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ABSTRACT. Let R be a commutative ring, let M be an R-module, let
f(X1,...,Xn) be a polynomial (with coeflicients from R or Z) and let k
be a positive integer. We show that if R satisfies the polynomial identity

k
11X, Xni) =0,
=1

then the idealization R(+)M satisfies

k+1
1T X, Xni) = 0.
=1

1. INTRODUCTION

Throughout all rings will be commutative, but not necessarily with
identity. For rings with an identity, all modules are assumed to be unital.
When considering polynomials over a ring, it is useful for the ring to have an
identity. So we define the ring R' as follows. If R has an identity, R' = R.
If R does not have an identity, let R' be the Dorroh extension of R with
char R! = charR (so R' = R® Z if char R = 0 while R* = R® Z, if
char R = n > 0 with product (r1,n1)(re,n2) = (r1r2 + nary + nira, ning)).
Suppose that R and S are rings so that S is an R-module and n is a positive
integer. Recall that for a polynomial f € R[Xi,...,X,] we say that S
satisfies a polynomial identity f(Xi,...,X,) = 0 if f(s1,...,8,) = 0 for
any Si,...,8, € S.

Let R be aring and M an R-module. The idealization or trivial extension
R(+)M of R and M is the ring with additive group R@® M and multiplication
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given by (r1,m1)(ra, ma) = (r1re,r1ma + r2my). Here (0@ M)? = 0, so the
nilradical of R(+)M is nil(R(+)M) = nil(R)® M. For results on idealization,
the reader is referred to [2].

Now let R be a ring, M an R-module and let k£ be a positive integer.
The main result of this note (Theorem 2.2) is the following. If there is a
polynomial f in n variables so that R satisfies a polynomial identity

f(Xa, e, Xn1) o f(Xaky o, Xog) = 0
(resp., (f(X1,...,Xn))* = 0), then the idealization R(+)M of R and M
satisfies the polynomial identity

f(Xu, o Xn1) - f( Xk o Xk fF(Xakt1s -+ Xnkp1) = 0

(resp., (f(X1,...,X,))**1 =0). In Section 3 we give a number of applications
of our result and examples to show the sharpness of the result.

2. MAIN RESULT

Now let (r1,m1),...,(Tm, m,) € R(+)M. For later use first observe that

n n n
[Ltrvoma = 1 2 H% m;
=1 Ji=

J#z

ProprosITION 2.1. Let R be a ring and M an R-module. Let f be a
polynomial and elements (r1,my),...,(rn, my) be as above. Then

f((rima), o (rnymn)) = (f(ﬁ,.-.ﬂ"n), %(Tmmmn)mi) :

=1

In particular, for the case n =1 we have
flrym) = (f(r), f'(r)m).

PROOF. Writing f as a linear combination of primitive polynomials, it
suffices to prove the result for f(Xq,...,X,) = X;'---X:». Now for r € R
and m € M, it is easily proved by induction that (r,m)* = (r*, krF=1m).
Hence
f((rlvml)a”-a(rnamn)) (7”1,7711) ’ (rnamn)

_1mn)

— 51 1,.8;—1 Sit1 Sn oy
< E Sﬂ’l [ L) ~~~rn”m1>

= (s ma) (s
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Now we give our main result.

THEOREM 2.2. Let R be a ring and M an R-module. Let f =
f(X1,...,X,) € RY[Xq,..., X, or f €Z[X,..., X,] and let k be a positive
integer. Suppose that R satisfies the polynomial identity Hle F(Xq4y oo, Xini)
=0 (resp., (f(X1,...,X,))* = 0). Then R(+)M satisfies the polynomial
identity TIM) F(Xuiy -y Xni) = 0 (resp., (F(X1,..., X))+ = 0).

PROOF. We are given that Hle f(rii, ... rni) =0 for any {rij}1<i<n C
1255k
R (resp., (f(r1,...,7))¥ =0 for any r1,...,7, € R). We need that

k1
LT 7((riesmas), . (rnsy ms)) = 0 for any {(rij,mij)} 1<icn  C R(+)M
=1

1<5<k+1

(resp., (f((ri,m1),...,(Tn,mpn))¥*t = 0 for any (ri,m1),...,(rm,m,) €
R(+)M)).
We prove the first statement; for the second one we proceed in a similar

way. Using Proposition 2.1 and the displayed equality before it we get that
E+1

H f((Tu,mu)’ ) (Tnmmm'))

k+1 n 8f
= H friis i), ﬁ(rli;-'-;rni)mji
i=1 j=1 J
k+1 k41 (k41 Y
= H f(riis i), Z H f(rig, o rng) W(TU’ e Ti) i
i=1 i=1\ j=1 j=1 J
J#i
= (0,0);
for the last equality use that
k+1 k+1
Hf(rlij;-“;rni) = Hf(ﬁe,-~-a7’ne) =0.
j=1 e

3. EXAMPLES

The purpose of this section is to illustrate the sharpness of Theorem 2.2
and to illustrate Theorem 2.2 for certain simple polynomial identities. We
begin by noting a dichotomy in the case of whether R is reduced.

Suppose that R is reduced, i.e., nil(R) = 0. If R satisfies Hle JAC. CTT
Xni) = 0 (or (f(X1,...,Xn))* = 0), then R satisfies (f(X1,...,Xn))* =0
and hence f(Xi,...,X,) = 0 because R is reduced. Hence if R satisfies
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Hle f( X4y, Xni) = 0 or (f(X1,...,X,))* = 0 for some k > 1, then
R(+)M satisfies [T, f(X1i- -, Xpi) = 0.

However, if R is not reduced, R can satisfy (f(X1,...,X,))? = 0 but not
H?Zl f(X14y ..., Xni) =0 as our first example shows.

EXAMPLE 3.1 (R satisfies (f(X))?= 0 but not f(X)f(Y)=0). Take R
to be the maximal ideal (z,y) = (X,Y)/(X?Y?2) of the local ring Zs[z,y] =
Zo|X,Y]/(X2Y?), and f(X) = X. Then (f(r))? = 2 = 0 for each r € R,
but f(z)f(y) = xy # 0. For an example where the ring has an identity we
may take R = Z4(+)Z4, and f(X) = X(1 + X). It is easily checked that R
satisfies (f(X))? = 0 but does not satisfy f(X)f(Y) =0.

We next illustrate the sharpness of Theorem 2.2. Suppose that the ring
R satisfies [\, f(X14,..., Xni) = 0, but not [[¥ f(X1s,..., Xpi) = 0.
So for a nonzero R-module M, R(+)M satisfies Hfill (X1iy -, Xni) =

0. We next give examples to show that R(+)M may or may not satisfy
T, F(Xus, e, Xni) = 0.

EXAMPLE 3.2 (R satisfies Hle f(X;) =0, R(+)M satisfies Hf:ll (Xi)
= 0, but R(+)M does not satisty Hle f(Xi) =0). Let f(X)=X(1+ X)
and fk = f(Xl)f(Xk) Put R1 = ZQ and for k Z 1, Rk-‘,—l = Rk(—l—)Rk
Now R; satisfies fi = 0 so Ry satisfies fr = 0. It is easily checked that Ro
does not satisfy f; = 0. Suppose that Ry does not satisfy fr—1 = 0. So there
exist 71,...,7k—1 € Rg with r1 -+ 11 (1 +7r1) -+ (1 + 7-1) # 0. Consider
(7“1, 0),..., (Tk_l,O), (0, 1) S Rk(—l—)Rk = Rj41. Then

(r1,0) -+ (re-1,0)(0,1)((1,0) + (r1,0)) - -- ((1,0) + (rx-1,0))((1,0) 4 (0, 1))
=(r1-rpg—1(1+r) - (1+76-1),0)(0,1)(1,1)
=(0,r1 - rp—1(14+r1) - (1+rk_1)) # (0,0).

So Ry41 does not satisfy fi.

(R and R(+)M satisfy f = 0). Let R = Z4,M = Zs and f(X) =
X2(1+ X)2 Then both Z, and Z4(+)Zz satisfy f(X) = 0.

Now we would like to illustrate Theorem 2.2 with some simple polynomial
identities. But first observe that if R satisfies a polynomial identity
f(Xq,...,X,,) = 0, then f must necessarily have the constant term O.
The interpretation of our theorem for the simplest cases f(X) = X and
f(X) =rX, r € R, are left to the reader. Let us counsider the quadratic
polynomial f(X) =aX?+bX = X (aX +b). Assume that R has an identity;
so a+b =0 and then f(X)=aX(X —1) = 0. Putting X = 2 gives 2a = 0.
The simplest case is when char R = 2 and a = 1; that is, f(X) = X(X + 1),
which is covered in the next example.

EXAMPLE 3.3. Let R be a ring and f(X) = X(1 + X). Now R satisfies
f(X) =0if and only if R is Boolean. A ring R is said to be n-Boolean ([1]) if
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char R = 2 and R satisfies f(X1)--- f(X,,) = 0. So R is 1-Boolean if and only
if R is Boolean. A 2-Boolean ring is called a Boolean-like ring ([3,4]). By
Theorem 2.2 if R satisfies []\—, f(X;) = 0, then for an R-module M, R(+)M
satisfies H?Ill (X;) = 0. Since char R(+)M = char R, this gives that if R
is n-Boolean, then R(+)M is (n + 1)-Boolean. Hence if R is a Boolean ring,
then R(+)M is a Boolean-like ring. In [1, Theorem 8] it is shown that R is
n-Boolean if and only if R/nil(R) is Boolean, char R = 2, and nil(R)" = 0.
Using this characterization, it is shown in [1, Theorem 9] that R is n-Boolean
implies R(+)M is (n+1)-Boolean. We remark that [1, Theorem 10] says that
every Boolean-like ring has the form R(+)M for some Boolean ring R and
R-module M. However, a 3-Boolean ring need not have the form R(+)M
where R is 2-Boolean ([1, page 74]). Note that throughout this example we
could replace the polynomial f(X) = X(1+ X) by ¢g(X) = X(1 — X) since
9(X) = —f(—X).
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