b < 2a, then c < b6.
(2) If 2a ≤ b ≤ 8a, then c < 9.5b4.
(3) If b > 8a, then c < b5.

The proof of Theorem 1.2 needs an improvement of Rickert’s theorem
(see [10, Theorem 2.5] and Section 3) and the reduction method of Baker and
Davenport (see [2], [7, Lemma 5] and Proof of Theorem 1.2 in Section 4). Note
that if {a, b, c, d} is a Diophantine quadruple with a < b < c < d+ < d, then
b ≥ 8 by [3], [7], and [9]. Theorem 1.2 implies that in order to see whether
Conjecture 1.1 holds for a fixed Diophantine pair {a, b}, one can check the
extendibility of Diophantine triples {a, b, c} only for small c. In particular,
one may expect that Conjecture 1.1 can be shown to hold for some parametric
families a, b with a < b ≤ 8a, since, then, the possibilities for the third element
c are completely determined (see Lemma 4.1). For example, it is not difficult
to see that the non-extendibility of the Diophantine pair {k2 − 1, k2 + 2k}
with an integer k ≥ 2 or {F2j, F2j+2} with a positive integer j (where Fν

denotes the ν-th Fibonacci number) can be reduced to that of the Diophantine
triple {k2 − 1, k2 + 2k, c} or {F2j , F2j+2, c} with c ≤ c+3 , respectively (see
Section 4 for the definition of c+3 ). Various parametric families containing
these examples will be treated in a subsequent paper. Those families can be
solved using the known methods, but it will save arguments. In addition,
maybe more interestingly, Theorem 1.2 will be used in our subsequent paper
to prove the uniqueness of the extension of Diophantine triple {a, b, c}, where
a < b < a + 4

√
a. The organization of this paper is as follows. In Section 2,

we prove some results that help to obtain lower bounds for the solutions of
the problem according to three cases: b < 2a, 2a ≤ b ≤ 8a, and b > 8a. In
fact, we first transform the problem into a system of Diophantine equations
with the condition c ≥ min{9.5b4, b5} and then we obtain some lower bounds
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of the index n of the corresponding sequences. In Section 3, we show a key
result (Proposition 3.3) by determining some upper bounds of b in the order
105. The upper bounds obtained are so low that we can use the reduction
method to completely prove Theorem 1.2. This is done in Section 4 by the
means of a program written in Mathematica.

2. Lower bounds for solutions

Let {a, b, c} be a Diophantine triple, and r, s, t positive integers satisfying
ab+1 = r2, ac+1 = s2, bc+1 = t2. Suppose that {a, b, c, d} is a Diophantine
quadruple with d+ < d. Then, there exist positive integers x, y, z such that
ad+ 1 = x2, bd+ 1 = y2, cd+ 1 = z2, from which we obtain

az2 − cx2 = a− c,(2.1)

bz2 − cy2 = b− c.(2.2)

The positive solutions of Diophantine equations (2.1) and (2.2) respectively
verify:

z
√
a+ x

√
c = (z0

√
a+ x0

√
c)(s+

√
ac)m,(2.3)

z
√
b+ y

√
c = (z1

√
b+ y1

√
c)(t+

√
bc)n,(2.4)

where m,n are non-negative integers, and (z0, x0), (z1, y1) are solutions of
(2.1), (2.2), respectively satisfying

1 ≤ x0 <

√

s+ 1

2
, 1 ≤ |z0| <

√

c
√
c

2
√
a
,

1 ≤ y1 <

√

t+ 1

2
, 1 ≤ |z1| <

√

c
√
c

2
√
b

(see [6, Lemma 1]). Thus, we have z = vm = wn, where

v0 = z0, v1 = sz0 + cx0, vm+2 = 2svm+1 − vm,

w0 = z1, w1 = tz1 + cy1, vn+2 = 2twn+1 − wn.(2.5)

In what follows, we assume that

{a, b, c′, c} is not a Diophantine quadruple for any c′ with 0 < c′ < d−,

(2.6)

where d− = a+ b+ c+2abc− 2rst, in order to narrow the possibilities for the
fundamental solutions (z0, x0) and (z1, y1).

Lemma 2.1. Assume (2.6) and c ≥ min{9.5b4, b5}. Then, v2m+1 6= w2n

and v2m 6= w2n+1. Moreover, we obtain the following:

(i) if v2m = w2n, then z0 = z1 and |z0| = |z1| = 1,
(ii) if v2m+1 = w2n+1, then |z0| = t, |z1| = s and z0z1 > 0.
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Proof. The first assertions v2m+1 6= w2n and v2m 6= w2n+1 follow from
the same argument as the proof of [6, Lemma 8, (2) and (3)] (see also the proof
of [10, Lemma 18]). (i) If v2m = w2n, then we have z0 = z1 by [5, Lemma
3]. Put d0 = (z20 − 1)/c and suppose that |z0| > 1. Then {a, b, c, d0} is a
Diophantine quadruple. If |z0| = cr−st, then we will arrive at a contradiction
in the same way as the proof of [6, Lemma 10] ([6, (1.2), p. 198]). If {a, b, c, d0}
is an irregular Diophantine quadruple, then since d0 < c, this contradicts
assumption (2.6). Hence, we obtain |z0| = |z1| = 1. (ii) This is exactly
[6, Lemma 8, (4)].

Lemma 2.2. Assume that (2.6) holds.

(i) If v2m = w2n, then m <











1.17n if c ≥ b6,

1.25n if c ≥ 9.5b4,

1.2n if c ≥ b5.

(ii) If v2m+1 = w2n+1, then m <











1.17n+ 0.17 if c ≥ b6,

1.25n+ 0.25 if c ≥ 9.5b4,

1.2n+ 0.2 if c ≥ b5.

Proof. The proof proceeds along the same lines as that of [6, Lemma
4]. (i) Suppose that v2m = w2n. Since

v2m > v1(2s− 1)2m−1 ≥ (c− s)(2s− 1)2m−1,

w2n < w1(2t)
2n−1 ≤ (c+ t)(2t)2n−1,

and c ≥ min{9.5b4, b5} in any case, we have (2s− 1)2m−1 < 1.1(2t)2n−1. We
now have

1.1(2t)2n−1 = 1.1 · 22n−1(bc+ 1)n−1/2 < 2.0012n(bc)n−1/2

and

(2s− 1)2m−1 =

(

2
√
ac+ 1− 1√

ac

)2m−1

(ac)m−1/2

>

{

1.9982m−1(ac)m−1/2 if c ≥ b6,

1.9942m−1(ac)m−1/2 if c ≥ min{9.5b4, b5}.

In the case of c ≥ b6, we have 1.9982m−1cm < 2.0012nc(14n−1)/12, which
implies that either m < (14n− 1)/12 or 1.9982m−1 < 2.0012n holds, that is,
m < max{7n/6− 1/12, 1.003n+0.5}. If n = 2, then m < max{2.25, 2.506} =
2.506, yielding m ≤ 2 = n; if n ≥ 3, then m < max{7n/6, (1.003+0.5/3)n}<
1.17n, which gives the desired upper bound form. Similarly, in the case where
c ≥ 9.5b4 or c ≥ b5, we have

1.9942m−1cm <

{

1.5112n+1c(10n−1)/8 if c ≥ 9.5b4,

2.0012nc(12n−1)/10 if c ≥ b5,
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and obtain the assertion. (ii) Suppose that v2m+1 = w2n+1. Since

v2m+1 > v1(2s− 1)2m ≥ (cr − st)(2s− 1)2m,

w2n+1 < w1(2t)
2n ≤ (cr + st)(2t)2n,

and

cr + st

cr − st
=

(2ab+ 1)c2 + (a+ b)c+ 2crst+ 1

c2 − (a+ b)c− 1

<
4.248

0.999
ab < 4.253ab,

we have (2s− 1)2m < 4.253ab(2t)2n. In the same way as (i), we have

1.9942mcm < 4.253 · 2.0012n+1bn+1cn

<











2.0012n+3.1c(7n+1)/6 if c ≥ b6,

1.5112n+3.9c(5n+1)/4 if c ≥ 9.5b4,

2.0012n+3.1c(6n+1)/5 if c ≥ b5.

The assertion now follows immediately from these inequalities.

Lemma 2.3. Assume (2.6).

(i) If v2m = w2n, then

n >











a−1/2c1/8 if b < 2a and c ≥ b6,

0.131a1/2b−1c1/2 if b ≥ 2a and c ≥ 9.5b4,

1.356a1/2b−1c1/2 if b > 8a and c ≥ b5.

(ii) If v2m+1 = w2n+1, then

n > min
{

αa−1/2b−1/4c1/4, 0.816b−3/4c1/4
}

,

where

α =











0.673 if b < 2a and c ≥ b6,

0.622 if b ≥ 2a and c ≥ 9.5b4,

0.653 if b > 8a and c ≥ b5.

Proof. The proof proceeds along the same line as that of [6, Lemma
10]. Note that we may assume that m ≥ n, m ≥ 2 and n ≥ 2 in both cases
of (i) and (ii) (see [6, Lemma 3] and [10, Lemma 8] or [6, Lemmas 5, 7]). (i)
Suppose that v2m = w2n. We see from [6, Lemma 9] with z0 = z1 = ±1 and
x0 = y1 = 1 that

±am2 + sm ≡ ±bn2 + tn (mod 4c).(2.7)

Consider first the case where b < 2a and c ≥ b6. Suppose that n ≤ a−1/2c1/8.
Since m < 1.17n by Lemma 2.2 and c ≥ b6 ≥ 86, it is easy to see that

am2 < c, sm < c, bn2 < c, tn < c.(2.8)
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It follows from (2.7) that

±am2 + sm = ±bn2 + tn.(2.9)

Moreover, squaring both sides of (2.7) twice, we have
{

(am2 − bn2)2 − (m2 + n2)
}2 ≡ 4m2n2 (mod c).(2.10)

Since
{

(am2 − bn2)2 − (m2 + n2)
}2

< (an2)4 < c,

4m2n2 ≤ 4 · 1.172a−2c1/2 < c,

(2.10) is in fact an equation, and hence

am2 − bn2 = ±(m± n).

If am2− bn2 = ±(m+n), then (2.9) implies m(s± 1) = n(t∓ 1), and we have
{

a

(

t∓ 1

s± 1

)2

− b

}

n = ±
(

t∓ 1

s± 1
+ 1

)

,

which yields either

n =
(s+ 1)(s+ t)

2(at+ bs+ b− a)
>

ac

b(2s+ 1)
> 0.24a−1/2c1/2 > a−1/2c1/8

or

n =
(s+ t)(s− 1)

2(at+ bs+ a− b)
>

s− 1

2b
> 0.24a−1/2c1/2 > a−1/2c1/8.

Hence we obtain a contradiction. If am2 − bn2 = ±(m − n), then we obtain
a contradiction similarly

n =
(t− s)(s± 1)

2(bs− at± (b− a))
>

t− s

2(b− a)
=

c

2(s+ t)
> 0.24b−1/2c1/2 > a−1/2c1/8.

Therefore, if b < 2a and c ≥ b6, then n > a−1/2c1/8. Consider secondly the
case where b ≥ 2a and c ≥ 9.5b4. Suppose that n ≤ 0.131a1/2b−1c1/2. Using
Lemma 2.2 and c ≥ 9.5b4 ≥ 9.5 · 84, one may easily check (2.8) and from
(2.7) obtain (2.9). If z0 = 1, then am2 + sm = bn2 + tn. Since b ≥ 2a and
m < 1.25n, we have

bn2 + tn > 2an2 + 1.414sn,

am2 + sm < 1.57an2 + 1.25sn.

This leads to a contradiction. If z0 = −1, then t/m−s/n = bn/m−am/n < b,
while

t

m
− s

n
>

(

1

1.25

t

s
− 1

)

s

n
> b.

This is also a contradiction. Therefore, if b ≥ 2a and c ≥ 9.5b4, then n >
0.131a1/2b−1c1/2. Finally, the case where b > 8a and c ≥ b5 can be shown in
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the same way as above, by noting t > 2
√
2s. (ii) Suppose that v2m+1 = w2n+1.

We see from [6, Lemma 9] with z0 = ±t, z1 = ±s and x0 = y1 = r that

±astm(m+ 1) + rm ≡ ±bstn(n+ 1) + rn (mod 2c).

Multiplying this congruence by s and by t, respectively, we obtain

±atm(m+ 1) + rsm ≡ ±btn(n+ 1) + rsn (mod 2c),(2.11)

±asm(m+ 1) + rtm ≡ ±bsn(n+ 1) + rtn (mod 2c).(2.12)

Consider the case where c ≥ b6. Suppose that

n ≤ min{0.673a−1/2b−1/4c1/4, 0.816b−3/4c1/4}.
Since m < 1.17n+ 0.17 by Lemma 2.2 and c ≥ b6 ≥ 86, we have

atm(m+ 1) <

√

1 +
1

bc

(

1.17 +
0.17

n

)(

1.17 +
1.17

n

)

ab1/2c1/2n2 < c,

btn(n+ 1) <

√

1 +
1

bc

(

1 +
1

n

)

b3/2c1/2n2 < c,

rtm <

√

1 +
1

ab

√

1 +
1

bc

(

1.17 +
0.17

n

)

a1/2bc1/2n < c.

Hence, congruences (2.11) and (2.12) are in fact equations, and we obtain

rm(s2 − t2) = rn(s2 − t2),

am(m+ 1)(t2 − s2) = bn(n+ 1)(t2 − s2),

that is, m = n and am(m+1) = bn(n+1), which contradict m > 0 and a < b.
Therefore, if c ≥ b6, then n > min{0.673a−1/2b−1/4c1/4, 0.816b−3/4c1/4}.
Similarly, in the case where c ≥ 9.5b4 or c ≥ b5, we will arrive to a
contradiction if we suppose that n ≤ min{αa−1/2b−1/4c1/4, 0.816b−3/4c1/4}.
This completes the proof of Lemma 2.3.

3. Upper bounds for the second elements

First of all, we quote the lemma giving an upper bound for z, which is
shown by using an improvement of Rickert’s theorem ([8, Theorem 2.5])

Lemma 3.1. ([8, Lemma 2.9]) Let {a, b, c, d} be a Diophantine quadruple

with a < b < c < d. Assume that c > 9.5a′b(b− a)2/a, where a′ = max{a, b−
a}. Then,

log z <
4 log(4.001a1/2(a′)1/2b2c) log(1.299a1/2b1/2(b− a)−1c)

log(0.1053a(a′)−1b−1(b− a)−2c)
.

Lemma 3.2. Assume that c ≥ min{9.5b4, b5}. If z = vm′ = wn′ with

(m′, n′) ∈ {(2m, 2n), (2m+ 1, 2n+ 1)}, then

log z >
n′

2
log(4bc).
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Proof. One verifies that y1
√
c− |z1|

√
b > 2

√
b and wn′ > (t+

√
bc)n

′

>

(4bc)n
′/2 in the same way as the proof of [5, Theorem 3].

Proposition 3.3. Assume (2.6).

(1) If b < 2a and c ≥ b6, then b < 2.1 · 104.
(2) If 2a ≤ b ≤ 8a and c ≥ 9.5b4, then b < 1.3 · 105.
(3) If b > 8a and c ≥ b5, then b < 2 · 103.
Proof. Since c ≥ min{9.5b4, b5} in any case, we have c > 9.5a′b(b−a)2/a

(note that b = 8 or b ≥ 10) and we may apply Lemma 3.1, together with
Lemma 3.2 implies that

n′

8
<

log(4.001a1/2(a′)1/2b2c) log(1.299a1/2b1/2(b − a)−1c)

log(4bc) log(0.1053a(a′)−1b−1(b− a)−2c)
,(3.1)

where n′ ∈ {2n, 2n+ 1} and a′ = max{a, b− a}. (1) Assume that b < 2a and
c ≥ b6. Since b/2 < a′ = a < b and 7 ≤ b − a < b/2 (b = a + 7 holds only if
{a, b} = {8, 15}), we have

4.001a1/2(a′)1/2b2c < 4.001b1/2b1/2b2c = 4.001b3c,

1.299a1/2b1/2(b− a)−1c < 1.299b1/2b1/27−1c < 0.1856bc,

0.1053a(a′)−1b−1(b− a)−2c > 0.1053b−1

(

b

2

)−2

c = 0.4212b−3c,

which together with (3.1) imply that

n′

8
<

log(4.001b3c) log(0.1856bc)

log(4bc) log(0.4212b−3c)
=: f(c).

Since f(c) is a decreasing function with respect to c, we have f(c) ≤ f(b6)
and thus

n′

8
<

log(4.001b9) log(0.1856b7)

log(4b7) log(0.4212b3)
<

9 · 7
7 · 3f1(b) = 3f1(b),(3.2)

where

f1(b) =
log(1.167b) log(0.7862b)

log(1.219b) log(0.7495b)
.

(i) If v2m = w2n, then (3.2) and Lemma 2.3 together imply that
3f1(b) > 0.25a−1/2c1/8 > 0.25b1/4. Since f1(b) is decreasing, if b ≥ 2.1 · 104,
then 3f1(b) ≤ 3f1(2.1 · 104) < 3.002, which contradicts 0.25b1/4 ≥ 0.25(2.1 ·
104)1/4 > 3.009. Therefore, b < 2.1 · 104. (ii) If v2m+1 = w2n+1, then (3.2)
and Lemma 2.3 together imply that

min
{

0.16825a−1/2b−1/4c1/4, 0.204b−3/4c1/4
}

+
1

8
< 3f1(b).

Since

0.16825a−1/2b−1/4c1/4 > 0.16825b3/4, 0.204b−3/4c1/4 ≥ 0.204b3/4,
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we have b3/4 < 17.9f1(b)−0.742. Since f1(b) is decreasing, we see that b ≤ 48.
(2) Assume that 2a ≤ b ≤ 8a and c ≥ 9.5b4. Since b/2 ≤ a′ = b − a ≤ 7b/8
and b/8 ≤ a ≤ b/2, we have

4.001a1/2(a′)1/2b2c ≤ 4.001

(

b

2

)1/2 (
7

8
b

)1/2

b2c < 2.647b3c,

1.299a1/2b1/2(b − a)−1c ≤ 1.299

(

b

2

)1/2

b1/2
(

b

2

)−1

c < 1.838c,

0.1053a(a′)−1b−1(b − a)−2c ≥ 0.1053 · b
8

(

7

8
b

)−1

b−1

(

7

8
b

)−2

c > 0.0196b−3c,

which together with (3.1) imply that

n′

8
<

log(2.647b3c) log(1.838c)

log(4bc) log(0.0196b−3c)
=: g(c).

Since g(c) is decreasing with respect to c, we have g(c) ≤ g(9.5b4) and thus

n′

8
<

log(25.1465b7) log(17.461b4)

log(38b5) log(0.1862b)
<

7 · 4
5

g1(b) = 5.6g1(b),(3.3)

where

g1(b) =
log(1.586b) log(2.045b)

log(2.069b) log(0.1862b)
.

(i) If v2m = w2n, then (3.3) and Lemma 2.3 together show that

0.03275a1/2b−1c1/2 < 5.6g1(b).

Since

0.03275a1/2b−1c1/2 ≥ 0.03275

(

b

8

)1/2

b−1
(

9.5b4
)1/2

> 0.03568b3/2,

we have b3/2 < 157g1(b). Since g1(b) is decreasing, we see that b ≤ 46.
Therefore, if v2m = w2n, then b ≤ 46. (ii) If v2m+1 = w2n+1, then (3.3) and
Lemma 2.3 together give

min
{

0.1555a−1/2b−1/4c1/4, 0.204b−3/4c1/4
}

+
1

8
< 5.6g1(b).

Since

0.1555a−1/2b−1/4c1/4 > 0.386b1/4, 0.204b−3/4c1/4 > 0.3581b1/4,

we see that b1/4 < 15.7g1(b) − 0.349 and that b < 1.3 · 105. Therefore, if
v2m+1 = w2n+1, then b < 1.3 · 105. (3) Assume that b > 8a and c ≥ b5. Since
7b/8 < a′ = b− a < b and 1 ≤ a < b/8, we see from (3.1) that

n′

8
<

log(1.415b3c) log(0.5249c)

log(4bc) log(0.1053b−4c)
=: h(c).
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Since h(c) is decreasing with respect to c and c ≥ b5, we have

n′

8
<

log(1.415b8) log(0.5249b5)

log(4b6) log(0.1053b)
<

20

3
· log(1.045b) log(0.8791b)
log(1.259b) log(0.1053b)

.

In the same way as (2), one may prove the following:

(i) If v2m = w2n, then b ≤ 18;
(ii) If v2m+1 = w2n+1, then b < 2 · 103.

This completes the proof of Proposition 3.3.

4. Proof of Theorem 1.2

It remains to obtain absolute lower bounds for b which contradict the
upper bounds in Proposition 3.3. In order to do that by computer, we start
by showing that if a < b ≤ 8a, then all the possible c’s appearing as the
third elements can be described explicitly, which makes the programs run
faster. Let {a, b, c} be a Diophantine triple, and s, t positive integers satisfying
ac+ 1 = s2, bc+ 1 = t2. Then, we have

at2 − bs2 = a− b.(4.1)

If (t, s) belongs to the same class as either of the solutions (±1, 1), then s can
be expressed as s = s±ν , where

s0 = s±0 = 1, s±1 = r ± a, s±ν+2 = 2rs±ν+1 − s±ν(4.2)

with r the positive integer satisfying ab+ 1 = r2. Define c±ν = ((s±ν )
2 − 1)/a.

By [11, Theorem 8], if a < b < 4a, then c has to be of the form c = c±ν for
some ν and some sign. The following lemma generalizes this result.

Lemma 4.1. Let {a, b, c} be a Diophantine triple. Assume that a < b ≤
8a. Then, c = c±ν for some ν and some sign.

Proof. Define s′, t′ by s′ = rs − at, t′ = rt − bs. Then, (t, s) and
(t′, s′) belong to the same class of solutions of Diophantine equation (4.1).
Put c′ = ((s′)2 − 1)/a. We may assume that c′ < r2 ≤ c. If c′ > b, then
[11, Theorem 2] implies that c′ = a+ b+2r = c+1 and hence c = c+2 . If c

′ = b,
then a+b+c+2abc−2rst= b shows that c2−2(a+2b+2ab2)c+a2−4ab−4 = 0.
Since the discriminant of this equation with respect to c is 16(ab+1)2(b2+1),
we must have b = 0, which is a contradiction. Suppose that c′ < b. If
c′ = 0, then s′ = rs − at = 1, and c = c−1 or c+1 . Let r′ = s′r − at′ and
b′ = ((r′)2− 1)/a. Then, b′ = a+ b+ c′+2abc′− 2rs′t′, and thus, [11, Lemma
4] and b ≤ 8a together imply that

b′ <
b

4ac′
≤ 8a

4ac′
=

2

c′
.

If c′ ≥ 2, then b′ = 0 and b = a+ c′+2s′. If c′ = 1, then, since b′+1 = b′c′+1
must be a square, b′ = 0 and b = a + c′ + 2s′. In either case, we obtain
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c′ = a+ b − 2r = c−1 and hence c = c−2 . This completes the proof of Lemma
4.1.

We are now ready to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Using programs written in Mathematica, we
are able to finish the proof of Theorem 1.2. We separately consider the cases
that appear in the Proposition 3.3. It remains to show the uniqueness of the
extension of Diophantine triple to a quadruple depending on the parity of
indices. In the case b ≤ 8a, we use Lemma 4.1 which implies that we know
all possible values of c that extend a Diophantine pair {a, b} to a Diophantine
triple {a, b, c}. In the case b > 8a, we first find the fundamental solutions
of equation (4.1) which give the sequences in which c can be. We do that
by finding all possible values of s0 for a fixed a and b. We have an estimate

s0 <
√

r+1
2 . When we get s0 we easily compute t0 from (4.1). Moreover, it

gives us s1 = rs0+at0 and we have the recurrence relation sν+2 = 2rsν+1−sν.
Then, we get cν = (s2ν − 1)/a. It is interesting that in most of the cases, c is
given by c = c±ν corresponding to the fundamental solutions (s0, t0) = (1,±1).
We prove Conjecture 1.1 for all pairs {a, b} with a < b and b bounded by
2.1 · 104 if b < 2a, by 1.3 · 105 if 2a ≤ b ≤ 8a, and by 2 · 103 if b > 8a.
Let us also mention that because we are able to prove the uniqueness of the
extension of Diophantine triple {a, b, c} starting with the smallest possible c,
there was no loss of generality in assuming that Diophantine triple {a, b, c}
cannot be extended to a quadruple {a, b, c, d} with d < d−, which gives us the
exact values of fundamental solution z0 and z1 that we use in reduction.

For the remaining values, we will need the computational method of
reduction of Baker-Davenport. In the programs, we start with a, then for
all possible values of b (notice that we know an upper bound for it) we check
if r =

√
ab+ 1 is an integer using the command IntegerQ. Then for fixed

a and b, we find all possible values of c using the upper bounds for c in
terms of a and b obtained from [6, Proposition 5]. Notice that in all cases c
grows exponentially. Then, for fixed a, b and c, we apply Baker-Davenport
reduction (see [7, Lemma 5]). Mathematica easily helps us to compute the
corresponding continued fractions and convergents. To run all programs and
to finish our proof, it roughly took 300 hours on 2.80 GHz Intel Core 2 Duo
2.98GB.
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