IDEALIZATION AND POLYNOMIAL IDENTITIES

Malik Bataineh and D. D. Anderson
Jordan University of Science and Technology, Jordan and The University of Iowa, USA

Abstract. Let R be a commutative ring, let M be an R-module, let $f\left(X_{1}, \ldots, X_{n}\right)$ be a polynomial (with coefficients from R or \mathbb{Z}) and let k be a positive integer. We show that if R satisfies the polynomial identity

$$
\prod_{i=1}^{k} f\left(X_{1 i}, \ldots, X_{n i}\right)=0
$$

then the idealization $R(+) M$ satisfies

$$
\prod_{i=1}^{k+1} f\left(X_{1 i}, \ldots, X_{n i}\right)=0
$$

1. Introduction

Throughout all rings will be commutative, but not necessarily with identity. For rings with an identity, all modules are assumed to be unital. When considering polynomials over a ring, it is useful for the ring to have an identity. So we define the ring R^{1} as follows. If R has an identity, $R^{1}=R$. If R does not have an identity, let R^{1} be the Dorroh extension of R with char $R^{1}=\operatorname{char} R$ (so $R^{1}=R \oplus \mathbb{Z}$ if char $R=0$ while $R^{1}=R \oplus \mathbb{Z}_{n}$ if char $R=n>0$ with product $\left.\left(r_{1}, n_{1}\right)\left(r_{2}, n_{2}\right)=\left(r_{1} r_{2}+n_{2} r_{1}+n_{1} r_{2}, n_{1} n_{2}\right)\right)$. Suppose that R and S are rings so that S is an R-module and n is a positive integer. Recall that for a polynomial $f \in R\left[X_{1}, \ldots, X_{n}\right]$ we say that S satisfies a polynomial identity $f\left(X_{1}, \ldots, X_{n}\right)=0$ if $f\left(s_{1}, \ldots, s_{n}\right)=0$ for any $s_{1}, \ldots, s_{n} \in S$.

Let R be a ring and M an R-module. The idealization or trivial extension $R(+) M$ of R and M is the ring with additive group $R \oplus M$ and multiplication

[^0]Key words and phrases. Idealization, trivial extension, polynomial identity.
given by $\left(r_{1}, m_{1}\right)\left(r_{2}, m_{2}\right)=\left(r_{1} r_{2}, r_{1} m_{2}+r_{2} m_{1}\right)$. Here $(0 \oplus M)^{2}=0$, so the nilradical of $R(+) M$ is $\operatorname{nil}(R(+) M)=\operatorname{nil}(R) \oplus M$. For results on idealization, the reader is referred to [2].

Now let R be a ring, M an R-module and let k be a positive integer. The main result of this note (Theorem 2.2) is the following. If there is a polynomial f in n variables so that R satisfies a polynomial identity

$$
f\left(X_{11}, \ldots, X_{n 1}\right) \cdots f\left(X_{1 k}, \ldots, X_{n k}\right)=0
$$

(resp., $\left(f\left(X_{1}, \ldots, X_{n}\right)\right)^{k}=0$), then the idealization $R(+) M$ of R and M satisfies the polynomial identity

$$
f\left(X_{11}, \ldots, X_{n 1}\right) \cdots f\left(X_{1 k}, \ldots, X_{n k}\right) f\left(X_{1 k+1}, \ldots, X_{n k+1}\right)=0
$$

(resp., $\left.\left(f\left(X_{1}, \ldots, X_{n}\right)\right)^{k+1}=0\right)$. In Section 3 we give a number of applications of our result and examples to show the sharpness of the result.

2. Main Result

Now let $\left(r_{1}, m_{1}\right), \ldots,\left(r_{n}, m_{n}\right) \in R(+) M$. For later use first observe that

$$
\prod_{i=1}^{n}\left(r_{i}, m_{i}\right)=\left(\prod_{i=1}^{n} r_{i}, \sum_{i=1}^{n}\left(\prod_{\substack{j=1 \\ j \neq i}}^{n} r_{j}\right) m_{i}\right) .
$$

Proposition 2.1. Let R be a ring and M an R-module. Let f be a polynomial and elements $\left(r_{1}, m_{1}\right), \ldots,\left(r_{n}, m_{n}\right)$ be as above. Then

$$
f\left(\left(r_{1}, m_{1}\right), \ldots,\left(r_{n}, m_{n}\right)\right)=\left(f\left(r_{1}, \ldots, r_{n}\right), \sum_{i=1}^{n} \frac{\partial f}{\partial X_{i}}\left(r_{1}, \ldots, r_{n}\right) m_{i}\right)
$$

In particular, for the case $n=1$ we have

$$
f(r, m)=\left(f(r), f^{\prime}(r) m\right)
$$

Proof. Writing f as a linear combination of primitive polynomials, it suffices to prove the result for $f\left(X_{1}, \ldots, X_{n}\right)=X_{1}^{s_{1}} \cdots X_{n}^{s_{n}}$. Now for $r \in R$ and $m \in M$, it is easily proved by induction that $(r, m)^{k}=\left(r^{k}, k r^{k-1} m\right)$. Hence

$$
\begin{aligned}
f\left(\left(r_{1}, m_{1}\right), \ldots,\left(r_{n}, m_{n}\right)\right) & =\left(r_{1}, m_{1}\right)^{s_{1}} \cdots\left(r_{n}, m_{n}\right)^{s_{n}} \\
& =\left(r_{1}^{s_{1}}, s_{1} r_{1}^{s_{1}-1} m_{1}\right) \cdots\left(r_{n}^{s_{n}}, s_{n} r_{n}^{s_{n}-1} m_{n}\right) \\
& =\left(r_{1}^{s_{1}} \cdots r_{n}^{s_{n}}, \sum_{i=1}^{n} s_{i} r_{1}^{s_{1}} \cdots r_{i-1}^{s_{i-1}} r_{i}^{s_{i}-1} r_{i+1}^{s_{i+1}} \cdots r_{n}^{s_{n}} m_{i}\right) \\
& =\left(f\left(r_{1}, \ldots, r_{n}\right), \sum_{i=1}^{n} \frac{\partial f}{\partial X_{i}}\left(r_{1}, \ldots, r_{n}\right) m_{i}\right) .
\end{aligned}
$$

Now we give our main result.
Theorem 2.2. Let R be a ring and M an R-module. Let $f=$ $f\left(X_{1}, \ldots, X_{n}\right) \in R^{1}\left[X_{1}, \ldots, X_{n}\right]$ or $f \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ and let k be a positive integer. Suppose that R satisfies the polynomial identity $\prod_{i=1}^{k} f\left(X_{1 i}, \ldots, X_{n i}\right)$ $=0\left(\right.$ resp., $\left.\left(f\left(X_{1}, \ldots, X_{n}\right)\right)^{k}=0\right)$. Then $R(+) M$ satisfies the polynomial identity $\prod_{i=1}^{k+1} f\left(X_{1 i}, \ldots, X_{n i}\right)=0\left(\right.$ resp., $\left.\left(f\left(X_{1}, \ldots, X_{n}\right)\right)^{k+1}=0\right)$.

Proof. We are given that $\prod_{i=1}^{k} f\left(r_{1 i}, \ldots, r_{n i}\right)=0$ for any $\left\{r_{i j}\right\}_{\substack{1 \leq i \leq n \\ 1 \leq j \leq k}} \subseteq$ R (resp., $\left(f\left(r_{1}, \ldots, r_{n}\right)\right)^{k}=0$ for any $r_{1}, \ldots, r_{n} \in R$). We need that

$$
\prod_{i=1}^{k+1} f\left(\left(r_{1 i}, m_{1 i}\right), \ldots,\left(r_{n i}, m_{n i}\right)\right)=0 \text { for any }\left\{\left(r_{i j}, m_{i j}\right)\right\}_{\substack{1 \leq i \leq n \\ 1 \leq j \leq k+1}} \subseteq R(+) M
$$

(resp., $\left(f\left(\left(r_{1}, m_{1}\right), \ldots,\left(r_{n}, m_{n}\right)\right)^{k+1}=0\right.$ for any $\left(r_{1}, m_{1}\right), \ldots,\left(r_{n}, m_{n}\right) \in$ $R(+) M)$).

We prove the first statement; for the second one we proceed in a similar way. Using Proposition 2.1 and the displayed equality before it we get that

$$
\begin{aligned}
& \prod_{i=1}^{k+1} f\left(\left(r_{1 i}, m_{1 i}\right), \ldots,\left(r_{n i}, m_{n i}\right)\right) \\
& \quad=\prod_{i=1}^{k+1}\left(f\left(r_{1 i}, \ldots, r_{n i}\right), \sum_{j=1}^{n} \frac{\partial f}{\partial X_{j}}\left(r_{1 i}, \ldots, r_{n i}\right) m_{j i}\right) \\
& \quad=\left(\prod_{i=1}^{k+1} f\left(r_{1 i}, \ldots, r_{n i}\right), \sum_{i=1}^{k+1}\left(\prod_{\substack{j=1 \\
j \neq i}}^{k+1} f\left(r_{1 j}, \ldots, r_{n j}\right)\right) \sum_{j=1}^{n} \frac{\partial f}{\partial X_{j}}\left(r_{1 i}, \ldots, r_{n i}\right) m_{j i}\right) \\
& \quad=(0,0) ;
\end{aligned}
$$

for the last equality use that

$$
\prod_{j=1}^{k+1} f\left(r_{1 i j}, \ldots, r_{n i}\right)=\prod_{\substack{\ell=1 \\ \ell \neq i}}^{k+1} f\left(r_{1 \ell}, \ldots, r_{n \ell}\right)=0
$$

3. Examples

The purpose of this section is to illustrate the sharpness of Theorem 2.2 and to illustrate Theorem 2.2 for certain simple polynomial identities. We begin by noting a dichotomy in the case of whether R is reduced.

Suppose that R is reduced, i.e., $\operatorname{nil}(R)=0$. If R satisfies $\prod_{i=1}^{k} f\left(X_{1 i}, \ldots\right.$, $\left.X_{n i}\right)=0\left(\right.$ or $\left.\left(f\left(X_{1}, \ldots, X_{n}\right)\right)^{k}=0\right)$, then R satisfies $\left(f\left(X_{1}, \ldots, X_{n}\right)\right)^{k}=0$ and hence $f\left(X_{1}, \ldots, X_{n}\right)=0$ because R is reduced. Hence if R satisfies
$\prod_{i=1}^{k} f\left(X_{1 i}, \ldots, X_{n i}\right)=0$ or $\left(f\left(X_{1}, \ldots, X_{n}\right)\right)^{k}=0$ for some $k \geq 1$, then $R(+) M$ satisfies $\prod_{i=1}^{k} f\left(X_{1 i}, \ldots, X_{n i}\right)=0$.

However, if R is not reduced, R can satisfy $\left(f\left(X_{1}, \ldots, X_{n}\right)\right)^{2}=0$ but not $\prod_{i=1}^{2} f\left(X_{1 i}, \ldots, X_{n i}\right)=0$ as our first example shows.

Example $3.1\left(R\right.$ satisfies $(f(X))^{2}=0$ but not $\left.f(X) f(Y)=0\right)$. Take R to be the maximal ideal $(x, y)=(X, Y) /\left(X^{2}, Y^{2}\right)$ of the local ring $\mathbb{Z}_{2}[x, y]=$ $\mathbb{Z}_{2}[X, Y] /\left(X^{2}, Y^{2}\right)$, and $f(X)=X$. Then $(f(r))^{2}=r^{2}=0$ for each $r \in R$, but $f(x) f(y)=x y \neq 0$. For an example where the ring has an identity we may take $R=\mathbb{Z}_{4}(+) \mathbb{Z}_{4}$, and $f(X)=X(1+X)$. It is easily checked that R satisfies $(f(X))^{2}=0$ but does not satisfy $f(X) f(Y)=0$.

We next illustrate the sharpness of Theorem 2.2. Suppose that the ring R satisfies $\prod_{i=1}^{k} f\left(X_{1 i}, \ldots, X_{n i}\right)=0$, but not $\prod_{i=1}^{k-1} f\left(X_{1 i}, \ldots, X_{n i}\right)=0$. So for a nonzero R-module $M, R(+) M$ satisfies $\prod_{i=1}^{k+1} f\left(X_{1 i}, \ldots, X_{n i}\right)=$ 0 . We next give examples to show that $R(+) M$ may or may not satisfy $\prod_{i=1}^{k} f\left(X_{1 i}, \ldots, X_{n i}\right)=0$.

Example $3.2\left(R\right.$ satisfies $\prod_{i=1}^{k} f\left(X_{i}\right)=0, R(+) M$ satisfies $\prod_{i=1}^{k+1} f\left(X_{i}\right)$ $=0$, but $R(+) M$ does not satisfy $\left.\prod_{i=1}^{k} f\left(X_{i}\right)=0\right)$. Let $f(X)=X(1+X)$ and $f_{k}=f\left(X_{1}\right) \cdots f\left(X_{k}\right)$. Put $R_{1}=\mathbb{Z}_{2}$ and for $k \geq 1, R_{k+1}=R_{k}(+) R_{k}$. Now R_{1} satisfies $f_{1}=0$ so R_{k} satisfies $f_{k}=0$. It is easily checked that R_{2} does not satisfy $f_{1}=0$. Suppose that R_{k} does not satisfy $f_{k-1}=0$. So there exist $r_{1}, \ldots, r_{k-1} \in R_{k}$ with $r_{1} \cdots r_{k-1}\left(1+r_{1}\right) \cdots\left(1+r_{k-1}\right) \neq 0$. Consider $\left(r_{1}, 0\right), \ldots,\left(r_{k-1}, 0\right),(0,1) \in R_{k}(+) R_{k}=R_{k+1}$. Then

$$
\begin{aligned}
& \left(r_{1}, 0\right) \cdots\left(r_{k-1}, 0\right)(0,1)\left((1,0)+\left(r_{1}, 0\right)\right) \cdots\left((1,0)+\left(r_{k-1}, 0\right)\right)((1,0)+(0,1)) \\
& =\left(r_{1} \cdots r_{k-1}\left(1+r_{1}\right) \cdots\left(1+r_{k-1}\right), 0\right)(0,1)(1,1) \\
& =\left(0, r_{1} \cdots r_{k-1}\left(1+r_{1}\right) \cdots\left(1+r_{k-1}\right)\right) \neq(0,0) .
\end{aligned}
$$

So R_{k+1} does not satisfy f_{k}.
$(R$ and $R(+) M$ satisfy $f=0)$. Let $R=\mathbb{Z}_{4}, M=\mathbb{Z}_{2}$ and $f(X)=$ $X^{2}(1+X)^{2}$. Then both \mathbb{Z}_{4} and $\mathbb{Z}_{4}(+) \mathbb{Z}_{2}$ satisfy $f(X)=0$.

Now we would like to illustrate Theorem 2.2 with some simple polynomial identities. But first observe that if R satisfies a polynomial identity $f\left(X_{1}, \ldots, X_{n}\right)=0$, then f must necessarily have the constant term 0. The interpretation of our theorem for the simplest cases $f(X)=X$ and $f(X)=r X, r \in R$, are left to the reader. Let us consider the quadratic polynomial $f(X)=a X^{2}+b X=X(a X+b)$. Assume that R has an identity; so $a+b=0$ and then $f(X)=a X(X-1)=0$. Putting $X=2$ gives $2 a=0$. The simplest case is when char $R=2$ and $a=1$; that is, $f(X)=X(X+1)$, which is covered in the next example.

Example 3.3. Let R be a ring and $f(X)=X(1+X)$. Now R satisfies $f(X)=0$ if and only if R is Boolean. A ring R is said to be n-Boolean ([1]) if
char $R=2$ and R satisfies $f\left(X_{1}\right) \cdots f\left(X_{n}\right)=0$. So R is 1-Boolean if and only if R is Boolean. A 2-Boolean ring is called a Boolean-like ring ([3, 4]). By Theorem 2.2 if R satisfies $\prod_{i=1}^{n} f\left(X_{i}\right)=0$, then for an R-module $M, R(+) M$ satisfies $\prod_{i=1}^{n+1} f\left(X_{i}\right)=0$. Since char $R(+) M=\operatorname{char} R$, this gives that if R is n-Boolean, then $R(+) M$ is $(n+1)$-Boolean. Hence if R is a Boolean ring, then $R(+) M$ is a Boolean-like ring. In [1, Theorem 8$]$ it is shown that R is n-Boolean if and only if $R / \operatorname{nil}(R)$ is Boolean, $\operatorname{char} R=2$, and $\operatorname{nil}(R)^{n}=0$. Using this characterization, it is shown in [1, Theorem 9] that R is n-Boolean implies $R(+) M$ is $(n+1)$-Boolean. We remark that [1, Theorem 10] says that every Boolean-like ring has the form $R(+) M$ for some Boolean ring R and R-module M. However, a 3-Boolean ring need not have the form $R(+) M$ where R is 2-Boolean ([1, page 74]). Note that throughout this example we could replace the polynomial $f(X)=X(1+X)$ by $g(X)=X(1-X)$ since $g(X)=-f(-X)$.

Acknowledgements.

We would like to thank the referee for a number of suggestions for improving the exposition of the paper.

References

[1] D. D. Anderson, Generalizations of Boolean rings, Boolean-like rings and von Neumann regular rings, Comment. Math. Univ. St. Paul. 35 (1986), 69-76.
[2] D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), 3-56.
[3] A. L. Foster, The idempotent elements of a commutative ring form a Boolean algebra; ring duality and transformation theory, Duke Math. J. 12 (1945), 143-152.
[4] A. L. Foster, The theory of Boolean-like rings, Trans. Amer. Math. Soc. 59 (1946), 166-187.
M. Bataineh

Department of Mathematics and Statistics Jordan University of Science and Technology Irbid 22110
Jordan
E-mail: msbataineh@just.edu.jo
D. D. Anderson

Department of Mathematics
The University of Iowa
Iowa City, IA 52242
USA
E-mail: dan-anderson@uiowa.edu
Received: 9.1.2013.
Revised: 22.7.2013.

[^0]: 2010 Mathematics Subject Classification. 13B25.

