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Abstract. Let R be a commutative ring, let M be an R-module, let
f(X1, . . . , Xn) be a polynomial (with coefficients from R or Z) and let k

be a positive integer. We show that if R satisfies the polynomial identity

k∏

i=1

f(X1i, . . . ,Xni) = 0,

then the idealization R(+)M satisfies

k+1∏

i=1

f(X1i, . . . ,Xni) = 0.

1. Introduction

Throughout all rings will be commutative, but not necessarily with
identity. For rings with an identity, all modules are assumed to be unital.
When considering polynomials over a ring, it is useful for the ring to have an
identity. So we define the ring R1 as follows. If R has an identity, R1 = R.
If R does not have an identity, let R1 be the Dorroh extension of R with
charR1 = charR (so R1 = R ⊕ Z if charR = 0 while R1 = R ⊕ Zn if
charR = n > 0 with product (r1, n1)(r2, n2) = (r1r2 + n2r1 + n1r2, n1n2)).
Suppose that R and S are rings so that S is an R-module and n is a positive
integer. Recall that for a polynomial f ∈ R [X1, . . . , Xn] we say that S
satisfies a polynomial identity f(X1, . . . , Xn) = 0 if f(s1, . . . , sn) = 0 for
any s1, . . . , sn ∈ S.

Let R be a ring and M an R-module. The idealization or trivial extension
R(+)M of R and M is the ring with additive group R⊕M and multiplication
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given by (r1,m1)(r2,m2) = (r1r2, r1m2 + r2m1). Here (0 ⊕M)2 = 0, so the
nilradical of R(+)M is nil(R(+)M) = nil(R)⊕M . For results on idealization,
the reader is referred to [2].

Now let R be a ring, M an R-module and let k be a positive integer.
The main result of this note (Theorem 2.2) is the following. If there is a
polynomial f in n variables so that R satisfies a polynomial identity

f(X11, . . . , Xn1) · · · f(X1k, . . . , Xnk) = 0

(resp., (f(X1, . . . , Xn))
k = 0), then the idealization R(+)M of R and M

satisfies the polynomial identity

f(X11, . . . , Xn1) · · · f(X1k, . . . , Xnk)f(X1k+1, . . . , Xnk+1) = 0

(resp., (f(X1, . . . , Xn))
k+1 = 0). In Section 3 we give a number of applications

of our result and examples to show the sharpness of the result.

2. Main Result

Now let (r1,m1), . . . , (rn,mn) ∈ R(+)M . For later use first observe that

n
∏

i=1

(ri,mi) =







n
∏

i=1

ri,

n
∑

i=1







n
∏

j=1

j 6=i

rj






mi






.

Proposition 2.1. Let R be a ring and M an R-module. Let f be a

polynomial and elements (r1,m1), . . . , (rn,mn) be as above. Then

f((r1,m1), . . . , (rn,mn)) =

(

f(r1, . . . , rn),

n
∑

i=1

∂f

∂Xi

(r1, . . . , rn)mi

)

.

In particular, for the case n = 1 we have

f(r,m) = (f(r), f ′(r)m).

Proof. Writing f as a linear combination of primitive polynomials, it
suffices to prove the result for f(X1, . . . , Xn) = Xs1

1 · · ·Xsn
n . Now for r ∈ R

and m ∈ M , it is easily proved by induction that (r,m)k = (rk, krk−1m).
Hence

f((r1,m1), . . . , (rn,mn)) = (r1,m1)
s1 · · · (rn,mn)

sn

= (rs11 , s1r
s1−1
1 m1) · · · (r

sn
n , snr

sn−1
n mn)

=

(

rs11 · · · rsnn ,

n
∑

i=1

sir
s1
1 · · · r

si−1

i−1 rsi−1
i r

si+1

i+1 · · · rsnn mi

)

=

(

f(r1, . . . , rn),
n
∑

i=1

∂f

∂Xi

(r1, . . . , rn)mi

)

.
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Now we give our main result.

Theorem 2.2. Let R be a ring and M an R-module. Let f =
f(X1, . . . , Xn) ∈ R1 [X1, . . . , Xn] or f ∈ Z [X1, . . . , Xn] and let k be a positive

integer. Suppose that R satisfies the polynomial identity
∏k

i=1
f(X1i, . . . , Xni)

= 0 (resp., (f(X1, . . . , Xn))
k = 0). Then R(+)M satisfies the polynomial

identity
∏k+1

i=1
f(X1i, . . . , Xni) = 0 (resp., (f(X1, . . . , Xn))

k+1 = 0).

Proof. We are given that
∏k

i=1
f(r1i, . . . , rni) = 0 for any {rij} 1≤i≤n

1≤j≤k

⊆

R (resp., (f(r1, . . . , rn))
k = 0 for any r1, . . . , rn ∈ R). We need that

k+1
∏

i=1

f((r1i,m1i), . . . , (rni,mni)) = 0 for any {(rij ,mij)} 1≤i≤n

1≤j≤k+1

⊆ R(+)M

(resp., (f((r1,m1), . . . , (rn,mn))
k+1 = 0 for any (r1,m1), . . . , (rn,mn) ∈

R(+)M)).
We prove the first statement; for the second one we proceed in a similar

way. Using Proposition 2.1 and the displayed equality before it we get that

k+1
∏

i=1

f((r1i,m1i), . . . , (rni,mni))

=

k+1
∏

i=1



f(r1i, . . . , rni),

n
∑

j=1

∂f

∂Xj

(r1i, . . . , rni)mji





=







k+1
∏

i=1

f(r1i, . . . , rni),

k+1
∑

i=1







k+1
∏

j=1

j 6=i

f(r1j , . . . , rnj)







n
∑

j=1

∂f

∂Xj

(r1i, . . . , rni)mji







= (0, 0);

for the last equality use that

k+1
∏

j=1

f(r1ij , . . . , rni) =
k+1
∏

ℓ=1

ℓ 6=i

f (r1ℓ, . . . , rnℓ) = 0.

3. Examples

The purpose of this section is to illustrate the sharpness of Theorem 2.2
and to illustrate Theorem 2.2 for certain simple polynomial identities. We
begin by noting a dichotomy in the case of whether R is reduced.

Suppose that R is reduced, i.e., nil(R) = 0. If R satisfies
∏k

i=1
f(X1i, . . . ,

Xni) = 0 (or (f(X1, . . . , Xn))
k = 0), then R satisfies (f(X1, . . . , Xn))

k = 0
and hence f(X1, . . . , Xn) = 0 because R is reduced. Hence if R satisfies
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∏k

i=1
f(X1i, . . . , Xni) = 0 or (f(X1, . . . , Xn))

k = 0 for some k ≥ 1, then

R(+)M satisfies
∏k

i=1
f(X1i, . . . , Xni) = 0.

However, if R is not reduced, R can satisfy (f(X1, . . . , Xn))
2 = 0 but not

∏2

i=1
f(X1i, . . . , Xni) = 0 as our first example shows.

Example 3.1 (R satisfies (f(X))2 = 0 but not f(X)f(Y ) = 0). Take R
to be the maximal ideal (x, y) = (X,Y )/(X2, Y 2) of the local ring Z2[x, y] =
Z2[X,Y ]/(X2, Y 2), and f(X) = X . Then (f(r))2 = r2 = 0 for each r ∈ R,
but f(x)f(y) = xy 6= 0. For an example where the ring has an identity we
may take R = Z4(+)Z4, and f(X) = X(1 +X). It is easily checked that R
satisfies (f(X))2 = 0 but does not satisfy f(X)f(Y ) = 0.

We next illustrate the sharpness of Theorem 2.2. Suppose that the ring

R satisfies
∏k

i=1
f(X1i, . . . , Xni) = 0, but not

∏k−1

i=1
f(X1i, . . . , Xni) = 0.

So for a nonzero R-module M , R(+)M satisfies
∏k+1

i=1
f(X1i, . . . , Xni) =

0. We next give examples to show that R(+)M may or may not satisfy
∏k

i=1
f(X1i, . . . , Xni) = 0.

Example 3.2 (R satisfies
∏k

i=1
f(Xi) = 0, R(+)M satisfies

∏k+1

i=1
f(Xi)

= 0, but R(+)M does not satisfy
∏k

i=1
f(Xi) = 0). Let f(X) = X(1 + X)

and fk = f(X1) · · · f(Xk). Put R1 = Z2 and for k ≥ 1, Rk+1 = Rk(+)Rk.
Now R1 satisfies f1 = 0 so Rk satisfies fk = 0. It is easily checked that R2

does not satisfy f1 = 0. Suppose that Rk does not satisfy fk−1 = 0. So there
exist r1, . . . , rk−1 ∈ Rk with r1 · · · rk−1(1 + r1) · · · (1 + rk−1) 6= 0. Consider
(r1, 0), . . . , (rk−1, 0), (0, 1) ∈ Rk(+)Rk = Rk+1. Then

(r1, 0) · · · (rk−1, 0)(0, 1)((1, 0) + (r1, 0)) · · · ((1, 0) + (rk−1, 0))((1, 0) + (0, 1))

= (r1 · · · rk−1(1 + r1) · · · (1 + rk−1), 0)(0, 1)(1, 1)

= (0, r1 · · · rk−1(1 + r1) · · · (1 + rk−1)) 6= (0, 0).

So Rk+1 does not satisfy fk.
(R and R(+)M satisfy f = 0). Let R = Z4,M = Z2 and f(X) =

X2(1 +X)2. Then both Z4 and Z4(+)Z2 satisfy f(X) = 0.

Now we would like to illustrate Theorem 2.2 with some simple polynomial
identities. But first observe that if R satisfies a polynomial identity
f(X1, . . . , Xn) = 0, then f must necessarily have the constant term 0.
The interpretation of our theorem for the simplest cases f(X) = X and
f(X) = rX, r ∈ R, are left to the reader. Let us consider the quadratic
polynomial f(X) = aX2 + bX = X(aX + b). Assume that R has an identity;
so a+ b = 0 and then f(X) = aX(X − 1) = 0. Putting X = 2 gives 2a = 0.
The simplest case is when charR = 2 and a = 1; that is, f(X) = X(X + 1),
which is covered in the next example.

Example 3.3. Let R be a ring and f(X) = X(1 +X). Now R satisfies
f(X) = 0 if and only if R is Boolean. A ring R is said to be n-Boolean ([1]) if
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charR = 2 and R satisfies f(X1) · · · f(Xn) = 0. So R is 1-Boolean if and only
if R is Boolean. A 2-Boolean ring is called a Boolean-like ring ([3, 4]). By
Theorem 2.2 if R satisfies

∏n

i=1
f(Xi) = 0, then for an R-module M , R(+)M

satisfies
∏n+1

i=1
f(Xi) = 0. Since charR(+)M = charR, this gives that if R

is n-Boolean, then R(+)M is (n+ 1)-Boolean. Hence if R is a Boolean ring,
then R(+)M is a Boolean-like ring. In [1, Theorem 8] it is shown that R is
n-Boolean if and only if R/ nil(R) is Boolean, charR = 2, and nil(R)n = 0.
Using this characterization, it is shown in [1, Theorem 9] that R is n-Boolean
implies R(+)M is (n+1)-Boolean. We remark that [1, Theorem 10] says that
every Boolean-like ring has the form R(+)M for some Boolean ring R and
R-module M . However, a 3-Boolean ring need not have the form R(+)M
where R is 2-Boolean ([1, page 74]). Note that throughout this example we
could replace the polynomial f(X) = X(1 + X) by g(X) = X(1 −X) since
g(X) = −f(−X).
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