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ROOT SUPERMULTIPLICITIES AND CORRESPONDING

COMBINATORIAL IDENTITIES FOR SOME BORCHERDS

SUPERALGEBRAS
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University of Madras, Chennai, India

Abstract. In this paper, root supermultiplicities and corresponding
combinatorial identities for the Borcherds superalgebras which are exten-
sions of A2 and A3 are found out. Moreover, superdimension formula for

a Borcherds superalgebra which is an extension of a particular hyperbolic
Kac-Moody algebra is also computed.

1. INTRODUCTION

In 1977, theory of Lie superalgebras was constructed by Kac. The theory
of Lie superalgebras can also be seen in Scheunert ([24]) in a detailed manner.
The notion of Kac-Moody superalgebras was introduced by Kac ([7]) and
therein the Weyl-Kac character formula for the irreducible highest weight
modules with dominant integral highest weight which yields a denominator
identity when applied to 1-dimensional representation was also derived.
Borcherds ([1, 2]) proved a character formula called Weyl-Borcherds formula
which yields a denominator identity for a generalized Kac-Moody algebra.
Miyamoto ([23]) introduced the theory of generalized Lie superalgebra version
of the generalized Kac-Moody algebras (Borcherds algebras) and had shown
that the transformed Borcherds superalgebras and Borcherds superalgebras
have many similar properties. A homological theory for the graded Lie
algebras was developed by Kang ([10]) and a closed form root multiplicity
formula for all symmetrizable generalized Kac-Moody algebras was derived
in Kang ([12]). Kim and Shin ([21]) derived a recursive dimension formula
for all graded Lie algebras. Kang and Kim ([18]) calculated the dimension
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formula for graded Lie algebras. Computation of root multiplicities of many
Kac-Moody algebras and generalized Kac-Moody algebras can be seen in Kass
et al. ([20]), Kang ([11, 13–15]), S. J. Kang and D. J. Melville ([19]), Frenkel
and Kac ([4]), Feingold and Frenkel ([3]), Kac and Wakimoto ([9]), Hontz
and Misra ([5]), Sthanumoorthy and Uma Maheswari ([26]), Sthanumoorthy
et al. ([31, 32]) and Sthanumoorthy and Lilly ([34]). Computation of root
multiplicities of Borcherds superalgebras was found in Sthanumoorthy et
al. ([36]). Some properties of different classes of root systems and their
classifications for Kac-Moody algebras and Borcherds Kac-Moody algebras
were studied in Sthanumoorthy and Uma Maheswari ([25]) and Sthanumoothy
and Lilly ([27–30,33]). Also, properties of different root systems and complete
classifications of special, strictly and purely imaginary roots of Borcherds Kac-
Moody Lie superalgebras which are extensions of Kac-Moody Lie algebras
were explained in Sthanumoorthy et al. ([35, 37]) and Sthanumoorthy and
Priyadharsini ([38, 39]). Moreover, Kang ([16]) obtained a superdimension
formula for the homogeneous subspaces of the graded Lie superalgebras, which
enabled one to study the structure of the graded Lie superalgebras in a unified
way. Using the Weyl-Kac-Borcherds formula and the denominator identity
for the Borcherds superalgerbas, Kang and Kim ([17]) derived a dimension
formula and combinatorial identities for the Borcherds superalgebras and
found out the root multiplicities for Monstrous Lie superalgebras.

In this paper, we compute dimensional formulae, root supermultiplicities
and corresponding combinatorial identities for the Borcherds superalgebras
which are extensions of Kac-Moody algebras A2, A3. Moreover, we compute
a dimension formula for a Borcherds superalgebra which is extension of
hyperbolic Kac-Moody algebra. Particular cases of these Borcherds superal-
gebras were considered in Sthanumoorthy et al. ([36]) and therein only
dimension formulas were found out. Throughout this paper we use mainly
the results from Kang and Kim ([17]).

2. PRELIMINARIES

In this section, we give some basic concepts of Borcherds superalgebras
as in Kang and Kim ([17]).

Definition 2.1. Let I be a countable (possibly infinite) index set. A real
square matrix A = (aij)i,j∈I is called Borcherds-Cartan matrix if it satisfies:

(1) aii = 2 or aii ≤ 0 for all i ∈ I,
(2) aij ≤ 0 if i 6= j and aij ∈ Z if aii = 2,
(3) aij = 0 ⇔ aji = 0.

We say that an index i is real if aii = 2 and imaginary if aii ≤ 0. We denote
by

Ire = {i ∈ I|aii = 2}, I im = {i ∈ I|aii ≤ 0}.
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Let m = {mi ∈ Z>0| i ∈ I} be a collection of positive integer such that mi = 1
for all i ∈ Ire. We call m, charge of A.

Definition 2.2. A Borcherds-Cartan matrix A is said to be symmetrizable
if there exists a diagonal matrix D = diag(ǫi; i ∈ I) with ǫi > 0 (i ∈ I) such
that DA is symmetric.

Let C = (cij)i,j∈I be a complex matrix satisfying cijcji = 1 for all i, j ∈ I.
Therefore, we have cii = ±1 for all i ∈ I. We call i ∈ I an even index if cii = 1
and an odd index if cii = −1.

We denote by Ieven (Iodd) the set of all even (odd) indices.

Definition 2.3. A Borcherds-Cartan matrix A = (aij)i,j∈I is restricted
(or colored) with respect to C if it satisfies:

If aii = 2 and cii = −1 then aij are even integers for all j ∈ I. In this
case, the matrix C is called a coloring matrix of A.

Let h = (⊕i∈IChi) ⊕ (⊕i∈ICdi) be a complex vector space with a basis
{hi, di; i ∈ I}, and for each i ∈ I, define a linear functional αi ∈ h⋆ by

(2.1) αi(hj) = aji, αi(dj) = δij for all j ∈ I.

If A is symmetrizable, then there exists a symmetric bilinear form (·|·) on
h⋆ satisfying (αi|αj) = ǫiaij = ǫjaji for all i, j ∈ I.

Definition 2.4. Let Q = ⊕i∈IZαi and Q+ =
∑

i∈I Z≥0αi, Q− = −Q+.
Q is called the root lattice.

The root lattice Q becomes a (partially) ordered set by putting λ ≥ µ if
and only if λ− µ ∈ Q+.

The coloring matrix C = (cij)i,j∈I defines a bimultiplicative form θ :
Q×Q → CX by

θ(αi, αj) = cij for all i, j ∈ I,

θ(α+ β, γ) = θ(α, γ)θ(β, γ),

θ(α, β + γ) = θ(α, β)θ(α, γ)

for all α, β, γ ∈ Q. Note that θ satisfies

(2.2) θ(α, β)θ(β, α) = 1 for all α, β ∈ Q,

since cijcji = 1 for all i, j ∈ I.
In particular θ(α, α) = ±1 for all α ∈ Q.
We say α ∈ Q is even if θ(α, α) = 1 and odd if θ(α, α) = −1.

Definition 2.5. A θ-colored Lie superalgebra is a Q-graded vector space
L = ⊕α∈QLα together with a bilinear product [·, ·] : L× L → L satisfying

[Lα, Lβ] ⊂ Lα+β,

[x, y] = −θ(α, β)[y, x],

[x, [y, z]] = [[x, y], z] + θ(α, β)[y, [x, z]]
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for all α, β ∈ Q and x ∈ Lα, y ∈ Lβ, z ∈ L.
In a θ-colored Lie superalgebra L = ⊕α∈QLα, for x ∈ Lα, we have [x, x] =

0 if α is even and [x, [x, x]] = 0 if α is odd.

Definition 2.6. The universal enveloping algebra U(L) of a θ-colored Lie
superalgebra L is defined to be T (L)/J , where T (L) is the tensor algebra of L
and J is the ideal of T (L) generated by the elements [x, y]−x⊗y+θ(α, β)y⊗x
(x ∈ Lα, y ∈ Lβ).

Definition 2.7. The Borcherds superalgebra g = g(A,m,C) associated
with the symmetrizable Borcherds-Cartan matrix A of charge m = (mi; i ∈
I) and the coloring matrix C = (cij)i,j∈I is the θ-colored Lie superalgebra
generated by the elements hi, di(i ∈ I), eik, fik(i ∈ I, k = 1, 2, · · · ,mi) with
defining relations:

[hi, hj ] = [hi, dj ] = [di, dj ] = 0,
[hi, ejl] = aijejl, [hi, fjl] = −aijfjl,
[di, ejl] = δijejl, [di, fjl] = −δijfjl,
[eik, fjl] = δijδklhi

(adeik)
1−aij ejl = (adfik)

1−aijfjl = 0 if aii = 2 and i 6= j,
[eik, ejl] = [fik, fjl] = 0 if aij = 0

for i, j ∈ I, k = 1, · · · ,mi, l = 1, · · · ,mj.

The abelian subalgebra h = (⊕i∈IChi) ⊕ (⊕i∈ICdi) is called the Cartan
subalgebra of g and the linear functionals αi ∈ h⋆(i ∈ I) defined by (2.1) are
called the simple roots of g. For each i ∈ Ire, let ri ∈ GL(h⋆) be the simple
reflection of h⋆ defined by

ri(λ) = λ− λ(hi)αi (λ ∈ h⋆).

The subgroup W of GL(h⋆) generated by the ri’s (i ∈ Ire) is called the Weyl
group of the Borcherds superalgebra g.

The Borcherds superalgebra g = g(A,m,C) has the root space decompo-
sition g = ⊕α∈Qgα, where

gα = {x ∈ g| [h, x] = α(h)x for all h ∈ h}.
Note that

gαi
= Cei,1 ⊕ · · · ⊕ Cei,mi

and
g−αi

= Cfi,1 ⊕ · · · ⊕ Cfi,mi
.

We say that α ∈ QX is a root of g if gα 6= 0. The subspace gα is called
the root space of g attached to α. A root α is called real if (α|α) > 0 and
imaginary if (α|α) ≤ 0.

In particular, a simple root αi is real if aii = 2 that is if i ∈ Ire and
imaginary if aii ≤ 0 that is if i ∈ I im. Note that the imaginary simple roots
may have multiplicity > 1. A root α > 0 (α < 0) is called positive (negative).
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One can show that all the roots are either positive or negative. We denote
by ∆,∆+ and ∆− the set of all roots, positive roots and negative roots,
respectively. Also we denote ∆0 (∆1) the set of all even (odd) roots of g.

Define the subspaces g± = ⊕α∈∆±gα.
Then we have the triangular decomposition of g:

g = g− ⊕ h⊕ g+.

Definition 2.8 (Sthanumoorthy et al. ([37])). We define an indefinite
nonhyperbolic Borcherds-Cartan matrix A to be of extended-hyperbolic type if
every principal submatrix of A is of finite, affine, or hyperbolic type Borcherds-
Cartan matrix. We say that the Borcherds superalgebra associated with a
Borcherds-Cartan matrix A is of extended-hyperbolic type, if A is of extended-
hyperbolic type.

Definition 2.9. A g-module V is called h-diagonalizable if it admits a
weight space decomposition V =

⊕

µ∈h∗ Vµ, where

Vµ = {v ∈ V | h · v = µ(h)v for all h ∈ h} .
If Vµ 6= 0, then µ is called a weight of V , and dimVµ is called the multiplicity
of µ in V .

Definition 2.10. A h-diagonalizable g-module V is called a highest
weight module with highest weight λ ∈ h∗, if there is a nonzero vector vλ ∈ V
such that

(i) eik · vλ = 0, for all i ∈ I, k = 1, · · · ,mi,
(ii) h · vλ = λ(h)vλ for all h ∈ h,
(iii) V = U(g) · vλ. The vector vλ is called a highest weight vector.

For a highest weight module V with highest weight λ, we have

(i) V = U(g−) · vλ,
(ii) V = ⊕µ≤λVµ, Vλ = Cvλ and
(iii) dimVµ < ∞ for all µ ≤ λ.

Definition 2.11. Let P (V ) denote the set of all weights of V . When all
the weights spaces are finite dimensional, the character of V is defined to be

chV =
∑

µ∈h⋆

(dimVµ)e
µ,

where eµ are the basis elements of the group C[h⋆] with the multiplication given
by eµeν = eµ+ν for µ, ν ∈ h⋆.

Let b+ = h⊕ g+ be the Borel subalgebra of g and Cλ be the 1-dimensional
b+-module defined by g+ ·1 = 0, h·1 = λ(h)1 for all h ∈ h. The induced module
M(λ) = U(g)⊗U(b+)Cλ is called the Verma module over g with highest weight
λ. Every highest weight g-module with highest weight λ is a homomorphic
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image of M(λ) and the Verma module M(λ) contains a unique maximal
submodule J(λ). Hence the quotient V (λ) = M(λ)/J(λ) is irreducible.

Let P+ be the set of all linear functionals λ ∈ h⋆ satisfying






λ(hi) ∈ Z≥0 for all i ∈ Ire,
λ(hi) ∈ 2Z≥0 for all i ∈ Ire ∩ Iodd,
λ(hi) ≥ 0 for all i ∈ I im.

The elements of P+ are called the dominant integral weights.
Let ρ ∈ h⋆ be the C-linear functional satisfying ρ(hi) =

1
2aii for all i ∈ I.

Let T denote the set of all imaginary simple roots counted with multiplicities
and, for F ⊂ T, we set F ⊥ λ if λ(hi) = 0 for all αi ∈ F.

Definition 2.12 (Kang and Kim ([17])). Let J be a finite subset of Ire

and we denote by ∆J = ∆ ∩ (
∑

j∈J Zαj), ∆±
J = ∆± ∩ ∆J and ∆±(J) =

∆±\∆±
J . Let

(2.3) g
(J)
0 = h

⊕

(

⊕

α∈∆J

gα

)

and
g
(J)
± =

⊕

α∈∆±(J)

gα.

Then g
(J)
0 is the restricted Kac-Moody superalgebra (with an extended

Cartan subalgebra) associated with the Cartan matrix AJ = (aij)i,j∈J and
the set of odd indices

Jodd = J ∩ Iodd = {j ∈ J | cjj = −1}.
Then the triangular decomposition of g is given by

g = g
(J)
−

⊕

g
(J)
0

⊕

g
(J)
+ .

Let WJ = 〈rj |j ∈ J〉 be the subgroup of W generated by the simple reflections
rj (j ∈ J), and let

W (J) =
{

w ∈ W | ∆w ⊂ ∆+(J)
}

where

(2.4) ∆w = {α ∈ ∆+| w−1α < 0}.
Therefore WJ is the Weyl group of the restricted Kac-Moody super algebra

g
(J)
0 and W (J) is the set of right coset representatives of WJ in W. That is

W = WJW (J).

The following lemma given in Kang and Kim ([18]), proved in Liu ([22]),
is very useful in actual computation of the elements of W (J).

Lemma 2.13. Suppose w = w′rj and l(w) = l(w′) + 1. Then w ∈ W (J)
if and only if w′ ∈ W (J) and w′(αj) ∈ ∆+(J).
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Now, let ∆±
ī,J

= ∆±
ī
∩∆J (i = 0, 1) and ∆±

ī
(J) = ∆±

ī
\∆±

ī,J
(i = 0, 1). Here

∆±
0̄
(∆±

1̄
) denotes the set of all positive or negative even (resp., positive or

negative odd) roots of g.
The following proposition, proved in Kang and Kim ([17]), gives the

denominator identity for Borcherds superalgebras.

Proposition 2.14. Let J be a finite subset of the set of all real indices
Ire. Then
∏

α∈∆−

0(J)

(1− eα)dim gα

∏

α∈∆−

1(J)

(1 + eα)dim gα
=

∑

w∈W (J)
F⊂T

(−1)l(w)+|F | chVJ (w(ρ− s(F )− ρ)),

where VJ(µ) denotes the irreducible highest weight module over the restricted

Kac-Moody superalgebra g
(J)
0 with highest weight µ and where F runs over

all the finite subsets of T such that any two elements of F are mutually
perpendicular. Here l(w) denotes the length of w, |F | the number of elements
in F , and s(F ) the sum of the elements in F .

Definition 2.15. A basis elements of the group algebra C[h⋆] by defining

Eα = θ(α, α)eα.

Also define the super dimension Dim gα of the root space gα by

(2.5) Dim gα = θ(α, α) dim gα.

Since w(ρ − s(F )) − ρ is an element of Q−, all the weights of the irreducible

highest weight g
(J)
0 -module VJ(w(ρ − s(F ))− ρ) are also elements of Q−.

Hence one can define the superdimension DimVµ of the weight space Vµ of
VJ (w(ρ−s(F ))−ρ) in a similar way. More generally, for an h-diagonalizable

g
(J)
0 -module V = ⊕µ∈h⋆Vµ such that P (V ) ⊂ Q, we define the superdimension

Dim Vµ of the weight space Vµ to be

(2.6) Dim Vµ = θ(µ, µ) dim Vµ

For each k ≥ 1, let

(2.7) H
(J)
k =

⊕

w∈W (J)
F⊂T

l(w)+|F |=k

VJ (w(ρ− s(F ))− ρ)

and define the homology space H(J) of g
(J)
− to be

(2.8) H(J) =

∞
∑

k=1

(−1)k+1H
(J)
k = H

(J)
1 ⊖H

(J)
2 ⊕H

(J)
3 ⊖ · · · ,

an alternating direct sum of the vector spaces.
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For τ ∈ Q−, define the superdimension DimH
(J)
τ of the τ -weight space

of H(J) to be

DimH(J)
τ =

∞
∑

k=1

(−1)k+1(DimH
(J)
k )τ

=

∞
∑

k=1

(−1)k+1
∑

w∈W (J)
F⊂T

l(w)+|F |=k

DimVJ (w(ρ − s(F ))− ρ)τ ,

(2.9) DimH(J)
τ =

∑

w∈W (J)
F⊂T

l(w)+|F |≥1

(−1)l(w)+|F |+1DimVJ (w(ρ − s(F ))− ρ)τ .

Let

(2.10) P (H(J)) =
{

α ∈ Q−(J)| dimH(J)
α 6= 0

}

and let {τ1, τ2, τ3, · · · } , be an enumeration of the set P (H(J)). Let D(i) =

DimH
(J)
τi .

Remark 2.16. The elements of P (H(J)) can be determined by applying
the following proposition, proved in Kac ([8]).

Proposition 2.17 (Kang and Kim ([17])). Let Λ ∈ P+. Then P (Λ) =
W.{λ ∈ P+|λ is nondegenerate with respect to Λ}.

Now, for τ ∈ Q−(J), define

(2.11) T (J)(τ) =
{

n = (ni)i≥1|ni ∈ Z≥0,
∑

niτi = τ
}

,

the set of all partitions of τ into a sum of αi’s.
For n ∈ T (J)(α), use the notations |n| =

∑

ni and n! =
∏

ni!.
Now, for τ ∈ Q−(J), the Witt partition function W (J)(τ) is defined as

(2.12) W (J)(τ) =
∑

n∈T (J)(τ)

(|n| − 1)!

n!

∏

D(i)ni .

The proof of a closed form formula for the superdimension Dim gα of the
root space gα(α ∈ ∆−(J)) is given in the following theorem of Kang and Kim
([17]).

Theorem 2.18 (Kang and Kim ([17])). Let J be a finite subset of Ire.
Then, for α ∈ ∆−(J), we have

Dim gα =
∑

d|α

1

d
µ(d)W (J)

(α

d

)

,
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(2.13) Dim gα =
∑

d|α

1

d
µ(d)

∑

n∈T (J)(α
d )

(|n| − 1)!

n!

∏

D(i)ni

where µ is the classical Möbius function. Namely, for a natural number n,
µ(n) is defined as follows:

µ(n) =







1 for n = 1,
(−1)k for n = p1 · · · pk (p1, · · · , pk : distinct primes),
0 if it is not square free

and, for a positive integer d, d|α denotes α = dα for some α ∈ Q−, in which

case α =
α

d
.

In the following Sections 3.1, 3.2 and 3.3, we find root supermultiplicities
of Borcherds superalgebras which are the extensions of Kac-Moody Algebras
A2 and A3 with multiplicity greater than or equal 1 and the corresponding
combinatorial identities using Kang and Kim ([17]). In Section 3.4, we
also find superdimension formula for two Borcherds superalgebras which are
extensions of hyperbolic Kac-Moody algebras.

3. Root supermultiplicities (with multiplicity ≥ 1) of Borcherds
superalgebras which are the extensions of Kac Moody

algebras and the corresponding combinatorial identities

3.1. Superdimension formula and the corresponding combinatorial identity
for the extended-hyperbolic Borcherds superalgebra which is an extension of
A2. We are considering J as two different subsets of Ire and getting the
following dimension formula and combinatorial identity for α = τ = −4α1 −
2α2−3α3 ∈ Q− with b=1 for the extended-hyperbolic Borcherds superalgebra
g = g(A,m,C) associated with the extended-hyperbolic Borcherds-Cartan
super matrix

A =





−k −a −b
−a 2 −1
−b −1 2



 .

Consider the extended-hyperbolic Borcherds superalgebra g = g(A,m,C)
associated with the extended-hyperbolic Borcherds-Cartan super matrix

A =





−k −a −b
−a 2 −1
−b −1 2





and the corresponding coloring matrix be

C =





−1 c1 c2
c−1
1 1 c3
c−1
2 c−1

3 1




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with c1, c2, c3 ∈ CX .
Let I = {1, 2, 3} be the index set with charge m = {1, 1, 1}.
Let us consider the root α = k1α1 + k2α2 + k3α3 ∈ Q. Then we have

θ(α, α) = (−1)k
2
1 . Hence α is an even root (resp. odd root) if k1 is even

integer (resp. odd integer). Also T = {α1} and the subset F ⊂ T is either
empty or {α1}. Take J ⊆ Ire as J = {2}. By Lemma 2.13, this implies that
W (J) = {1, r3}. From equations (2.7) and (2.8), the homological space can
be written as

H
(J)
1 = VJ(1(ρ− α1)− ρ)⊕ VJ(r3(ρ)− ρ)

= VJ(−α1)⊕ VJ (−α3),

H
(J)
2 = VJ(r3(ρ− α1)− ρ) = VJ (−α1 − (b+ 1)α3),

H
(J)
3 = 0 for all k ≥ 3

and hence

H(J) = H
(J)
1 ⊖H

(J)
2

= VJ (−α1)⊕ VJ (−α3)⊖ VJ(−α1 − (b+ 1)α3),

with

DimH
(J)
(1,0,0) = −1 6= 0; DimH

(J)
(0,1,0) = −1 6= 0;

DimH
(J)
(0,0,1) = 1 6= 0; DimH

(J)
(1,1,b+1) = −1 6= 0.

So we have

P (H(J)) = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, b+ 1)}.

Let τ = α = −pα1 − qα2 − tα3 ∈ Q−, with (p, q, t) ∈ Z≥0 × Z≥0 × Z≥0.
Then by Proposition 2.17 we get

T (J)(τ) = {(s1, s2, s3, s4)|s1(1, 0, 0) + s2(0, 1, 0) + s3(0, 0, 1) + s4(1, 1, b+ 1)

= (p, q, t)}.

This implies

s1 + s4 = p,

s2 + s4 = q,

s3 + (b+ 1)s4 = t.

So, we have

s1 = p− s4; s2 = q − s4; s3 = t− (b+ 1)s4; s4 = 0 to min(p, q, [
t

b+ 1
]).
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Applying s1, s2, s3, s4 in Witt partition formula (2.12), we get

(3.1) W (J)(τ) =

min(p,q,[ t
b+1 ])

∑

s4=0

(p+ q + t− (b + 2)s4 − 1)!(−1)p+q−s4

(p− s4)!(q − s4)!(t− (b+ 1)s4)!s4!

From (2.13), the dimension of gα is

Dim gα =
∑

d|α

1

d
µ(d)W (J)

(α

d

)

=
∑

d|α

1

d
µ(d)

∑

n∈T (J)(α
d )

(|n| − 1)!

n!

∏

D(i)ni ,

Substituting the value of W (J)(τ) from (3.1) in the above dimension formula,
we get

Dim gα =
∑

d|α

1

d
µ(d)

min( p
d
, q
d
,[ t

d(b+1)
])

∑

s4=0

(p
d
+ q

d
+ t

d
− (b+ 2)s4 − 1)!(−1)

p

d
+ q

d
−s4

(p
d
− s4)!(

q
d
− s4)!(

t
d
− (b+ 1)s4)!s4!

.

On the other hand if we consider, {J} = {2, 3}. Then W (J) = {1} and

g
(J)
0 = 〈e1, f1, h〉 ∼= sl(2,C) and T = {α1}. F ⊂ T is either empty or {α1}.

Using (2.7) and (2.8), we have H(J) = VJ (−α1). We consider H(J) as a 4-
dimensional irreducible representation of the Lie algebra sl(2,C) and hence
we obtain

P (H(J)) = {(1, 0, 1), (0, 1, 1), (1, 1, 1), (1, 1, 2)}.
with

DimH
(J)
(1,0,1) = −1; DimH

(J)
(0,1,1) = −1;

DimH
(J)
(1,1,1) = −1; DimH

(J)
(1,1,2) = −1.

Let τ = −pα1 − qα2 − tα3 ∈ Q−, with (p, q, t) ∈ Z≥0 × Z≥0 × Z≥0. Then by
Proposition 2.17 we get

T (J)(τ) = {(s1, s2, s3, s4)|(p− |φ1|, q − |φ2|, (φ1, φ2)), p− |φ1| = 1, 2, . . . ,

q − |φ2| = 0, 1, 2, . . . ,

φ1 is partition of q with parts ≤ 2;

φ2 is partition of t with parts ≤ 2}.

Applying s1, s2, s3, s4 in Witt partition formula, we get

(3.2) W (J)(τ) =
∑

φ∈T (J)(α)

(p− 1)!(−1)p+q

(p− |φ1|)!(q − |φ2|)!φ1!φ2!
.
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From (2.13), the dimension of gα is

Dim gα =
∑

d|α

1

d
µ(d)W (J)

(α

d

)

=
∑

d|α

1

d
µ(d)

∑

n∈T (J)(α
d )

(|n| − 1)!

n!

∏

D(i)ni ,

Substituting the value of W (J)(τ) from (3.2) in the above dimension formula,
we get

Dim gα =
∑

d|α

1

d
µ(d)

∑

φ∈T (J)(α)

(p− 1)!(−1)p+q

(p− |φ1|)!(q − |φ2|)!φ1!φ2!
.

Now let us consider Borcherds-Cartan matrix

A =





−k −a −1
−a 2 −1
−1 −1 2





(that is b = 1 in the above Borcherds-Cartan matrix). For this Borcherds-
Cartan matrix, we consider the root τ = α = (4, 2, 3) ∈ Q−.

Substituting τ = α = (4, 2, 3) ∈ Q− and b = 1 in (3.1), we have

W (J)(τ) =

min(p,q,[ t
b+1 ])

∑

s4=0

(p+ q + t− (b+ 2)s4 − 1)!(−1)p+q−s4

(p− s4)!(q − s4)!(t− (b+ 1)s4)!s4!

=

min(4,2,[ 32 ])
∑

s4=0

(4 + 2 + 3− 3s4 − 1)!(−1)6−s4

(4− s4)!(2 − s4)!(3 − 2s4)!s4!

=
8!(−1)6

4!2!3!
+

5!(−1)5

3!1!1!1!
= 120.

Substituting the root (4,2,3) and b = 1 in (3.2), we have

W (J)(τ) =
∑

φ∈T (J)(τ)

(p+ q − 1)!(−1)p+q

(p− |φ1|)!(q − |φ2|)!φ1!φ2!

=
5!

2!1!1!1!
+

5!

2!2!
+

5!

3!
+

5!

3!2!
= 120.
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Hence the combinatorial identity

min(p,q,[ t
b+1 ])

∑

s4=0

(p+ q + t− (b + 2)s4 − 1)!(−1)p+q−s4

(p− s4)!(q − s4)!(t− (b+ 1)s4)!s4!

=
∑

φ∈T (J)(τ)

(p+ q − 1)!(−1)p+q

(p− |φ1|)!(q − |φ2|)!φ1!φ2!

holds for the particular root τ = α = −4α1 − 2α2 − 3α3 ∈ Q− for the
Borcherds-Cartan matrix

A =





−k −a −1
−a 2 −1
−1 −1 2



 .

Hence we have proved the following theorem:

Theorem 3.1. Let g = g(A,m,C) be the extended-hyperbolic Borcherds
superalgebra associated with the extended-hyperbolic Borcherds-Cartan super
matrix

A =





−k −a −b
−a 2 −1
−b −1 2





with charge m = {1, 1, 1}. Then for the root τ = α = −pα1− qα2− tα3 ∈ Q−,
the dimension of gα is

Dim gα =
∑

d|α

1

d
µ(d)

min( p
d
, q
d
,[ t

d(b+1)
])

∑

s4=0

(p
d
+ q

d
+ t

d
− (b+ 2)s4 − 1)!(−1)

p

d
+ q

d
−s4

(p
d
− s4)!(

q
d
− s4)!(

t
d
− (b+ 1)s4)!s4!

or

Dim gα =
∑

d|α

1

d
µ(d)

∑

φ∈T (J)(τ)

(p− 1)!(−1)p+q

(p− |φ1|)!(q − |φ2|)!φ1!φ2!

for different values of J ⊆ Ire.
Moreover, for a particular root τ = α = −4α1 − 2α2 − 3α3, the following

combinatorial identity holds:

(3.3)

min(p,q,[ t
b+1 ])

∑

s4=0

(p+ q + t− (b + 2)s4 − 1)!(−1)p+q−s4

(p− s4)!(q − s4)!(t− (b+ 1)s4)!s4!

=
∑

φ∈T (J)(τ)

(p+ q − 1)!(−1)p+q

(p− |φ1|)!(q − |φ2|)!φ1!φ2!
,

where φ1 is partition of ‘q’ with parts ≤ 2 and φ2 is partition of ‘t’ with parts
≤ 2.
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Remark 3.2. If a = 1, b = 0, the above example is same as the example

A =





−k −a −b
−a 2 −1
−b −1 2





given in Sthanumoorthy et al. ([36]). But in this present case, we consider two
different cases of J ⊆ Ire and found the corresponding Dimension formulas.
Although, the equality of above two values of Dim gα is not proved here in
general, the same is proved for a particular root α = (4, 2, 3) and b = 1 in the
Borcherds-Cartan super matrix

A =





−k −a −b
−a 2 −1
−b −1 2



 .

Below, we find the dimension formulae and combinatorial identities for
the Borcherds superalgebras which are extensions of A2, A3 (for a same set
J ⊆ Ire) by solving T (J)(τ) in two different method.

3.2. Superdimension formula and the corresponding combinatorial identity
for the extended-hyperbolic Borcherds superalgebra which is an extension of
A2. Consider the extended-hyperbolic Borcherds superalgebra g = g(A,m,C)
associated with the extended-hyperbolic Borcherds-Cartan super matrix

A =





−k −a −b
−a 2 −1
−b −1 2





and the corresponding coloring matrix be

C =





−1 c1 c2
c−1
1 1 c3
c−1
2 c−1

3 1





with c1, c2, c3 ∈ CX .
Let I = {1, 2, 3} be the index set for the simple roots of g. Here α1 is

the imaginary odd simple root with multiplicity r ≥ 1 and α2, α3 are the real
even simple roots.

Let us consider the root α = k1α1 + k2α2 + k3α3 ∈ Q. We have θ(α, α) =

(−1)k
2
1 . Hence α is an even root (resp. odd root) if k1 is even integer (resp.

odd integer). Also T = {α1} (counted r times) and the subset F ⊂ T is either
empty or {α1}. Take J ⊆ Ire as J = {2, 3}. Then

g0 = 〈e2, f2, h2, e3, f3, h3〉 ∼= sl(3,C).



ROOT SUPERMULTIPLICITIES AND COMBINATORIAL IDENTITIES 67

By Lemma 2.13, this implies that W (J) = {1}. From (2.7) and (2.8), the
homology space can be written as

H
(J)
1 = VJ (1(ρ− α1)− ρ) = VJ (−α1),

H
(J)
k = 0 for all k ≥ 2.

Therefore

H(J) = H
(J)
1 = VJ (−α1)⊕ VJ (−α1)⊕ · · · ⊕ VJ(−α1) (counted r times)

with

DimH
(J)
(1,0,0) = −r, DimH

(J)
(1,1,0) = −r,

DimH
(J)
(1,1,1) = −r, DimH

(J)
(1,1,a+1) = −r.

We take

P (H(J)) = {(1, 0, 0), (1, 1, 0), (1, 1, 1), (1, 1, a+ 1)}.
Let τ = α = −pα1 − qα2 − tα3 ∈ Q−, with (p, q, t) ∈ Z≥0 × Z≥0 × Z≥0.

Then by Proposition 2.17 we get

T (J)(τ) = {(s1, s2, s3, s4)|s1(1, 0, 0) + s2(1, 1, 0) + s3(1, 1, 1) + s4(1, 1, a+ 1)

= (p, q, t)}.

This implies

s1 + s2 + s3 + s4 = p,

s2 + s3 + s4 = q,

s3 + (a+ 1)s4 = t.

We have

s1 = p− q,

s2 = q − t+ as4,

s3 = t− (a+ 1)s4,

s4 = 0 to min

(

p, q,

[

t

a+ 1

])

.

Applying s1, s2, s3, s4 in Witt partition formula (2.12), we have

(3.4) W (J)(τ) =

min(p,q,[ t
a+1 ])

∑

s4=0

(q−t+as4)≥0

(p− 1)!(−r)p

(p− q)!(q − t+ as4)!(t− (a+ 1)s4)!s4!

(note that (p− q) ≥ 0 and (t− (a+ 1)s4) ≥ 0).
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From (2.13) we conclude that the dimension of gα is

Dim gα =
∑

d|α

1

d
µ(d)W (J)

(α

d

)

=
∑

d|α

1

d
µ(d)

∑

n∈T (J)(α
d )

(|n| − 1)!

n!

∏

D(i)ni ,

Substituting the value of W (J)(τ) from (3.4) in the above dimension
formula, we have

Dim gα =

min(p,q,[ t
a+1 ])

∑

s4=0

(q−t+as4)≥0

(p− 1)!(−r)p

(p− q)!(q − t+ as4)!(t− (a+ 1)s4)!s4!

(note that (p− q) ≥ 0 and (t− (a+ 1)s4) ≥ 0).
If we solve the same P (H(J)), using partition and substituting this

partition in T (J)(τ), we have

T (J)(τ) = {(p− q), q − |φ|, φ},
where φ is partition of t with parts (1, a+1) of length t. Applying T (J)(τ) in
Witt partition formula (2.12), we have

(3.5) W (J)(τ) =
∑

φ∈T (J)(τ)

(p− 1)!(−r)p

(p− q)!(q − |φ|)!φ! .

From (2.13), the dimension of gα is

Dim gα =
∑

d|α

1

d
µ(d)W (J)

(α

d

)

=
∑

d|α

1

d
µ(d)

∑

n∈T (J)(α
d )

(|n| − 1)!

n!

∏

D(i)ni ,

Substituting the value of W (J)(τ) from (3.5) in the above dimension
formula, we have

Dim gα =
∑

φ∈T (J)(τ)

(p− 1)!(−r)p

(p− q)!(q − |φ|)!φ! .

Consider (3.5)

W (J)(τ) =
∑

φ∈T (J)(τ)

(p− 1)!(−r)p

(p− q)!(q − |φ|)!φ! ,

where φ is partitions of t in α = τ = −pα1 − qα2 − tα3 with parts (1, a+1) of
length ≤ t. That is, φ can be written as (n1, n(a+1)), where n1 is number of
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1’s in the partition of t and n(a+1) is number of (a+1)’s in the same partition
of t. Then

φ = {(t, 0), (t− (a+ 1), 1), . . . up to the term satisfying t− n1(a+ 1) > 0}.
Hence

W (J)(τ) =
∑

(n1,n(a+1))∈T (J)(τ)

(p− 1)!(−r)p

(p− q)!(q − n1 − n(a+1))!n1!n(a+1)!

=
(p− 1)!(−r)p

(p− q)!(q − t− 0)!t!0!

+
(p− 1)!(−r)p

(p− q)!(q − t+ a+ 1− 1)!(t− (a+ 1)1)!1!

+
(p− 1)!(−r)p

(p− q)!(q − t+ 2a+ 2− 2)!(t− 2(a+ 1))!2!

+ · · · up to the term satisfying t− n1(a+ 1) > 0

=
(p− 1)!(−r)p

(p− q)!(q − t− 0)!t!0!
+

(p− 1)!(−r)p

(p− q)!(q − t+ a)!(t− (a+ 1))!1!

+
(p− 1)!(−r)p

(p− q)!(q − t+ 2a)!(t− 2(a+ 1))!2!

+ · · · up to the term satisfying t− n1(a+ 1) > 0.

Here we are considering the roots of type (p, q, t) such that p ≥ q ≤ t and also
p ≥ t. Moreover, the sum ranges up to the term satisfying t− n1(a+ 1) > 0.
So we can write the above summation as

Dim gα =

min(p,q,[ t
a+1 ])

∑

s4=0

(q−t+as4)≥0

(p− 1)!(−r)p

(p− q)!(q − t+ as4)!(t− (a+ 1)s4)!s4!
,

which is same as (3.4) (note that (p− q) ≥ 0 and (t− (a+ 1)s4) ≥ 0).
Hence, we get the following theorem:

Theorem 3.3. Let g = g(A,m,C) be the extended-hyperbolic Borcherds
superalgebra associated with the extended-hyperbolic Borcherds-Cartan super
matrix

A =





−k −a −b
−a 2 −1
−b −1 2





with charge m = {r, 1, 1}. Then for the root α = −pα1 − qα2 − tα3 ∈ Q−, the
dimension of gα is

Dim gα =

min(p,q,[ t
a+1 ])

∑

s4=0

(q−t+as4)≥0

(p− 1)!(−r)p

(p− q)!(q − t+ as4)!(t− (a+ 1)s4)!s4!
.
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Moreover the following combinatorial identity holds:

(3.6)

min(p,q,[ t
a+1 ])

∑

s4=0

(q−t+as4)≥0

(p− 1)!(−r)p

(p− q)!(q − t+ as4)!(t− (a+ 1)s4)!s4!

=
∑

φ∈T (J)(τ)

(p− 1)!(−r)p

(p− q)!(q − |φ|)!φ! .

Remark 3.4. In the above formula, (p − q) ≥ 0 and (t − (a + 1)s4) ≥ 0
always hold. The term in the LHS containing (q−t+as4)! in the denominator,
if (q − t+ as4) < 0, should be omitted.

Example 3.5. For the Borcherds-Cartan super matrix

A =





−k −1 −b
−1 2 −1
−b −1 2



 ,

consider a root α = τ = (5, 3, 4) with r=2. Substituting α = τ = (5, 3, 4), r =
2, a = 1 in (3.4), we have

W (J)(τ) =

min(p,q,[ t
a+1 ])

∑

s4=0

(q−t+as4)≥0

(p− 1)!(−r)p

(p− q)!(q − t+ as4)!(t− (a+ 1)s4)!s4!

=

min(5,3,[ 42 ])
∑

s4=1

(5− 1)!(−2)5

(5 − 3)!(3− 4 + s4)!(4 − 2s4)!s4!

=

2
∑

s4=1

4!(−32)

2!(−1 + s4)!(4− 2s4)!s4!

=
4!(−32)

2!0!2!
+

4!(−32)

2!1!0!2!
= −192− 192 = −384.

Substituting α = τ = (5, 3, 4), r = 2, a = 1 in (3.5), we have

W (J)(τ) =
∑

φ∈T (J)(α)

(p− 1)!(−r)p

(p− q)!(q − |φ|)!φ!

=
4!(−32)

2!2!0!1!
+

4(−32)

2!2!0!1!
= −192− 192 = −384.

Hence the equality (3.6) holds.
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Example 3.6. For the Borcherds-Cartan super matrix

A =





−k −2 −b
−2 2 −1
−b −1 2



 ,

consider a root α = τ = (4, 2, 3) ∈ Q− with r=1. Substituting α = τ =
(4, 2, 3), r = 1, a = 2 in (3.4), we have

W (J)(τ) =

min(p,q,[ r
a+1 ])

∑

s4=0

(q−t+as4)≥0

(p− 1)!(−r)p

(p− q)!(q − t+ as4)!(t− (a+ 1)s4)!s4!

=

min(4,2,[ 33 ])
∑

s4=1

(4− 1)!(−1)4

(4 − 2)!(2− 3 + 2s4)!(3 − 3s4)!s4!

=
3!

2!1!0!1!
= 3.

Substituting α = τ = (4, 2, 3), r = 1, a = 2 in (3.5), we get

W (J)(τ) =
∑

φ∈T (J)(τ)

(p− 1)!(−r)p

(p− q)!(q − |φ|)!φ!

=
(4− 1)!(−1)4

2!(3− 2)!1!1!
= 3.

Hence the equality (3.6) holds.

3.3. Dimension Formula and combinatorial identity for the Borcherds
superalgebra which is an extension of A3. Here we are finding the superdi-
mension formula and combinatorial identity for the Borcherds superalgebra
which is an extension of A3 using the same J ⊆ Ire and solving T (J)(τ) in
two different ways.

Consider the extended-hyperbolic Borcherds superalgebra g = g(A,m,C)
associated with the extended-hyperbolic Borcherds-Cartan super matrix

A =









−k −a −b −c
−a 2 −1 0
−b −1 2 −1
−c 0 −1 2









and the corresponding coloring matrix be

C =









−1 c1 c2 c3
c−1
1 1 c4 c5
c−1
2 c−1

4 1 c6
c−1
3 c−1

5 c−1
6 1








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with c1, c2, c3, c4 ∈ CX . Let I = {1, 2, 3, 4} be the index set with charge
m = {r, 1, 1, 1}.

Let us consider the root α = k1α1 + k2α2 + k3α3 + k4α4 ∈ Q. We have

θ(α, α) = (−1)k
2
1 . Hence α is an even root (resp. odd root) if k1 is even integer

(resp. odd integer). Also T = {α1} (counted ’r’ times) and the subset F ⊂ T
is either empty or {α1}. Take J ⊆ Ire as J = {2, 3, 4}. By Lemma 2.13, this
implies that W (J) = {1}. Then

g0 = 〈e2, f2, h2, e3, f3, h3, e4, f4, h4〉 ∼= sl(4,C).

Using (2.7) and (2.8) we can write the homological spaces as

H
(J)
1 = VJ(1(ρ− α1)− ρ) = VJ (−α1),

H
(J)
k = 0 ∀k ≥ 2.

Therefore

H(J) = H
(J)
1 = VJ(−α1)⊕ VJ (−α1)⊕ ...⊕ VJ (−α1) (counted r times)

with

DimH
(J)
(1,0,0,0) = −r, DimH

(J)
(1,1,0,0) = −r, DimH

(J)
(1,1,1,0) = −r,

DimH
(J)
(1,1,1,1) = −r, DimH

(J)
(1,1,1,a+1) = −r.

Hence we have

P (H(J)) = {(1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0), (1, 1, 1, 1), (1, 1, 1, a+ 1)}.

Let α = τ = −pα1 − qα2 − uα3 − vα4 ∈ Q−, with (p, q, u, v) ∈ Z≥0 ×
Z≥0 × Z≥0 × Z≥0. Then by Proposition 2.17, we get

T (J)(τ) = {(s1, s2, s3, s4, s5)|s1(1, 0, 0, 0) + s2(1, 1, 0, 0) + s3(1, 1, 1, 0)

+ s4(1, 1, 1, 1) + s5(1, 1, 1, a+ 1) = (p, q, u, v)}.

This implies

s1 + s2 + s3 + s4 + s5 = p,

s2 + s3 + s4 + s5 = q,

s3 + s4 + s5 = u,

s4 + (a+ 1)s5 = v.
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We have

s1 = p− q,

s2 = q − u,

s3 = u− v + s5,

s4 = v − (a+ 1)s5,

s5 = 0 to min

(

p, q, u,

[

v

a+ 1

])

.

Applying obtained formulae for s1, s2, s3, s4, s5 in Witt partition formula
(2.12) we get
(3.7)

W (J)(τ) =

min(p,q,u,[ v
a+1 ])

∑

s5=0

(u−v+s5)≥0

(p− 1)!(−r)p

(p− q)!(q − r)!(u − v + s5)!(v − (a+ 1)s5)!s5!

(note that (p− q) ≥ 0, (q − r) ≥ 0 and (v − (a+ 1)s5) ≥ 0).
From (2.13), the dimension gα is

Dim gα =
∑

d|α

1

d
µ(d)W (J)

(α

d

)

=
∑

d|α

1

d
µ(d)

∑

n∈T (J)(α
d )

(|n| − 1)!

n!

∏

D(i)ni .

Substituting the value of W (J)(τ) from (3.7) in the above dimension formula
yields

Dim gα =

min(p,q,u,[ v
a+1 ])

∑

s5=0

(u−v+s5)≥0

(p− 1)!(−r)p

(p− q)!(q − r)!(u − v + s5)!(v − (a+ 1)s5)!s5!

(note that (p− q) ≥ 0, (q − r) ≥ 0 and (v − (a+ 1)s5) ≥ 0).
If we solve the same P (H(J)) using partition and substituting the

partition, we obtain

T (J)(τ) = {(p− q), q − u, u− |φ|, φ},

where φ is partition of v with parts ≤ (1, a + 1) and of length v. Applying
T (J)(τ) in Witt partition formula (2.12)

(3.8) W (J)(τ) =
∑

φ∈T (J)(τ)

(p− 1)!(−r)p

(p− q)!(q − u)!(u− |φ|)!φ! .
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From equation (2.13), the dimension gα is

Dim gα =
∑

d|α

1

d
µ(d)W (J)

(α

d

)

=
∑

d|α

1

d
µ(d)

∑

n∈T (J)(α
d )

(|n| − 1)!

n!

∏

D(i)ni .

Substituting the value of W (J)(τ) from (3.8) in the above dimension
formula, we obtain

Dim gα =
∑

φ∈T (J)(τ)

(p− 1)!(−r)p

(p− q)!(q − u)!(u− |φ|)!φ! .

Consider the equation (3.8),

W (J)(α) =
∑

φ∈T (J)(τ)

(p− 1)!(−r)p

(p− q)!(q − u)!(u− |φ|)!φ! ,

where φ is partitions of v in α = τ = −pα1 − qα2 − uα3 − vα4 with parts
(1, a+1) of length ≤ v. That is, φ can be written as (n1, n(a+1)), where
n1 is number of 1’s in the partition of v and n(a+1) is number of (a + 1)’s
in the same partition of v. Then φ = {(v, 0), (v − (a + 1), 1), (v − 2(a +
1), 2), . . . up to the term satisfying v − n1(a+ 1) > 0}.

We have

W (J)(τ) =
∑

n1,n(a+1)∈T (J)(τ)

(p− 1)!(−r)p

(p− q)!(q − u)!(u− n1 − n(a+1))!n1!n(a+1)!

=
(p− 1)!(−r)p

(p− q)!(q − u)!(u− v − 0)!t!0!

+
(p− 1)!(−r)p

(p− q)!(q − u)!(u− v + a)!(v − (a+ 1))!1!

+
(p− 1)!(−r)p

(p− q)!(q − u)!(u− v + 2a)!(v − 2(a+ 1))!2!

+ · · · up to the term satisfying v − n1(a+ 1) > 0.

Here we are considering the roots of type (p, q, u, v) such that p ≥ q, u ≤ v and
also p ≥ v.Moreover the sum ranges up to the term satisfying v−n1(a+1) > 0.
So we can write the above summation as

Dim gα =

min(p,q,u,[ v
a+1 ])

∑

s5=0

(u−v+s5)≥0

(p− 1)!(−r)p

(p− q)!(q − r)!(u − v + s5)!(v − (a+ 1)s5)!s5!

which is same as equation (3.7) (note that (p − q) ≥ 0, (q − r) ≥ 0 and
(v − (a+ 1)s5) ≥ 0).



ROOT SUPERMULTIPLICITIES AND COMBINATORIAL IDENTITIES 75

Hence we proved the following theorem:

Theorem 3.7. Let g = g(A,m,C) be the extended-hyperbolic Borcherds
superalgebra associated with the extended-hyperbolic Borcherds-Cartan super
matrix

A =









−k −a −b −c
−a 2 −1 0
−b −1 2 −1
−c 0 −1 2









with charge m = {r, 1, 1, 1}. Then for the root α = τ = −pα1 − qα2 − uα3 −
vα4 ∈ Q−, the dimension of gα is

Dim gα =

min(p,q,u,[ v
a+1 ])

∑

s5=0

(u−v+s5)≥0

(p− 1)!(−r)p

(p− q)!(q − r)!(u − v + s5)!(v − (a+ 1)s5)!s5!
.

Moreover the following combinatorial identity holds:

(3.9)

min(p,q,u,[ v
a+1 ])

∑

s5=0

(u−v+s5)≥0

(p− 1)!(−r)p

(p− q)!(q − u)!(u− v + s5)!(v − (a+ 1)s5)!s5!

=
∑

φ∈T (J)(τ)

(p− 1)!(−r)p

(p− q)!(q − u)!(u− |φ|)!φ! .

Remark 3.8. In the above formula, (p− q) ≥ 0, (q− r) ≥ 0 and (v− (a+
1)s5) ≥ 0 always hold. The term in the LHS containing (u − v + s5)! in the
denominator, if (u− v + s5) < 0 should be omitted.

Example 3.9. For the Borcherds-Cartan super matrix

A =









−k −1 −b −c
−1 2 −1 0
−b −1 2 −1
−c 0 −1 2









,
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consider the root α = τ=(5, 3, 2, 4) with r = 2 and a = 1. Using these values
in (3.7), we have

min(p,q,u,[ v
a+1 ])

∑

s5=0

(u−v+s5)≥0

(p− 1)!(−r)p

(p− q)!(q − u)!(u− v + s5)!(v − (a+ 1)s5)!s5!

=

min(5,3,2,[ 42 ])
∑

s5=2

(5− 1)!(−2)5

(5− 3)!(3− 2)!(2− 4 + 2)!(4 − 2(2))!2!

=
4!(−2)5

2!1!0!0!2!
= −192.

Now if we use α = (p, q, u, v) = (5, 3, 2, 4), r = 2, a = 1 in (3.8), we have

∑

φ∈T (J)(τ)

(p− 1)!(−r)p

(p− q)!(q − u)!(u− |φ|)!φ! =
(5− 1)!(−2)5

(5− 3)!(3− 2)!(2− |φ|)!φ! = −192.

Hence the equality (3.9) holds.

Example 3.10. For the Borcherds-Cartan super matrix

A =









−k −1 −b −c
−1 2 −1 0
−b −1 2 −1
−c 0 −1 2









,

consider the root α = τ =(7, 4, 3, 5) = (p, q, u, v) with r=1 and a=1. Applying
in equation (3.7), we have

min(p,q,u,[ v
a+1 ])

∑

s5=0

(u−v+s5)≥0

(p− 1)!(−r)p

(p− q)!(q − u)!(u− v + s5)!(v − (a+ 1)s5)!s5!

=

2
∑

s5=1

(7− 1)!(−1)7

(7− 4)!(4− 3)!(3 − 5 + 2s5)!(3 − 2s5)!s5!

=
6!(−1)

3!0!1!1!
+

6!(−1)

3!1!2!(−1)!2!

= −120

Consider the root τ = α as (7, 4, 3, 5) with r=1 and a=1. Applying in equation
(3.8), we have

∑

φ∈T (J)(τ)

(p− 1)!(−r)p

(p− q)!(q − u)!(u− |φ|)!φ! =
(7− 1)!(−1)7

(7− 4)!(4− 3)!(3− 2)!1!
= −120.

Hence the equality (3.9) holds.
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Remark 3.11. In the above two Sections 3.2 and 3.3., the identities (3.6)
and (3.9) hold for any root, because we have derived the identities by simply
solving the T (J)(τ) in two different ways.

3.4. Superdimension Formula for a extended-hyperbolic Borcherds superal-
gebra which is an extension of hyperbolic Kac-Moody algebra. Now, we find
superdimension formula extended-hyperbolic Borcherds superalgebra which is
an extension of hyperbolic Kac-Moody algebra.

Proposition 3.12. Let g = g(A,m,C) be the extended-hyperbolic
Borcherds superalgebra associated with the extended-hyperbolic Borcherds-
Cartan super matrix

A =





−2 −1 −1
−2 2 −4
−1 −2 2





and I = {1, 2, 3} be the index set with charge m = {1, 1, 1}. Then for the root
α = −lα1−mα2−nα3 ∈ Q− with l,m, n ∈ Z≥0 and weight λ = −α1−mα2−
nα3, prove that Dim gα = θ(λ, λ)p(m − (m− n)2).

Proof. Consider the extended-hyperbolic Borcherds superalgebra g =
g(A,m,C) associated with the extended-hyperbolic Borcherds-Cartan super
matrix

A =





−2 −1 −1
−2 2 −4
−1 −2 2





and the corresponding coloring matrix be

C =





−1 c1 c2

c−1
1 1 c

(−1)
3

c2 c3 1





with c1, c2, c3 ∈ CX .
Let us consider the root α = k1α1 + k2α2 + k3α3 ∈ Q. We have θ(α, α) =

(−1)k
2
1+k2

2 . Also T = {α1} and the subset F ⊂ T is either empty or {α1}.
Take J ⊂ Ire as J = {2, 3}. By Lemma 2.13, this implies that W (J) = {1}.
From (2.7) and (2.8), we have

H
(J)
1 = VJ (1(ρ− α1)− ρ) = VJ (−α1),

H
(J)
k = 0 for all k ≥ 2.

Therefore
H(J) = H

(J)
1 = VJ (−α1).

Let α = −lα1 −mα2 − nα3 ∈ Q− such that l,m, n ∈ Z≥0. Then from Frenkel
and Kac (1980), we have weights of VJ (−α1) is of the form (1,m, n) where m
and n are non-negative integers satisfying the inequality m− (m− n)2 ≥ 0.

So, for m = 0, 1, 2, ..., n ranges from m−√
m to m+

√
m.
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For a weight λ = (1,m, n) by Kang ([11]), we get

dim(VJ (−α1))λ = p(m− (m− n)2).

Using

− (λ, λ)

2
= m− (m− n)2,

we get

dim(VJ (−α1))λ = p

(

− (λ, λ)

2

)

,

where p(n) is
∞
∑

n=0

p(n)qn =
1

φ(q)
=

1
∏

j≥1(1− qj)
.

Then
Dim(VJ (−α1))λ = θ(λ, λ)p(m − (m− n)2).

Here we notice that every root α of g is of the form α = (l,m, n) with l ≥ 1
and m,n ≥ 0. We have

T (J)(α) = {n = (ni)i≥0|
∑

niαi = α}.
Then for a root α = −lα1 −mα2 − nα3 ∈ Q− with l ≥ 1 and m,n ≥ 0 the
superdimension is

Dim gα =
∑

d|α

µ(d)

d

∑

n∈TJ (α)

(|n| − 1)!

n!

∏

i

(DimHJ
αi
)ni ,

Dim gα = θ(λ, λ)p(m − (m− n)2).

Remark 3.13. In Section 3.4, for the above Borcherds superalgebra which
is an extension of hyperbolic Kac-Moody algebra, the Weyl group is infinite.
So, we are using the results from Kang ([11]) to find the superdimension
formula.

Example 3.14. Consider the extended-hyperbolic Borcherds superalgebra
g = g(A,m,C) associated with the extended-hyperbolic Borcherds-Cartan
super matrix

A =





−2 −1 −1
−2 2 −4
−1 −2 2





and the corresponding coloring matrix be

C =





−1 c1 c2
c−1
1 1 c3
c−1
2 c−1

3 1





with c1, c2, c3 ∈ CX .
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Let I = {1, 2, 3} be the index set with charge m = {1, 1, 1}.
Then for a root α = −lα1 − mα2 − nα3 ∈ Q− with l ≥ 1 and m,n ≥ 0

the superdimension is

Dim gα =
∑

d|α

µ(d)

d

∑

n∈TJ (α)

(|n| − 1)!

n!

∏

i

(DimHJ
αi
)ni ,

Dim gα = θ(λ, λ)p(m − (m− n)2).

Table 1. The following table gives some of the weights and
their dimensions

Weights Dimensions Weights Dimensions
(1, 0, 0) -1 (1, 1, 0) 1
(1, 2, 1) -1 (1, 1, 1) 1
(1, 2, 2) -2 (1, 3, 2) 2
(1, 4, 3) -3 (1, 3, 3) 3
(1, 4, 2) -1 (1, 3, 4) 2
(1, 4, 4) -5 (1, 5, 4) 5
(1, 4, 5) -3 (1, 5, 3) 1
(1, 4, 3) -3 (1, 5, 5) 6

For the root (2, 4, 5), applying the above Proposition 3.12, the Dimension
of g at (2, 4, 5) is equal to (−1)(−3) + (1)(2) + (−2)(−1) + (3)(1) = 10.

Remark 3.15. We hope that, in general, superdimensions of roots and the
corresponding combinatorial identities for Borcherds Superalgebras which are
extensions of all finite dimensional Kac-Moody algebras and superdimensions
for all other categories can also be found out.
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